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We show that the main results of the analysis of the friction factor for turbulent pipe flow reported by Gioia
and Chakraborty �Phys. Rev. Lett. 96, 044502 �2006�� can be recovered by assuming the Heisenberg closure
hypothesis for the turbulent spectrum. This highlights the structural features of the turbulent spectrum under-
lying the analysis of Gioia and Chakraborty.
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I. INTRODUCTION

The accurate prediction of the friction factor for the tur-
bulent flow of an incompressible fluid through a straight pipe
of constant circular section is a matter of huge importance,
both practical and fundamental �1–3�. Not surprisingly, it has
been the subject of careful measurement �1,4�. There is also
an array of empirical formulas to predict the friction factor in
concrete situations �5,6�, culminating with the sheer rendi-
tion of Nikuradse’s experimental results in analytical form
provided by Yang and Joseph �7�. However, the theoretical
link between the phenomenological formulas and the experi-
mental results is weak. In particular, some of the most used
empirical formulas, such as Colebrook’s, erase most of the
structure seen in experiment.

In these circumstances, the derivation of several of the
key features of the dependence of the friction factor with
respect to Reynolds number for a given pipe roughness from
a concrete theoretical model in �8� �henceforth called Gioia-
Chakraborty �GC�� is undoubtedly an important step for-
ward. For some background and further developments on the
GC model �8� see �9–13�. The analysis by Gioia and
Chakraborty �8� departs in important aspects from the view
of the problem laid down by pioneers such as Prandtl and
von Karman �1� and the classic textbook formulation by Lan-
dau and Lifshitz �14�. Therefore it is important to understand
what are the fundamental elements underlying the success of
the GC model.

Several key features of the Reynolds number dependence
of the friction factor, namely, the bellies and the Strickler’s
regime �see Ref. �8��, can be regained if the GC analysis is
combined with Heisenberg’s closure hypothesis �15–17� for
the turbulent spectrum. The Heisenberg theory is not gener-
ally regarded as a realistic depiction of fully developed tur-
bulence �18,19�. Therefore, the fact that the GC analysis
works even if the, at best, qualitatively correct Heisenberg
theory is used instead of an �not yet known� exact turbulent
spectrum gives us a new perspective on the inner working of
the GC model.

This paper is organized as follows. Section II is of a re-
view nature and presents the basic facts and definitions con-
cerning the friction factor and the GC treatment thereof. Sec-
tion III presents the Heisenberg closure hypothesis and
derives the GC friction factor for this form of the spectrum.
We conclude with a final appraisal of the GC friction factor
formula.

II. PRELIMINARIES

A. Definitions

The goal of this section is just to put together a basic
theoretical description of the Reynolds number dependence
of the friction factor. Therefore we shall consider only the
simplest case of a single phase incompressible fluid moving
within a horizontal pipe. The section of the pipe is circular
and the radius is R. We assume the flow is well developed,
meaning that there is a well-defined macroscopic velocity V
at every point �we shall use boldface for vector quantities�. V
depends only on the radial coordinate r, points in the axial
direction x, and vanishes at the boundary: V=v�r�x̂ and
v�R�=0. V is automatically divergenceless and obeys the
momentum balance equations, which, written in cylindrical
coordinates, are

�p
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1

r

�

�r
r�rx, �1�
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r�rr, �2�

where p is the pressure and � is the stress tensor. Since the
right-hand side �RHS� of Eq. �2� depends only on r, we
assume that the pressure drop �p /�x must be r independent.
Equation �1� can be integrated �with a boundary condition
imposed by regularity�,

� � �rx =
r

2

�p

�x
� − �0� r

R
� , �3�

where �0 is the stress at the wall. This means that to know the
stress on the wall it is enough to find the stress anywhere
since it obeys a simple scaling law.

Another important quantity is the average flow Q. To-
gether with the mass density � and the cross surface A
=�R2 it defines the mean velocity V according to Q=�AV.
The fluid is characterized by a molecular �dynamic� shear
viscosity �, �kinematic� �=� /�. With these quantities we
may construct the most important dimensionless number,
namely, Reynolds’,
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Re =
2RV

�
. �4�

These scales allow us to construct an energy density scale
�=�V2. The Darcy-Weisbach formula introduces the friction
factor f from the ratio of �0 to �,

�0 �
f

8
�V2. �5�

Our main goal is to find a relationship between f and Re.

B. Main flow regimes

In this section we shall describe the main flow regimes
and the corresponding empirical formulas. We shall use as
reference Nikuradse’s experimental results. For practical rea-
sons, we do not mean the actual results but rather analytical
rendering of Yang and Joseph �7� thereof.

