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Abstract

The interaction of solid particles with a solidifying interface is studied with numerical and analytical models for the drag and pushing

forces. The numerical results of the drag force on a spherical particle and planar interface were compared with the forces given by both,

the Stokes and modified Stokes equations. The pushing force was calculated employing the Casimir–Lifshitz–van der Waals force. The

results show the range and degree of validity of the Stokes and modified Stokes equations for large and small separations.

From this, it is shown that the particle–interface separations for steady pushing obtained numerically, for the same particle radius and

solidification velocity. In addition, the critical velocities obtained with the present hybrid model are compared with experimental results

published in the literature.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The interaction of particles with a solidifying interface
has been studied both experimentally and theoretically for
many years. The first significant analytical models were
developed in the 1950s and 1960s [1–13]. Several contribu-
tions have been published which introduced thermal
effects [4,5,14,15]. In most cases, the drag force has been
approximated by the modified Stokes equation. This
equation is valid for a spherical particle and a planar
interface and small separations between particle and
interface. However, in most experimental cases, these
conditions do not apply. In addition, the range and degree
of validity of the modified Stokes equations has not been
established with detail. In the present investigation, results
of a numerical model for the drag is presented and
compared with the forces given by the analytical equations.
In addition, the separation distance for steady pushing and
critical velocity for pushing is calculated and compared
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with experimental results. The advances will permit to
develop a numerical model, which will include the thermal
effects on the system particle–melt–solid.
2. Methods

2.1. Numerical model for the drag force

The physical problem, which is solved, consists of a
spherical particle immersed in a liquid phase close to a
planar solidifying interface. When steady pushing occurs,
the separation distance between particle and interface is
small compared to the particle radius and there are two
opposing forces in equilibrium: the drag force and the
repulsive or pushing force. The drag force is determined
and analyzed using a numerical model employing the finite
element method. The assumptions are that the particle
moves in steady state ahead of a planar interface at a
constant velocity, the gravity force is neglected, the fluid is
Newtonian and the Reynolds number is much less than 1;
an axial symmetry is also assumed. The domain is
discretized using a quadrilateral non-structured mesh with
second-order interpolation functions for the velocity field
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Fig. 1. Comparison of the finite element model results with the analytical

values for the drag force.

Table 1

Values of the parameters used in the calculations

R (mm) h (m) V (m/s) Vc (m/s)

1 1� 10�8 to 5.5� 10�5 1.65� 10�8 to 2.22� 10�4 1.11� 10�4

10 1.65� 10�8 to 5� 10�5 1.65� 10�9 to 2.22� 10�5 1.11� 10�5

50 1� 10�8 to 1� 10�4 3.3� 10�10 to 4.44� 10�6 2.22� 10�6
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and first order for the pressure field. The element equations
were obtained using the Galerkin method and the system of
equations was solved by the Picard method. The boundary
conditions were no slip at the particle surface and a single
with homogeneous velocity at the interface. The solid was
modeled by assuming a very high viscosity.

3. Analytical methods

In order to compare the results of the drag force
obtained with the numerical model, two analytical equa-
tions were used for large and small separations between
particle and interface which are: the standard Stokes [1]
and the modified Stokes [2–6] equations, respectively,
which are given by the following equations;

FdStokes ¼ 6pmV intR, (1)

FdS2M ¼ 6pmV int
R2

h
, (2)

where Vint is the interface velocity, m the viscosity, R the
particle radius and h the separation distance between
particle and interface.

In addition, it is assumed that the repulsive force is the
Casimir–Lifshitz–van der Waals force [6,7] given by

F r ¼ pB3
R

h2
, (3)

where B3 is a Casimir–Lifshitz–van der Waals constant.
This force is employed to compare the predictions from the
numerical and analytical models for the drag force and the
critical velocity for pushing.

4. Results and discussion

The physical parameters for the melt used throughout
the calculations correspond to a typical fluid with a
viscosity of 1.5� 10�3 Pa � s and same density for particle
and melt. A value of B3=1� 10�20 J was employed in all
cases. The model parameters were the particle radius R, the
particle interface separation h, and the interface velocity
Vint. The particle radius varied between 1 and 50 mm. The
separation distance varied between heq and hmin, which
correspond to the steady state of pushing and a minimum
layer thickness of a melt that may be considered as a liquid,
hmin was taken as 10�8m [16,17] and heq is estimated from
Eq. (4) which is obtained from Eqs. (2) and (3):

heq ¼
B3

6mV eqR
. (4)

