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Abstract
Transmission wire gratings comprising several subwavelength slits within each period
(compound gratings) have been shown to exhibit abrupt dips in the transmission response.
These minima correspond to phase resonances, that are excited in the structure when a
particular distribution of the magnetic field phases inside the slits is generated. By using an
approximate model based on the modal method, we can easily obtain the resonant frequencies
which correspond to transmittance maxima (Fabry–Perot resonances) and minima (phase
resonances). This simplified model constitutes a practical tool to accurately predict the relevant
characteristics of the transmitted response of compound structures for normal and oblique
incidence, without a full solution of the scattering problem.

Keywords: enhanced transmission, nanogratings, resonances, photonic crystals

1. Introduction

The transmitted response of a periodic array of rectangular
slits presents a series of Fabry–Perot (FP) resonances, which
manifest themselves as transmittance maxima for certain
wavelengths. The origin of these resonances lies in the
excitation of waveguide modes within each individual slit,
and their location is related to the thickness of the structure.
This problem has been studied by Porto et al [1], where the
authors also analyze the physical origin of such transmission
resonances as a function of the thickness of the structure and
of the slit width by using a simplified model.

One-dimensional metallic structures have been widely
investigated in the last decade in connection with the
enhanced transmission phenomenon first reported in a metallic
plate with holes [2]. Theoretical [1, 3–11] as well as
experimental [12–16] research has been carried out in
connection with slit structures and their capability of producing
enhanced transmission.

Dual-period structures formed by slit arrays have only
attracted the attention of a few authors since very recently,
although they provide more degrees of freedom than regular
gratings for the design of the transmitted response. Examples
of their potential are the possibility of intensification
and/or cancelation of a given diffraction order [17–19] and
the excitation of phase resonances [20]. It has been
shown that transmission metallic gratings comprising several
subwavelength slits within each unit cell exhibit phase
resonances, i.e., resonances that are characterized by a phase
reversal of the magnetic field in adjacent slits within each
period [20–23]. Such resonances only take place under p-
polarized incidence (electric field in the plane of incidence),
and are only permitted when there is more than one slit
or cavity within each period. In the regular grating case,
the pseudoperiodicity condition of the fields imposes that all
periods of the grating are equivalent, thus forbidding different
field phases in adjacent slits, which is the basic requirement for
a phase resonance.

1464-4258/09/105102+08$30.00 © 2009 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/1464-4258/11/10/105102
mailto:dcs@df.uba.ar
http://stacks.iop.org/JOptA/11/105102


J. Opt. A: Pure Appl. Opt. 11 (2009) 105102 D C Skigin

Figure 1. Scheme of the compound structure with subwavelength slits.

Only a few recent works reported experimental demon-
strations of phase resonances in slit structures. Hibbins et al
measured the transmissivity of an air-filled compound grating
comprised of two narrow slits flanking a wider central slit
under microwave radiation [24] and confirmed the existence
of a dip within a FP peak, which is characteristic of phase
resonances. Ma et al also reported measurements for periodic
structures with unit cells consisting of two or three slits of
different widths, and found clear evidence of phase resonances
in the microwave regime [25]. Recently, Navarro-Cı́a et al
reported the measurement of the transmittance for structures
with one, two and three slits per period in an aluminum plate,
and have demonstrated the existence of phase resonances in the
millimeter wave regime [26].

In this work an approximate model—based on the
classical modal method [27] extended to deal with dual-
period metallic structures with subwavelength slits [20]—
is developed, which predicts the wavelengths at which a
transmittance minimum is found, i.e., the spectral location of
phase resonances. This model also allows the determination
of the frequencies at which the maxima connected with
the FP resonances of each single slit are found. Thus,
the relevant information regarding the response of double-
period subwavelength slit structures is obtained via a very
simple approach and then the computation time required
for the overall calculation decreases considerably. Very
recently, another model for the prediction of enhanced
transmission and phase resonances in compound structures
has been presented [28, 29], where the authors show that
simple reasoning starting from standard transmission line
and waveguide theory provides a useful tool to qualitatively
and quantitatively predict the behavior of slits systems, and
also accounts for all of the reported phenomena. The basic
idea of this model is to reduce the real problem to the
evaluation of the scattering of a TEM wave supported by a
parallel plate transmission line when a finite length section
of another parallel plate transmission line having much higher
characteristic admittance is inserted, and the influence of below
cutoff modes is accounted for by an equivalent capacitance.
This approach is completely different from that presented here,

in which the rigorous modal method with the single mode
approximation is applied to solve the scattering problem.