For a rough pipe the friction factor does not decrease
indefinitely with increasing Reynolds number but rather con-
verges to a finite value f�. This allows us to define a param-
eter ����R from the condition that

1
�f�

= − 0.868 ln	 �

7.48

 . �6�

We shall use this parameter to identify the several series of
data from the Nikuradse experiment.

Figure 1 gives an overall impression of the data. Each
curve shows a rich structure. For example, let us consider the
curve corresponding to �−1=126 �Fig. 2�. The log-log plot is
essentially linear to the left of A. This corresponds to the
laminar flow; at A, we have Re�2000. Then there is a maxi-
mum �the so-called hump� at B, corresponding to Re
�4000. The log-log plot is again essentially linear up to the
belly at C �Re�40 000�. To the right of C, the curve ap-
proaches its asymptotic value from below. The approach is
very fast; beyond the point D �Re�200 000� the friction
factor is constant for all practical purposes �7�

We shall now review two basic regimes in this complex
behavior, namely, the laminar regime, to the left of A, and
the Blasius regime, from the hump B to the belly C.

1. Laminar regime

If the flow is laminar, the bulk velocity profile can be
solved exactly and the friction factor results,

f laminar =
64

Re
. �7�

In Fig. 3 we superimpose the plot of the friction factor for
laminar flow �Eq. �7�� to Nikuradse’s data as given in Fig. 1.
We can see that the agreement is outstanding up to Reynolds
numbers of a few thousands.

2. Blasius regime

One of the oldest and most accurate empirical formulas
for the friction factor is Blasius’,

fBlasius =
0.3164

Re1/4 . �8�

We plot this expression superimposed to Nikuradse’s data in
Fig. 4.

C. GC model

In this section we shall analyze the proposal by Gioia and
Chakraborty �8�. Our aim is to contrast it with the experi-
mental situation as described above.

The basic framework of the GC model is that for high
enough Reynolds number the pipe is filled with a well de-
veloped turbulent flow which can be accurately described by
Kolmogorov’s K41 theory. It is therefore characterized by
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FIG. 1. �Color online� Analytic reconstruction of Nikuradse’s
data, as given in �7�, extrapolated to the range up to Re=106, actu-
ally covered in the Princeton superpipe experiment. The six lines
correspond, from the bottom up, to �−1=507, 252, 126, 60, 30.6,
and 15. Both scales are logarithmic.
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FIG. 2. �Color online� A close up of the curve corresponding to
�−1=126. Observe the sharp minimum at A, the hump at B, and the
belly at C. To the right of D the friction factor is constant.

103 104 105 106Re

0.05

0.02

f

FIG. 3. �Color online� A comparison of the friction factor for
laminar flow �Eq. �7�� �thick line� against Nikuradse’s data as given
in Fig. 1.
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large velocity and length scales UGC and LGC. On scales l
smaller than LGC, the turbulent speed follows Kolmogorov
scaling uGC�l�=UGC�l /LGC�1/3 �except for small corrections
to be discussed below�. GC identify LGC=R as the pipe ra-
dius. Concerning the macroscopic flow velocity, GC assume
UGC=	uV, where V is the mean flow velocity and 	u is a
Re-independent constant �eventually Gioia and Chakraborty
�8� choose 	u=0.036�.

The detailed mechanisms of momentum transfer between
the flow and the wall are rather complex �20�. Gioia and
Chakraborty �8� assumed that the transfer is mainly effected
by eddies of size �GC. These eddies carry a momentum �UGC
along the wall. The transverse velocity uGC

0 is the turbulent
speed associated with the scale �GC,

uGC
0 ��GC� = UGC��GC/LGC�1/3. �9�

The stress at the wall is �0=	��UGCuGC
0 with some universal

constant 	�. Since �0 is linear on uGC
0 , in the Blasius regime

�GC
Re−3/4. This is the same scaling as Kolmogorov’s vis-
cous length scale �. �=R /Re−3/4 is the scale at which vis-
cous dissipation matches turbulent energy transport �Gioia
and Chakraborty �8� actually interposed another dimension-
less constant b=11.4 in the definition of �, and we prefer to
absorb it into the many more constants to come�. Therefore it
becomes natural to assume �GC=a�, where a is yet another
universal dimensionless constant. The friction factor reads

f =
8	�	u

2a1/3

Re1/4 F�Re� , �10�

where

F�Re� =
Re1/4

	ua1/3V
uGC

0 . �11�

At the level of approximation we have stayed so far, F
=1. If we choose 8	�	u

2a1/3=0.3164, then the model is built
to reproduce Blasius’ law for smooth pipes. This can be criti-
cized on the grounds that it does not account for the devia-
tions from the Blasius’ law at very high Reynolds number
predicted by the Colebrook equation and apparently verified
by the Princeton superpipe �4�. However, these criticisms can
be swept away by noting that no physical pipe can be abso-
lutely smooth. So the real issue is how to introduce rough-
ness into the model.