A different mesh was employed for each separation
distance between particle and interface. The range of
velocities has a minimum value Vc for each physical
condition, which was estimated using Eq. (5). Eq. (5) was
obtained from Eq. (4) for heq ¼ hmin

V c ¼
B3

6mhminR
. (5)
The results obtained in the finite element calculation
were processed and compared with the analytical models.
The comparison was made of the drag force, the steady
pushing separation versus interface velocity (heq versus
Vint) and critical velocity versus particle radius (Vc

versus R).
5. Results for the drag force

The numerical results of drag force obtained from the
finite element calculations FdSim were compared with the
corresponding analytical values given by Eqs. (1) and
(2). For the comparison, following relations were em-
ployed: FdSim/FdS–M, FdSim/FdStokes and FdSim/FdSim=1,
which correspond to a perfect correlation. The comparison
was made in a range of relative separation h/2R from 0.01
to 27.5.
The results shown in Fig. 1 have been obtained for a

number of different conditions: a range of velocities,
particle radius and separation distances between the
particle and the solidification interface, which is simulated
as a planar sink. Three particle radii were used in the
calculations: 1, 10 and 50 mm. The separation distances
employed were in a specific range for each particle radius as
well as the particle–interface velocity, as shown in Table 1.
In the same Table, the estimated critical velocity

obtained from Eq. (5) is listed where it is observed that
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the largest velocity employed is twice the critical for each
particle radius.

In addition, the calculations were done for different
mesh configurations, number of elements and nodes. From
the numerical modeling point of view, the most critical
conditions are given for each end of the interval, which
corresponds to the asymptote for large values of h/2R and
also the limit for small values of h/2R. In the first
asymptote, and since in all cases, the boundary condition
of a sink was applied, the discretization of the whole
domain is necessary to obtain the last point in Fig. 1 for
h/2R ¼ 27.5; in this case, three different meshes were used
with 43,629, 49,154 and 60,000 elements, respectively,
which were not refined enough around the particle to
obtain the same degree of accuracy of the other points. The
given values in the figure are average values obtained from
a number of conditions, with a minimum of seven values to
a maximum of 21 values. The effort was focussed in the
transition from the Stokes to the modified Stokes equations
and also, for small values of h/2R which correspond to the
critical pushing conditions. From the results, it is observed
that there is a large interval in which none of the
approximations could be applied. The transition point
which separates the best fit of each analytical approxima-
tion is h/2R ¼ 0.5. In the case of small separations, it is
observed that the numerical results fit very well to the
analytical modified Stokes equation, for a significant range
of velocities, which in the larger values, exceed twice the
critical velocity.
6. Separation distance and critical velocity

The values of drag force obtained with the finite element
method were used to determine the separation distance
between the particle and the interface for different interface
velocities and particle radius. The pushing force as
explained above, correspond to the Casimir–Lifshitz–van
der Waals force. The results are shown in Fig. 2. It is
Fig. 2. Equilibrium separation for steady pushing for different particle

radii obtained from the numerical model for the drag force.
obtained that the equilibrium separation distance decreases
with interface velocity linearly for both, large velocities and
small separations up to a value of approximately 10�6 and
with a slope around 451. In addition, for a given velocity,
the pushing separation distance decreases with increasing
radius in the same way.
When these results are compared with those predicted by

the analytical model given by Eq. (4), it is obtained that in
all the cases, the separation distance for steady pushing is
always larger than the numerical model predictions.
Indicating that larger particles could be pushed at higher
velocities.
In order to find an empirical equation that could

correlate the separation distance versus solidification
velocity, three different functions were used to adjust the
model results:

V int ¼
a6

hb6
eq

, (6)

where a6 and b6 are functions of R given by the following
equations:

a6 ¼ 1:083� 10�11R�1:3518,

b6 ¼ 0:0457 lnðRÞ þ 0:767,

where R is given in mm. The second equation obtained is

V int ¼
a7

hb7
eqhc7 logðheqÞ

eq

, (7)

where a7, b7 and c7 are also functions of R given by the
following equations:

a7 ¼ 1:64706 lnðRÞ � 21:91879,

b7 ¼ 0:54163 lnðRÞ � 3:67851,

c7 ¼ 0:035395 lnðRÞ � 0:179956,

and finally the third equation is obtained from Eq. (4) as

V int ¼
B3

6mheqR
. (8)