In section 2 a p-polarized plane wave impinging on
a double-period slit structure is considered, and the modal
approach developed to predict the resonances is outlined. The
results obtained with this method are given in section 3,
where the transmitted intensity and the modal amplitudes
within the slits are shown as a function of the incident
wavelength. Dispersion diagrams for the double-period slit
structure obtained by the simple model proposed are also
shown. The conclusions of the work are summarized in
section 4.

2. Approximate modal method

Consider the double-period structure of figure 1 comprising
perfectly conducting wires of rectangular cross section and
subwavelength slits of width c and depth h. Each period
d comprises several wires and J slits, forming a subgrating.
For in-plane incidence, the basic polarization modes are
uncoupled, and then the complete vectorial diffraction problem
can be separated into two scalar problems for Ez (s
polarization) and Hz (p polarization), from which the other
components of the electromagnetic field can be obtained.

Consider a p-polarized plane wave (magnetic field along
the wires) of wavelength λ impinging on the wire array, which
is immersed in vacuum. The problem is divided into three
regions, and the modal approach consists of expanding the
fields in each region in their own eigenfunctions, which satisfy
the boundary conditions. In regions I (y � h/2) and III
(y � −h/2) the tangential magnetic field is expressed as:

H I
z(x, y) = exp [i(α0x − β0(y − h/2))]

+
∑

n

Rn exp [i(αn x + βn(y − h/2))], (1)

H III
z (x, y) =

∑

n

Tn exp [i(αn x − βn(y + h/2))], (2)

where

αn = 2π

λ
sin θ0 + n

2π

d
, (3)
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β2
n =

(
2π

λ

)2

− α2
n, (4)

θ0 is the angle of incidence, i is the imaginary unit, and Rn

and Tn are the unknown reflected and transmitted Rayleigh
amplitudes, respectively.

In region II (|y| � h/2), there are two zones: the perfect
conductor and the slits. Since we are considering slits whose
width is much smaller than the incident wavelength, the field
within each slit can be approximated by the fundamental mode
only, which for p polarization corresponds to a constant field
in the x direction:

H II
z j(x, y) = a j cos [ky] + b j sin [ky], (5)

where k = ω/c is the propagation constant in vacuum, ω is the
incident frequency and c is the speed of light in vacuum. The
subscript j denotes the slit within each period, and a j and b j

are the unknown modal amplitudes.
By applying the boundary conditions at the interfaces

between regions, i.e., the continuity of the tangential electric
and magnetic fields in the vacuum–vacuum interfaces and the
requirement of null tangential electric field on the perfectly
conducting surface of the wires, four x-dependent equations
are obtained. These equations are projected on convenient
bases to remove the spatial dependence, and this leads to the
following equations for the unknown reflected, transmitted and
modal amplitudes:

∑

n

Tneiαn x j F+
n = c[ã j − b̃ j ], (6)

∑

n

(δn0 + Rn)e
iαn x j F+

n = c[ã j + b̃ j ], (7)

∑

j

ke−iαn x j [ã j D2 + b̃ j D1]F−
n = −idTnβn, (8)

∑

j

ke−iαn x j [−ã j D2 + b̃ j D1]F−
n = id(−δn0 + Rn)βn, (9)

where
ã j = a j cos(kh/2), (10)

b̃ j = b j sin(kh/2), (11)

F±
n =

∫ c

0
e±iαn x dx, (12)

D1 = cotan(kh/2), (13)

D2 = tan(kh/2). (14)

The reflected and transmitted amplitudes are eliminated from
the system formed by equations (6)–(9), and two matrix
equations are obtained, whose solutions are the modal
amplitudes:

ã j =
∑

j ′
−(A−1) j j ′ I j ′ (15)

b̃ j =
∑

j ′
(B−1) j j ′ I j ′, (16)

where

A j j ′ = i
k

d
D2φ j j ′ − cδ j j ′, (17)

B j j ′ = i
k

d
D1φ j j ′ + cδ j j ′, (18)

I j ′ = F+
0 eiα0 x j ′ , (19)

φ j j ′ =
∑

n

eiαn(x j −x j ′ ) F+
n F−

n

βn
, (20)

and x j denotes the position of the left wall of the j th slit.
Once the modal amplitudes are found using equations (15)

and (16), the reflected and transmitted amplitudes can also
be computed to get the electromagnetic field everywhere.
Instead of solving the above equations, in what follows we
focus on the matrices A and B—whose elements are A j j ′ and
B j j ′, respectively—obtained by the approximate model, and
analyze them to extract information about the resonances of
the compound slit system without a previous solution of the
diffraction problem.

3. Results

In this section we analyze slit structures with one, two, three
and five slits per period. In all cases, the results have been
obtained by the approximate model outlined in section 2 for
incident p polarization. The zero-order transmittance curves
have been compared with those obtained by the modal method
without the assumption of a single mode expansion within
the slits [23], and an excellent agreement was found, which
confirms the validity of the simple model.

The results shown in figure 2 correspond to a simple
grating, i.e., a periodic array with a single slit in each period.
The parameters of the structure are: c/d = 0.08, h/d =
1.14, θ0 = 0◦. As expected for regular slit gratings,
FP resonances appear as peaks in the zero-order transmitted
response (figure 2(a)) [1]. In the wavelength range considered,
these resonances are found approximately at λ/d = 1.279 and
2.512. Taking into account that the waveguide resonances for
an infinitely narrow slit are given by λm/d = (2h/d)/m (with
m being a positive integer), for the thickness considered in this
example those values are λ1/d = 2.28 and λ2/d = 1.14.
Then, the peak at λ/d = 2.512 can be associated with the first
mode (m = 1) and that at λ/d = 1.279 to the second mode
(m = 2). As already observed in previous works [3, 4, 30], the
spectral positions of FP resonances are affected by the finite
width of the slits among other parameters, and then there is
a shift between the predicted and the calculated values. The
m = 1 peak corresponds to half a wavelength fitting in the
depth of the slit (h = λ/2). In a simplified approach, the
magnetic field within each slit at resonance can be regarded
as a stationary wave with nodes at the y = ±h/2 interfaces.
Then, the magnetic field has an even distribution along y for
the m = 1 mode, and according to equation (5) this suggests
that the modal amplitude a1 and the matrix A are the relevant
quantities in this case. On the other hand, for the m = 2
resonance the magnetic field has an odd distribution along
the coordinate y, and then it is expected that the amplitude
b1 and the matrix B govern the behavior in this case. These
characteristics can be observed in figure 2(b): the absolute
value of the amplitude ã1 has a peak at the m = 1 resonance

3
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Figure 2. Simple structure with a single slit of width c/d = 0.08 and depth h/d = 1.14 within each period under normal incidence.
(a) Zero-order transmittance as a function of the wavelength-to-period ratio λ/d; (b) absolute value of the modal amplitudes; (c) real and
imaginary parts of the determinant of matrices A and B; (d) real and imaginary parts of the modal amplitudes a1 and b1.

(λ/d = 2.512), whereas |b̃1| has a peak at the m = 2 resonance
(λ/d = 1.279).

According to equations (17) and (18), in the simple grating
case, A and B are 1 × 1 matrices ( j = j ′ = 1) and then A =
det(A) = A11 and B = det(B) = B11. From equations (15)
and (16) and using (17)–(20) we get the following expressions
for the modal amplitudes under normal incidence:

ã1 = − c

A11
, (21)

b̃1 = c

B11
. (22)

Since FP resonances are associated with an intensification of
the field inside the slits, the resonant wavelengths are those
that minimize the absolute value of the denominator in (21)
and (22). Under normal incidence, approximate analytical
expressions for B11 and A11 can be derived. In what follows we
focus on the analysis of the m = 2 resonance, i.e., on matrix
B and modal amplitudes b̃ j (the procedure for the m = 1
resonance is completely analogous).