The way to modify the asymptotic behavior of the friction
factor to account for pipe roughness is that the scale �GC
does not decrease indefinitely with growing Reynolds num-
ber but rather stabilizes at a value �GCR. We therefore find
f�
�GC

1/3.
If we identify �GC with the parameter � in Eq. �6�, then

this result is the so-called Strickler law. This approximate
scaling was known long before the GC work, and the fact
that it is so effortlessly obtained is quite remarkable.

1. Belly and Blasius regime

For finite Reynolds number, we may imagine that �GC
=�GCR+a�. That is, the width of the dominant eddies at
finite Reynolds number is just the sum of the widths defined
by the pipe roughness and by the viscous scale. However, if
the stress at the wall is defined by the turbulent velocity at
�GC, and this in turn decays to �GCR with increasing Rey-
nolds number, then Kolmogorov scaling implies that the fric-
tion factor reaches its asymptotic value from above, as in the
Colebrook equation �5�. To recover the belly in Nikuradse’s
data �cf. Figs. 1 and 2� we need that the velocity at an es-
sentially fixed scale �GCR be an increasing function of Re at
least for large enough Reynolds number.

The basic idea is that the mean square velocity at some
scale � is the sum of contributions from eddies at all scales
k−1��,

u2��� = �
�−1

�

dkE�k� �12�

and f is proportional to �u2����1/2. If the only dependence on
Reynolds number was through �, then we would obtain

df

dRe
=

f

2u2���
E��−1�

�2

d�

dRe
� 0. �13�

Therefore the friction factor would be a monotonic function
of Reynolds number. To get the feature of the belly in the
friction factor we have to allow for a direct dependence of
the spectrum on Reynolds number, leading to the proper re-
sult

df

dRe
=

f

2u2���
��−1

�

dk
�E�k�
�Re

+
E��−1�

�2

d�

dRe� �14�

The derivative does not have a definite sign.
As a matter of fact, this sort of behavior is a prediction of

K41 theory for finite Reynolds number. For large but finite
Reynolds number, we have

E�k� =
3UGC

2

2R2/3
1

k5/3E�
k�� , �15�

where E is a nonincreasing function such that E�0�=1 and
E���=0. Thus in the limit of infinite Reynolds number ��0
we recover the one-third scaling law �Eq. �9��. We have
added the �yet another� dimensionless constant 
 for latter
convenience. Neither 
 nor the form of E more generally is
prescribed by K41 theory�21�. This is precisely the point
where adoption of the Heisenberg closure hypothesis �or any
other, see �22�� makes a difference.
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FIG. 4. �Color online� A comparison of Blasius’ friction factor
Eq. �8� �thick line� against Nikuradse’s data as given in Fig. 1.
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We observe that inclusion of the E�
k�� factor enforces a
decay faster than −5 /3 in the dissipative range. In any case,
we now have

�E�k�
�Re

=
3

4

3UGC
2

2R2/3
1

k2/3

�

Re
�− E��
k��� � 0. �16�

So the derivative in Eq. �14� may be positive in the appro-
priate range.

We can derive a more explicit result. Using Eq. �15� into
Eq. �12� and calling x=
k� we get, after an integration by
parts,

u2��� = UGC
2 
� �

R
�2/3

E	
�

�



− �
�

R
�2/3�


�/�

� dx

x2/3 �− E��x��� . �17�

If we use Eq. �17� to evaluate u at the scale �GC=�GCR
+a�, we clearly see the two asymptotic regimes. For large
Reynolds number, ��0, �GC��GCR, and u=UGC�GC

1/3 or,
retaining first-order corrections,

u = UGC�GC
1/3
1 −

B
�Re

� �18�

provided E�
� /��=1+o��2/3�, where the constant B de-
pends on the shape of the function E as well as on a, �GC,
and 
,

B =
1

2
� 


�GC
�2/3�

0

� dx

x2/3 �− E��x�� . �19�

In the limit where a���GCR we get instead

u2�a�� = UGC
2 �a�

R
�2/3
E	


a

 − �


a
�2/3�


/a

� dx

x2/3 �− E��x���
�20�

and so we recover Blasius’ law with a new constant �unless

 /a�1�. Of course this new factor can be easily absorbed in
any of the several dimensionless constants at our disposal.

