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Resonant features in the response of finite arrays of rectangular grooves ruled on a metallic plate have
been reported in connection with the excitation of phase resonances. These anomalies are generated by a
particular arrangement of the magnetic field phases inside the subwavelength grooves when the struc-
ture is illuminated by a p-polarized electromagnetic wave. We show that this kind of resonance is also
present for grooves of circular cross section and appear as sharp peaks in the specular response, the
number of which increases with the number of grooves in the structure. A significant intensification
of the field within the grooves is also found for these particular phase configurations. The dependence
of the response on the geometrical parameters of the structure is analyzed in detail, in order to consider
these structures for potential applications such as frequency selectors and polarizers. © 2009 Optical
Society of America

OCIS codes: 050.1950, 240.3695.

1. Introduction

Recent progress in fabrication techniques has in-
creased the interest of the scientific community in
studying structures with subwavelength slits due
to their interesting properties and multiple applica-
tions. For instance, nanowire gratings have been pro-
posed for the characterization of attosecond pulses
[1], integrated polarizers [2], optical data storage,
and external storage media.
Gratings with subwavelength slits or grooves

have also attracted much theoretical interest due
to their capability to produce unusual phenomena
such as enhanced transmission [3–6]. The excitation
of phase resonances in such systems also produces

unexpected responses, and this phenomenon has also
been investigated in the past few years [7–19]. A dec-
ade ago Veremey and Mittra demonstrated that the
scattered field of a structure formed by a finite num-
ber of slotted cylinders exhibits superdirective char-
acteristics at the resonant frequencies of the system
[20]. The occurrence of superdirectivity is attributed
to the excitation of modes that induce a phase rever-
sal in the adjacent scatterers (phase resonances).
Later on, this property was also found in structures
formed by a finite array of rectangular grooves on a
metallic plane [7], suggesting that this property is a
common attribute of systems formed by coupled re-
sonant elements. The excitation of phase resonances
in such a system appears as sharp peaks in the re-
flected response and is accompanied by a significant
enhancement of the field within the grooves. Re-
cently, the investigation of phase resonances has also
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been extended to infinitely periodic reflection grat-
ings [8–10,18] and transmission wire gratings [12–
17,19], where interesting properties have been
demonstrated. It is important to note that all the re-
search done on the excitation of phase resonances on
surfaces considered grooves of rectangular geometry.
In this paper we investigate the electromagnetic

response of a system formed by a finite number of sub-
wavelength grooves of circular cross section on a per-
fectly conducting plate, paying particular attention to
the excitation of phase resonances on the structure.
To solve the scattering problem, we use an integral
method [21–23]. An improvement of the method has
been done to deal with sharp corners of the structure,
as those appearing in the system studied. This meth-
od is very versatile and convenient, especially to deal
with arbitrary shapes of the grooves.
In Section 2 we pose the scattering problem and

outline the integral method applied to structures in-
variant along a certain direction, which is the case of
the present system. The results obtained are shown
in Section 3, where we display curves of reflected re-
sponse as a function of the incident wavelength for
normal and oblique incidence. We also study the de-
pendence of the resonance on the relevant geometri-
cal parameters of the structure such as the radius
and the aperture. The behavior of the amplitude
and phase of the field within the grooves at reso-
nance is also investigated. Finally, the conclusions
are summarized in Section 4.

2. Integral Method

Let us consider N cavity-like grooves of radius R, ru-
led on a perfectly conducting flat surface, as shown in
Fig. 1. Since the structure and the field parameters
are invariant along the z direction, the problem can
be reduced to a two-dimensional one. Figures 1(a)
and 1(b) show the outline corresponding to odd and

even numbers of cavities, respectively. The even con-
figuration of Fig. 1(b) also allows us to explore the
response of two identical subsystems of N=2 cavities
as a function of the distance dþΔ between them.
This configuration is of interest as shown in the fol-
lowing section.

As it is well known, the integral method might
exhibit numerical instabilities when the curve de-
scribing the profile presents abrupt changes. Differ-
ent strategies have been proposed to deal with the
singularities that arise in the corners [24]. In our ap-
proach, to overcome this difficulty, the sharp cor-
ners of the structure [points A and B in Fig. 1(c)]
have been replaced by small arcs of radius r0, as
shown in Fig. 1(d) (the presence of the gray circles
in the figure is just to emphasize this construction).
The width of each aperture a is controlled by the an-
gle γ and the radius r0, according to the relation
a ¼ 2½ðr0 þ RÞ sin γ − r0�.