To obtain the expression for B11 only the first three terms
in the sums over n in equations (1) and (2) have been retained,
which correspond to the 0 and ±1 reflected and transmitted

orders:

B11 = 2√
λ2 − d2

cotan(kh/2)

∣∣∣∣
ei2πc/d − 1

i2π/d

∣∣∣∣
2

+ c + i
c2

d
cotan(kh/2). (23)

It is clear from this expression that the real and imaginary parts
of B11 have asymptotes at kh/2 = qπ , (q integer), which
in the wavelength range considered in figure 2 corresponds
to λ/d = h/d = 1.14—similarly, A11 has asymptotes at
kh/2 = (2q + 1)π , i.e., at λ/d = 2h/d = 2.28 within
the interval under consideration. In figure 2(c), the real and
imaginary parts of the determinants of A and B are plotted as
a function of λ/d , and the asymptotes are marked by dash–
dotted lines. As expected, no resonances are found at these
wavelengths. On the other hand, it can be noticed that the
minimum of the absolute value of the determinant is found
when its real part vanishes: Re[det(A)] = 0 at the m = 1
resonance and Re[det(B)] = 0 at the m = 2 resonance (Re[·]
denotes real part). This seems to be a characteristic of the
dependence of the resulting equations on the wavelength for
slits systems. This kind of behavior has already been reported
by other authors for simple gratings [1, 31], and they found
that there is a close correspondence between the transmittance
maxima and the spectral positions of the zeros of the real
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Figure 3. Compound structure with three slits of c/d = a/d = 0.08 and h/d = 1.14 within each period under normal incidence.
(a) Zero-order transmittance as a function of the wavelength-to-period ratio λ/d; (b) absolute value of the modal amplitudes; (c) real and
imaginary parts of the determinant of matrix B; (d) real and imaginary parts of the modal amplitudes b1 and b2.

or the imaginary part of a certain function. In particular,
Quémerais et al [31] found that waveguide resonances occur at
the minima of a certain denominator, and that those values are
approximately reached when its real part vanishes, the width
of the resonance being proportional to its imaginary part.

It is interesting to notice in figure 2(d) that at the resonant
wavelengths, at which the absolute values of a1 and b1

have peaks, the imaginary parts of the modal amplitudes are
maximized and, at the same time, their real parts vanish:
Re[b̃1] = 0 at the m = 2 resonance (thin solid line) and
Re[ã1] = 0 at the m = 1 resonance (thick solid line). From
equation (22) B11b̃1 = c. Taking into account that c ∈ �,
if Re[B11] = 0 then Re[b̃1] = 0, as observed in figure 2(d).
Physically, the fact that at resonance b̃1 ∈ � implies that the
field within the slits is in phase with the incident wave. For
any other wavelength b̃1 is complex with nonzero real and
imaginary parts, and there is a phase shift between the incident
wave and the slit field.

In figure 3 we show results for a compound structure with
three slits per period, as schematized in figure 1. The width of
the slits is c/d = 0.08, the separation between adjacent slits
is a/d = 0.08 and their depth is h/d = 1.14. As already
reported in earlier works [20, 22, 23, 26], the zero-order

transmittance exhibits sharp dips within each FP resonance
peak (see figure 3(a)). The physical origin of these dips can be
explained in terms of phase resonances, which are generated
by a particular arrangement of the magnetic field phases within
the slits [20, 32–34]. If the grating comprises several slits in
the period (compound grating), the distribution of field phases
in the slits can have different configurations, not allowed in
simple gratings due to the pseudoperiodic property. In the
three-slits case and under normal illumination, the only phase
configuration allowed (other than having equal phases in all
the slits) is the one known as the π -mode [32]; this resonance
is characterized by a phase reversal between the central and the
external slits, and it is also called the (+ − +) mode.