This qualitative success is not easily transformed into a
quantitative fit, however. Generally speaking, to get the fast
approach to the asymptotic value characteristic of Ni-
kuradse’s data, very small values of 
 are preferred. But then
the Blasius regime appears in a range of Reynolds numbers
much below the experimentally observed. In any case, we
have not yet accounted for the hump. We shall defer further
quantitative analysis until we incorporate the hump into the
GC model.

2. Hump

As we have seen, the behavior of the friction factor for
Reynolds numbers over a few thousands, according to Gioia
and Chakraborty �8�, is the result of the competition of two
opposite processes. On one hand, higher Reynolds numbers
mean higher lower limits in integral �Eq. �12��, thus bringing
the friction factor down. On the other, the integrand in Eq.

�12�, as defined in Eq. �15�, increases pointwise with Rey-
nolds number, thus bringing the friction factor up. The first
process dominates in the Blasius regime and the second
dominates in the climb up to the asymptotic value.

To set a lower limit to the Blasius region, therefore, the
simplest is to cut off the integral in 12, so that it becomes
insensitive to the lower limit if this is low enough. The first
process then becomes moot, while the second is still opera-
tive, and we get a friction factor which grows with Reynolds
number.

We may mention that this second modification of the
spectrum is totally outside K41 theory. Also that in a certain
way it works too well since the laminar regime is obliterated.

In summary, Gioia and Chakraborty �8� proposed the form
of the spectrum �cf. Eq. �15��,

E�k� =
3UGC

2

2R2/3
1

k5/3E�
k��D�kR� , �21�

where

E�x� = e−x, �22�

D�x� =
x17/3

�x2 + ��17/6 , �23�

and � is a dimensionless constant. Introducing a dimension-
less integration variable x=
k� the friction factor may be
reduced to the form

f =
C

Re1/4
�
h�Re�

�

dx
x4e−x

�x2 + g�Re��17/6�1/2

, �24�

where

h�Re� =



a + �GCRe3/4 , �25�

g�Re� =
�
2

Re3/2 . �26�

In Fig. 5 we show a typical plot of Eq. �24�, correspond-
ing to the data for �=1 /126. We have extrapolated the ex-
perimental data up to Re=1010 to better appreciate the con-
vergence to the asymptotic value. For this plot, we have
chosen 
 /a=0.5 and �
2=104. The values of the constant C
and of �GC were chosen to enforce the Blasius law at the
value of Re=4000 and the proper asymptotic limit.

This plot represents a near optimal situation; for example,
higher values of � erase the features of the curve, while for
lower values the hump disappears. Although there is a re-
semblance to the experimental data, it is not truly quantita-
tively accurate; in particular, the theoretical prediction is
much smoother than the experimental plot.

III. GC MODEL BASED ON HEISENBERG CLOSURE

In this section we shall use the Heisenberg closure to
derive the form of the spectrum in Eq. �12�, thereby obtain-
ing an expression for the friction factor with higher predic-
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tive power than the original GC proposal. We consider this as
a toy model to test whether a turbulent spectrum based on a
definite hypothesis regarding the underlying dynamics can
make a difference in the accuracy of a model built along the
general lines of the GC approach �23�.

Heisenberg closure in the presence of boundaries

The basic idea of Heisenberg closure is that in fully de-
veloped turbulent flow the sum of the energy dissipated by
viscosity and the energy transported to smaller eddies re-
mains the same in all scales. At a given scale k0, the energy
dissipated through viscosity is

Q��k0� = 2���u2��k0� , �27�

where

��u2��k0� = �k0

dkk2E�k� . �28�

Heisenberg assumed that the energy transported by turbu-
lence may be written as

Qturb�k0� = 2�turb�k0���u2��k0� , �29�

where on dimensional grounds

�turb�k0� = A�
k0

�

dk�E�k�
k3 , �30�

where A is a dimensionless constant. The basic assumption is
thus

Q��k0� + Qturb�k0� = Qtot, �31�

independent of k0. If E�k�
k� when k�0, then ��u2��k0�
scales as k0

�+3 while �turb scales as k0
�/2−1/2, so we must have

�=−5 /3. This means that the kinetic energy increases indefi-
nitely with eddy size, which is incompatible with the pres-
ence of the pipe. We therefore adopt the modification sug-
gested by Parker �24�, namely, we replace ��u2��k0� in Eqs.
�27� and �29� by

��u2�R�k0� = �k0

dk�k2 + K2�E�k� , �32�

where K�R−1. The new term accounts for the increase in
dissipation due to eddy deformation. Our power counting
argument now gives �=−1 /3, so that the total kinetic energy
in the flow is finite.