We consider an incident field, impinging from
vacuum on the perfectly conducting structure, inde-
pendent of the z coordinate. Under this assumption,
the magnetic field for a p-polarized radiation can be
written as

HðrÞ ¼ ½ψ incðrÞ þ ψscðrÞ�ẑ; ð1Þ

where ψ inc and ψsc are the complex amplitudes of the
incident and scattered fields, respectively. The inci-
dent field can be written in terms of its angular spec-
trum Aðαjα0Þ as

ψ incðrÞ ¼
1
2π

Z ω=c

−ω=c
Aðαjα0Þ exp½iðαx − βyÞ�dα; ð2Þ

where α0 ¼ ð2π=λÞ sin θ0, λ is the incident wave-
length, and θ0 is the angle of incidence. The propaga-
tion parameters α and β fulfill the condition β ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2π=λÞ2 − α2
p

, with ReðαÞ > 0 and ImðβÞ > 0. In this
paper, we assume a Gaussian distribution of the an-
gular spectrum:

Aðαjα0Þ ¼
ψ0ffiffiffiffiffiffi
2π

p
σ
exp½−ðα − α0Þ2=ð2σ2Þ�; ð3Þ

where σ is the angular dispersion of the beam and ψ0
is a constant with the same units as the incident
field.

The surface profile is represented by a vector-
valued function rs, given by

rs ¼ ½ξðtÞ; ηðtÞ�; ð4Þ

where ξðtÞ and ηðtÞ are functions of the parameter t.
For perfectly conducting materials and p-polarized
waves, the integral equation can be written as

ψðrÞ ¼ ψ incðrÞ þ
1
4π

Z
Γ

∂G½rjr0�
∂N

����
r0¼rsðt0Þ

×ψðrsÞdl; ð5ÞFig. 1. Configuration of the scattering problem by a finite struc-
ture with grooves of circular cross section.
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where ψ is the complex amplitude of the magnetic
field, N ¼ −ðdη=dtÞx̂þ ðdξ=dtÞŷ is a vector normal
to the surface [see Fig. 1(c)], and dl is a differential
of arc on the profile Γ. The Green function G in the
kernel of the integral can be expressed in terms of the
Hankel function of the first kind and order zero:
Gðrjr0Þ ¼ iπHð1Þ

0 ½ð2π=λÞjr − r0j�. To obtain the source
functions ψðrsÞ from Eq. (5), it is assumed that the
observation point r is on the profile Γ:

ψðtÞ ¼ ψðtÞinc þ
1
4π limτ→0

Z
Γ

∂G½rþs jr0�
∂N

����
r0¼rsðt0Þ

×ψðt0Þdt0;

ð6Þ

where rþs ¼ rsðtÞ þ τN. Once the source functions
have been determined, ψ sc can be evaluated as

ψscðrÞ ¼
i
4

Z
Γ
ð2π=λÞN · ûðtÞHð1Þ

1 ½ð2π=λÞjuðtÞj� × ψðtÞdt;
ð7Þ

where uðtÞ ¼ r − rsðtÞ, andHð1Þ
1 is the Hankel function

of the first kind and order one. At this stage, it is con-
venient to express the observation point r in polar
coordinates r and θ. With this in mind, we can write
Eq. (7) in terms of outgoing waves as

ψscðr; θÞ ¼ expðiπ=4Þ exp½ið2π=λÞr�½16π2r=λ�1=2 RðθÞ; ð8Þ

where the scattering amplitude is

RðθÞ ¼ i
Z
Γ
ð2π=λÞ½η0ðt0Þ cos θ

− ξ0ðt0Þ sin θ�ψðt0Þ expf−ið2π=λÞ½ξðt0Þ cos θ
þ ηðt0Þ sin θ�gdt0: ð9Þ

In writing Eq. (8) we have used the expansion of
Hankel functions for large arguments [25] and the
approximation juj ≈ r − ðξðtÞ cosðθÞ þ ηðtÞ sin θÞ for
the argument of the exponential.
The radial component of the time-averaged Poynt-

ing vector can be written as

ðSscÞr ¼ ðc=ð8πÞℜ½Esc ×H�
sc�Þr

¼ cλ
ð16π2Þℜ

�
iψsc

�
∂ψsc

∂r

���
; ð10Þ

where c is the speed of light in vacuum.We define the
far field intensity scattered at the angle θ as an
amount proportional to ðSscÞr:

Intensity∼ ðSscÞr: ð11Þ

The numerical solution of Eq. (6) requires a discre-
tization procedure, i.e., the continuous parameter t is
replaced by a set of N elements ½t1;…; tN �. Therefore,
Eq. (6) becomes a matrix equation:

ψðtmÞ ¼ ψ incðtmÞ þ
Xn¼N

n¼1

HmnψðtnÞ: ð12Þ

The matrix elements Hmn can be written as [23]

Hmn ¼

8>>><
>>>:

iπΔtn
2λ f−η0numn þ ξ0nwmngHð1Þ

1 ð2πλ fu2
mnþw2

mng1=2Þ
fu2

mnþw2
mng1=2 ; m ≠ n;

1
2 þ Δtm

4πϕ2ðtmÞ ½ξ
0
mη00m − ξ00mη0m�; m ¼ n;

ð13Þ

where Δtn ¼ tn − tn−1 is the length of the sampling
intervals, ξ0m ¼ ½dξ=dt�ðtmÞ, ξ00m ¼ ½d2ξ=dt2�ðtmÞ, η0m ¼
½dξ=dt�ðtmÞ, η00m ¼ ½d2ξ=dt2�ðtmÞ, umn ¼ ξm − ξn, and
wmn ¼ ηm − ηn.

Numerical tests were initially performed with the
profile shown in Fig. 1(c). The abrupt change of this
profile (and of its normal derivative) at points A and
B produces numerical instabilities that make it
difficult to achieve convergence of the results. For in-
stance, in certain wavelength ranges the field inten-
sity shows significant variations when the parameter
N is slightly changed. To overcome this problem, the
hard edges of the cavities were rounded as shown in
Fig. 1(d). In contrast with the geometry of Fig. 1(c),
numerical tests with the profile of Fig. 1(d) showed
very good convergence of the results as a function
of the parameterN. The curves presented in the next
section were obtained by taking N ≈ 1300.

3. Results

When the incident wavelength considerably exceeds
the dimensions of the structure, phase resonances
can be excited [20]. Our purpose is to investigate
the phase resonances that appear in a perfectly con-
ducting surface with a finite number of cylindrical
grooves, their properties, and their dependence with
the geometrical parameters. In Fig. 2 we analyze
the dependence of the resonances on the number of
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grooves. We consider grooves of circular cross section
with an aperture a=R ¼ 0:02826, separated a dis-
tance d ¼ 2:1R, and study the specularly reflected re-
sponse for a normally incident p-polarized Gaussian
beam of spatial width W ¼ 20R as a function of
kR. In the range of kR considered, the curves for
one and two grooves exhibit a minimum, which is
associated with the so called H00 mode [26] [see
Figs. 2(a) and 2(b)]. From the mathematical point
of view, this low-frequency resonance has a singular
nature. The eigenmodes of a perfectly conducting wa-
veguide with circular cross section for p polarization
include the zero as its lowest eigenfrequency, but
since its associated eigenfunction is identically equal
to zero, this is not a true eigenvalue. The effect of cut-
ting the cylinder and making an aperture is to shift
this zero pseudo-eigenvalue by a small complex num-
ber with a corresponding nonzero eigenfunction. In
terms of an equivalent circuit, the aperture causes
a break in the transverse current on the cylinder,
which results in an equivalent capacitance and in-
ductance that produce the resonance [27]. The fre-
quency at which this resonance occurs increases
with the aperture size [28], and in this case is found
approximately at kR ¼ 0:22. Although the minimum
in the reflected response associated to the H00 mode
stays for an arbitrary number of grooves, a sharp
peak appears in the reflected response for the

three-groove case at kR ¼ 0:2285, as observed in
Fig. 2(c). This peak corresponds to the so called π re-
sonance, and arises from the resonant coupling of the
electromagnetic field within adjacent grooves, as it
was already observed for grooves of rectangular cross
section [7]. For this particular wavelength, the field
phases in adjacent grooves are opposite to each
other, and this produces a reflectance maximum.
In Fig. 3(a) we show the magnitude of the magnetic
field at the center of each groove as a function of kR,
for the case of three grooves considered in Fig. 2. In
this figure, the labels L, C, and R correspond to left,
central, and right grooves, respectively. A remark-
able intensification of the interior field is obtained
at the π resonance. The phase difference between
the magnetic fields at the center of adjacent grooves
is shown in Fig. 3(b). Notice that due to the symmetry
imposed by the normal incidence, both external
grooves have the same field, and then the phase dif-
ference between the right and the central groove is
the same as that between the left and the central
one. This phase difference curve confirms that the
π resonance is associated with a phase difference
of π radians between the magnetic fields at adjacent
grooves. If we keep increasing the number of grooves
in the surface, we obtain the curves in Figs. 2(d)–2(f):
for five and six grooves there are two maxima within
the same waveguide resonance minimum, and for