In figure 3(a), it is shown that these dips are found
at λ/d = 1.2458 and at λ/d = 2.4792, i.e., within the
FP resonant peaks. As observed in figure 3(b), the modal
amplitudes in the three slits are maximized in the vicinity of
the resonances. In particular, ã j have a prominent role near the
m = 1 resonance, and b̃ j at the m = 2 resonance—the bold
arrows in figures 3(a) and (b) mark the spectral positions of
the dips and the thin short ones denote the maxima positions.
As expected due to the symmetry imposed by the normal
incidence, the amplitudes at both external slits are equal.

5
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Table 1. Spectral positions λ/d of transmission maxima, transmission minima, and zeros of the real and imaginary parts of the determinant
of matrices A and B for one to three slits per period structures with the same parameters as figures 2 and 3.

Transmittance
maxima

Transmittance
minima

αr A = Zeros of
Re[det(A)]

αi A = Zeros of
Im[det(A)]

αr B = Zeros of
Re[det(B)]

αi B = Zeros of
Im[det(B)]

1 slit 1.279 — 2.51 1.14 1.28 2.28
2.512

2 slits 1.294 — 2.502 1.14 1.264 1.264
2.52 2.522 2.502 1.294 2.28

3 slits 1.232 1.24588 2.454 1.14 1.232 1.246
1.293 2.4792 2.516 2.48 1.29 1.31
2.455 2.568 2.568 1.31 2.28
2.522

Approximate expressions for the modal amplitudes can
be obtained by retaining only the terms with n = 0 and ±1
in the series of transmitted and reflected fields. However,
it is important to remark that if all of the evanescent waves
are neglected, i.e., only the propagating specular and forward
orders are considered in the calculation, the transmitted
response does not reproduce the dips but only the peaks, which
moreover, appear significantly shifted with respect to their
actual spectral position. This suggests that the generation of
phase resonances is intimately connected with the existence of
evanescent waves along the structure.

In figure 3(c), we plot the real and imaginary parts of
the determinant of matrix B in the wavelength range 1.15 �
λ/d � 1.35, i.e., in the vicinity of the m = 2 FP resonance,
and in figure 3(d) the real and imaginary parts of the modal
amplitudes b̃ j in the three slits are shown in the same interval.
The vertical dotted lines denote the relevant spectral positions:
those at λ/d = 1.232 and 1.293 mark the transmission
maxima, and that at λ/d = 1.246 marks the transmission dip.
It can be observed that for the resonant wavelengths that give
transmission peaks, the real part of the determinant of matrix
B vanishes at those wavelengths. This means that the rule
found for the location of FP resonances in simple structures
can also be applied to compound structures. At the same time,
the real parts of the modal amplitudes b̃ j of all of the three
slits vanish, producing purely imaginary modal amplitudes, as
occurs for a structure with a single slit per period. Conversely,
at the phase resonance which gives the transmittance dip, the
imaginary part of the determinant of matrix B is null and the
imaginary parts of the modal amplitudes b̃ j also vanish. Then,
at the phase resonance the b̃ j are purely real and b̃1 = b̃3

has the opposite sign to b̃2, meaning that the fields in adjacent
slits are phase reversed. The same behavior is found for the
determinant of matrix A and the modal amplitudes ã j near the
m = 1 resonance (not shown). This constitutes one of the main
results of the present work.

In table 1 we list the spectral positions of the transmitted
maxima and minima, and the zeros of the real and imaginary
parts of the determinant of matrices A and B for structures
with one, two and three slits per period with the same
geometrical parameters considered in figures 2 and 3 under
normal incidence. We denote these zeros by αsF , where s = r,
i denotes real and imaginary part, respectively, and F = A
or B denotes the matrix. It is evident that there is a close
correspondence between them: the transmittance maxima are