The starting point is then the balance equation

�� + �turb�k��2��u2�R�k� = Qtot. �33�

A derivative of Eq. �33� gives

Qtot

��u2�R

d

dk
��u2�R − ��u2�R

2A

k3/2
�E = 0 �34�

and also

E =
1

k2 + K2

d

dk
��u2�R, �35�

so if �=k2,

d

d�
��u2�R

−3 =
− 6A

Qtot
2

1

�2

1

� + K2 , �36�

we read the boundary condition off �Eq. �31��,

��u2�R
−3 =

8�3

Qtot
3 +

6A

K2Qtot
2 
 1

k2 −
1

K2 ln	1 +
K2

k2 
� �37�

and then, from Eq. �35�, we get the spectrum from a simple
derivative,

E =
1

k3�k2 + K2�2

4A

Qtot
2

�
 8�3

Qtot
3 +

6A

K2Qtot
2 	 1

k2 −
1

K2 ln�1 +
K2

k2 �
�−4/3

. �38�

We adopt units where K=R−1=1. In these units, Qtot=V3 and
�=2V /Re. Introducing

Ks � �3A

4
�1/4Re3/4

2
� � Re

Rec
�3/4

, �39�

then the spectrum can be rewritten as

E = constant
2

3

1

k3�k2 + 1�2
 1

Ks
4 + 2	 1

k2 − ln�1 +
1

k2�
�−4/3
.

�40�

To obtain the friction factor, we need to integrate the
spectrum from a lower scale K0 up to infinity, where

K0 =
Ks

��HeiKs + aHei�
. �41�

After identifying Ks=1 /�, this lower limit is the same as in
the GC approach.

Observe that the spectrum 40 behaves as k−5/3 in the in-
ertial range. It displays a faster decay Re4k−7 in the dissipa-
tive range. It therefore satisfies the criteria discussed in Ref.
�8� and in Sec. III for reproducing the Blasius and Strickler
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FIG. 5. �Color online� Log-Log plot of the friction factor from
Eq. �24�, compared to the data for �=1 /126. The thick line corre-
sponds to the GC model; the thin line corresponds to the data. We
have extrapolated the experimental data down to Re=102 and up to
Re=1010 to better appreciate the convergence to the asymptotic
values. For this plot, we have chosen 
 /a=0.5 and �
2=104. The
values of the constant C and of �GC were chosen to enforce the
Blasius law at the value of Re=4000 and the proper asymptotic
limit.
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scaling, as well as the belly feature in the friction factor plot.
To compare the performance of the model based on

Heisenberg closure with the results from the original GC
proposal, we shall seek an optimal fit to the Nikuradse data
for �=1 /126. In all, we have four parameters Rec, aHei, �Hei
and an overall normalization at our disposal. To reduce pa-
rameter space, we shall assume �Hei=1 /126 as well. The
overall constant is determined by asking for a good fit for
very large Reynolds number. Changes in Rec induce rigid
horizontal shifts in the plot, so a is the parameter which
controls the shape of the curve. The best fit is obtained for
a=1.25, which is physically acceptable. We show the result
in Fig. 6

We see that the Heisenberg closure leads to an expression
which is as successful as the GC model in describing the
Blasius regime and the approach to the asymptotic limit. This
is clearly displayed in Fig. 7, which is simply the superposi-
tion of Figs. 5 and 6.

IV. FINAL REMARKS

The GC proposal is striking in that it offers a simple ex-
planation for the ups and downs of the plot of the friction
factor against Reynolds number.

In this note we have combined the main GC postulates
with a spectrum derived from Heisenberg closure. The result
fits the Nikuradse data as well as the original GC analysis.
This is good news for the GC model in that it underlines the
fact that the model is built on generic features rather than
detailed dynamical characteristics of the flow. However, it is
also problematic because Heisenberg closure is not generally
regarded as realistic, especially in the dissipative range.

Both in the original and the Heisenberg closure model,
moreover, it is clear that the quality of the final fit depends
on the careful tuning of the many available parameters.

Our conclusion is that to make progress in understanding
the friction factor of turbulent pipe flow along the direction
pioneered by Gioia and Chakraborty �8� we do not need to
worry about a more accurate spectrum shape but rather to
provide a solid foundation for the basic assumptions of the
GC analysis.
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