Fig. 2. Reflected intensity as a function of kR for a p-polarized Gaussian beam of width W ¼ 20R normally incident on a finite grating
with an aperture a=R ¼ 0:02826; the distance between adjacent grooves is d ¼ 2:1R. (a) N ¼ 1, (b) N ¼ 2, (c) N ¼ 3, (d) N ¼ 5, (e) N ¼ 6,
(f) N ¼ 7.
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seven grooves, even one more peak appears. This
trend is to be expected, and the same behavior was
found in surfaces with rectangular grooves [7]. The
appearance of more peaks is related to the increase
in the number of possibilities to get opposite phases
in adjacent grooves. In the case of three grooves un-
der normal incidence, the only possibility is to have
the same phase at the external grooves, opposite to
the central one. Such a phase pattern is also denoted
as (þ-þ) according to the terminology already used in
the literature [7,12,17]. For five grooves, more phase
configurations could be found, such as (þ - þ - þ),
(þ - - - þ), and (þ þ - þ þ). The highest quality
peak corresponds to the π resonance (opposite phases
in any pair of adjacent grooves), whereas for the
other modes the quality slightly decreases. In all
cases, the π resonance is located at the largest value
of kR among all the phase resonance modes, as ob-
served in the rectangular grooves case [7]. It is inter-
esting to notice that in the case of six grooves, there
are also two peaks as in the five-groove case, but the
resonances have less quality. This occurs since, even

though in the six-groove case there are also three
possibilities of phase distributions, namely,
(þ - þ þ - þ), (þ þ - - þ þ), and (þ - - - - þ), none
of them has opposite phases in every pair of adjacent
grooves, as required for the π resonance, since this
situation is forbidden due to the symmetry imposed
by the normally incident plane wave.

The amplitude and phase of the magnetic interior
field for the five-groove case is shown in Fig. 4. In
these figures, the labels LL and RR correspond to
leftmost and rightmost grooves, respectively, the L
and R labels correspond to the grooves at the left
and right of the central one, respectively, and C
corresponds to the central groove. According to
Figs. 4(d) and 4(e), the resonance at kR ≈ 0:229 corre-
sponds to the π mode (þ - þ - þ), and that at kR ≈

0:223 corresponds to the mode (þ - - - þ). It can be
observed in Figs. 4(a)–4(c) that the field within all
the grooves is significantly enhanced at the π reso-
nance, and at the other mode the field is intensified
in the external and the central grooves only. This is a
characteristic of phase resonances, as previously
observed for other systems [7,20].

When the incidence is no longer normal, new phase
configurations are allowed, and then more resonant
peaks may appear in the reflected response. An ex-
ample of this is shown in Fig. 5, where we show
the reflected intensity and the phase and magnitude
of the magnetic field within the rulings for a two-
groove structure with the same parameters consid-
ered in Fig. 2, and for oblique incidence, θ0 ¼ 40°.
A resonant peak that was not present in the normal
incidence case (included in this figure for compari-
son) appears, and, as can be learned from Fig. 5(b),
it roughly corresponds to a (þ -) mode, which is a for-
bidden mode for normal incidence due to symmetry
reasons. At this resonance, the magnetic field within
both grooves is significantly enhanced, as observed in
Figs. 5(c) and 5(d) (the reflected response for the
same structure under normal illumination is also in-
cluded for comparison).

In Fig. 6 we analyze the influence of the aperture
size on the reflected response, and, in particular,
on the π resonance for the three-groove case. Four
values of the aperture have been considered, and
the corresponding intensity curves are shown in
Fig. 6(a). It can be observed that as the aperture de-
creases, the resonant value of kR also decreases, as is
expected for theH00 mode in a slotted cylinder [28]. A
shift in the resonant frequencies of an open cavity
when varying its aperture size is a general character-
istic of cavity resonances; the case of bottle-shaped
cavities was investigated in [29,30]. As the aperture
decreases, the resonances become more localized,
and their widths also decrease. The possibility of tun-
ing the frequency by varying the aperture size is an
interesting characteristic of phase resonances, which
suggests that these systems could be used as fre-
quency selective devices. The resonant frequency as
a function of the normalized aperture size is shown in
Fig. 6(b). This curve shows that for variations of the