The results of the fitting of the three Eqs. (6)–(8) are shown
in Fig. 3 for three different particle radii: 1, 10, and 50 mm.
Comparing the different models, it is observed that

model 2 given by Eq. (6) is simpler than model 3 given by
Eq. (7), however, as can be seen in Fig. 3(a)–(c), model 3
has a better fitting in the whole range of calculations. The
factor 1=hc7 logðheqÞ

eq in Eq. (7) results to be an adjusting term
of Eq. (6), which corrects the deviation for small particles.
This factor tends to 1 for larger particles and Eqs. (6) and
(7) become the same function given by Eq. (6). It is
interesting to note that the three Eqs. (6)–(8) produce the
same results for large velocities and, therefore, small
separation distances; in Fig. 3(a)–(c), the lowest value of
separation is 10�8m which corresponds to the minimum
separation for pushing; that is, gives the critical velocity for
pushing for each particle radius. In this case, any of the
three equations gives a good relation between critical
velocity as a function of particle radius. For simplicity,
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Fig. 3. Results of the fitting of heq versus Veq using Eqs. (6)–(8) for three radii: (a) 50mm, (b) 10 mm and (c) 1mm.

Fig. 4. Critical velocities for pushing in water, comparison between

experiments and model.

E. Agaliotis et al. / Journal of Crystal Growth 310 (2008) 1366–1370 1369
Eq. (8) may be chosen as a good approximation to predict
critical velocity for pushing and compare with experimental
results. It is noted that experimentally, the critical velocity
for pushing is observable which is measured and reported
in the literature [4,18–23]. Moreover, most of the experi-
ments were made using water as solidifying material and
different particle materials. In view of this, the critical
velocities for pushing, predicted by Eq. (8), with
heq ¼ 10�8m are compared with experimental results in
water. The results are shown in Fig. 4.

It is first observed that the scattering in the experimental
values is high, and second that Eq. (8) gives a good
estimation of critical velocity as a function of particle
radius. The scattering around the line given by Eq. (8) is
estimated as

logðV cm Þi � A�, (9)

where V cm

� �
i
is the predicted value at each radius and

A� ¼ average½logðV c;maxÞi � logðV c;minÞi�.
In which, (Vc,max)i and (Vc,min)i are the maximum and

minimum value of experimental velocity reported at each
radius. The data for SiO2 [4] and Pyrex [18] are not
considered due to the anomalities. The parameters A* as
well as log V cm

� �
i
are listed in Table 2.

The logarithmic dispersion A* in Table 2 shows the
largest value of approximately 0.43 for the lower radius.
The experimental scatter cannot be associated to the
particle thermal properties of the material since the scatter
occurs for metallic materials as well as for ceramic
materials. It could be associated to the particle shape and
also to the effect of the particle material on the pushing
force, since it is observed that for two metals like tungsten
and copper, the first have critical velocity consistently
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Table 2

Values of A* and log V cm

� �
i
corresponding to Eq. (9)

R (mm) A*
log V cm ðmm=sÞ
� �

i

2.5 0.313807 0.823910

5 0.429335 0.522880

30 0.429335 �0.255272

50 0.282136 �0.454844

291 0.298191 �1.242043

E. Agaliotis et al. / Journal of Crystal Growth 310 (2008) 1366–13701370
below the model prediction and the second above the
prediction. The discrepancy of the experimental results
reported for SiO2 [4] and Pyrex [18] with the other
materials could be the result of a more complex interaction
in the system particle-melt-solid. Nevertheless, Eq. (8), for
most of the experimental results shown in Fig. 4, may be
considered a good first approximation to predict the
critical velocity for pushing for a given particle radius.
7. Summary and conclusions

The drag force for an spherical particle during solidifica-
tion has been calculated numerically in a range of particle
radius between 1 and 50 mm and separation distances
between particle and interface from 1� 10�8m to
1� 10�4m.

The results have been compared with the drag force
given by the Stokes and modified Stokes equations and
show the following:
�
 The numerical calculations give values which are
consistently larger than the analytical calculations.

�
 The modified Stokes equation could be used as a good

approximation in the range of values of h/2R between
hmı́n/2R and h/2Ro0.5.

In addition, the numerical and analytical drag forces
were compared with the pushing force given by the
Casimir–Lifshitz–van der Waals force, resulting in two
fitted relations between the equilibrium separation distance
heq between particle and solidifying interface and its
velocity Veq as

V eq ¼
a

hb
eq

, (10)

V eq ¼
a

hb
eqhðc logðheqÞÞeq

. (11)

The comparison of the critical velocity predicted by
Eqs. (6) and (7) as a function of particle radius with
experimental values reported for water and a number of
different particles indicate that Eqs. (6) and (7) are first
good approximations to predict critical velocities for
pushing as a function of particle radius.
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