Fig. 3. Magnetic field at the center of each groove as a function of
kR for the three-groove case considered in Fig. 2(c). (a) jHj2,
(b) phase difference between the external and the central grooves.
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aperture size within 10% of the radius R, the reso-
nant kR varies significantly, and this confirms the
tunability of the system.
In Fig. 7 we analyze a structure comprising six

grooves, forming two subsets of three grooves each,
separated a distance D ¼ dþΔ. We show the re-
flected intensity as a function of kR for different ra-
tiosΔ=R between 0 and 6. ForΔ=R ¼ 0, the structure
is the regular six-groove surface already considered
in Fig. 2(e), in which all the grooves are equally
spaced. Its response is represented by the thick solid
line in Fig. 7, where two phase resonances are iden-
tified: the highest quality resonance at kR ¼ 0:228,
which in the six-groove case corresponds to the
(þ - þ þ - þ ) mode, and the (þ þ - - þ þ) mode

at kR ¼ 0:22. As the distance between both three-
groove groups is increased, the π resonance peak is
present in all the reflected spectra, whereas the left-
most resonance peak weakens, and for Δ=R ¼ 6
almost vanishes. This behavior can be explained in
terms of the electromagnetic coupling between adja-
cent grooves. When the grooves are equally spaced,
several possibilities of exciting phase resonances
are allowed, as discussed above in connection to
Fig. 2. However, asΔ increases, the coupling between
both central grooves becomes weaker, and in the lim-
it of very large Δ the system behaves like two non-
interacting subsets of three grooves. Thus only the
modes corresponding to each one of the three-groove
subsets can be excited, which in the normal incidence

Fig. 4. Magnetic field at the center of each groove as a function of kR for the five-groove case considered in Fig. 2(d). (a) jHj2 in the leftmost
groove, (b) jHj2 in the second groove, (c) jHj2 in the central groove, (d) phase difference between the leftmost and the central groove,
(e) phase difference between the second and the central groove.
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case is only the (þ - þ) mode, represented by the
narrow peak at kR ¼ 0:228. The response of a struc-
ture with just three equally spaced grooves is also in-
cluded for comparison (circles), where it is evident
that only the π resonance is present.

Fig. 7. Reflected intensity as a function of kR for a p-polarized
Gaussian beam of width W ¼ 20R, normally incident on a struc-
ture comprising six grooves, forming two subsets of three grooves
of aperture a=R ¼ 0:02826 and d ¼ 2:1R each, separated a dis-
tance D ¼ dþΔ. The different curves correspond to different
ratios Δ=R.

Fig. 5. (a) Reflected intensity as a function of kR for a p-polarized Gaussian beam of widthW ¼ 20R, incident with an angle θ0 ¼ 40°, on a
two-groove grating with an aperture a=R ¼ 0:02826 and distance between grooves of d ¼ 2:1R; (b) phase difference between the magnetic
field at the center of each groove in the same case; (c)

��H��2 at the center of the left groove; (d)
��H��2 at the center of the right groove.

Fig. 6. Dependence of the resonant kR value on the aperture size
for the three-groove case considered in the previous figures. (a) Re-
flected intensity as a function of kR for several values of the aper-
ture; (b) resonant kR as a function of the normalized aperture size.
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4. Conclusions

We have investigated the electromagnetic response
of finite arrays of subwavelength grooves of circular
cross section, and found that phase resonances can
be excited for particular wavelengths. The integral
method has been developed and applied to solve
the scattering problem, and special attention was
paid to the treatment of sharp boundaries. The exci-
tation of phase resonances in this system has been
studied, and the dependence of their spectral loca-
tion with the number of grooves and with the aper-
ture size has been analyzed for potential applications
such as frequency selectors and polarizers. The mag-
netic field within the grooves was also calculated,
and the results confirm that phase resonances are
characterized by a significant enhancement of the in-
terior field. This work constitutes the first study of
phase resonances in finite gratings with nonrectan-
gular geometry.
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Buenos Aires (UBA), Agencia Nacional de Promoción
Científica y Tecnológica (ANPCYT-BID 1728/OC-
AR06-01785), and Programa de Movilidad Académi-
ca de la Universidad Autónoma de Baja California
(UABC), 6ta Convocatoria.
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