correlated with the zeros of the real part of the determinants
(αr A and αr B ) in the one-, two-, and three-slit systems,
whereas the transmission dips—only present in the three-slits
case under normal incidence—are related to the zeros of the
imaginary part of the determinants. As expected, the features
in the vicinity of the m = 1 resonance are related to matrix
A whereas those close to the m = 2 resonance are related
to matrix B . Notice that in table 1 there are other zeros that
cannot be associated neither with maxima nor with minima in
the transmittance response, whose values are: λ/d = 1.14 and
2.28 (for the system with a single slit per period), λ/d = 1.14,
1.264, 2.28, 2.502 for the system with two slits per period,
and λ/d = 1.14, 1.31, 2.28, 2.568 for the three-slits case.
As discussed above in connection with the single-slit system,
det(A) and det(B) have asymptotes at certain wavelengths at
which Im[det(B)] and Im[det(A)] have zeros, mainly governed
by the cotan(kh/2) and tan(kh/2) functions that appear in the
explicit expressions of det(B) and det(A), respectively. In
table 1 the zeros at λ/d = 1.14 and 2.28 are of this type. This
kind of zero is also found as the number of slits is increased,
and additionally, for structures with more than one slit per
period, there are certain wavelengths at which the real and
imaginary parts of the determinants vanish simultaneously, i.e.,
that are zeros of the absolute value of the determinant, which
in this example are found at λ/d = 1.264, 1.31, 2.502 and
2.568. These asymptotes and zeros are a consequence of the
single mode approximation used in the present work. They
do not represent a singular behavior of the structure at those
wavelengths, but a limitation of the approach, which permits us
to uncouple the equations for the modal amplitudes, but, at the
same time, introduces non-physical singularities. Therefore,
they should not be taken into account for the detection of
resonances of the system. According to our results for normal
incidence, the transmittance maxima appear at αr A and at αr B

and the transmittance minima at αi A and at αi B provided these
values do not correspond either to asymptotes or to zeros of the
absolute value of the determinant of any of the matrices A or
B .

The zeros of the real and imaginary parts of the
determinants could then be used to predict the spectral
positions of the FP resonances as well as of the phase
resonances in double-period slit structures, without having to
solve the complete scattering problem, which implies matrix
inversions and consequently, more computation time. To
further investigate the validity of this result for non-normal
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Figure 4. Zeros of the real and imaginary parts of the determinant of matrices A and B as a function of the x-component of the incident
wavevector α0 d and of the normalized frequency, for structures with different numbers of slits in the period, as schematized in the insets of
each panel. (a) J = 1; (b) J = 2; (c) J = 3; (d) J = 5.

(This figure is in colour only in the electronic version)

incidence, we show in figure 4 the zeros of the real and
imaginary parts of the determinant of matrices A and B as
a function of the x-component of the incident wavevector
α0d and of the normalized frequency, for structures with
one, two, three and five slits per period, with the same
parameters considered in the previous figures (the zeros of
the absolute values of the determinants and those coincident
with asymptotes have been omitted for the sake of clarity).
These four figures are to be compared with figure 4 of [22],
where the transmitted intensity is plotted as a function of
the same two variables, and for the same structures. In
that figure, the white zones represent maximum transmittance
and the black ones represent transmittance minima. Then,
it is expected for the positions of the zeros of the real part
of the matrix determinants, which are associated with the
transmittance maxima, to be coincident with the white zones in
figure 4 of [22]. On the other hand, the positions of the zeros
of the imaginary part of the matrix determinants, which are
associated with the transmittance dips, are expected to agree
with the black zones in figure 4 of [22].

In figure 4(a) only the zeros of the real parts are plotted
(αr A, red circles and αr B , black circles), since no transmittance
dips are present in the case of a single slit per period. From
comparison with figure 4(a) of [22] it can be observed that
these zeros describe the permitted bands, which correspond
to the transmittance maxima positions and are associated with
the waveguide resonances. As already observed in regular

slits systems [1], this kind of resonance is weakly dependent
on the incidence angle θ0, and therefore they appear as flat
bands. In this case, the permitted bands cut the frequency
axis at ωd/c ≈ 2.5 and 5, which correspond to the peaks
at λ/d ≈ 2.5 and 1.25 observed in figure 2(a) for normal
incidence. It is important to remark that this plot represents
the behavior of the structure under oblique incidence, and that
even for this general case the values of αr A and αr B predict very
accurately the maxima positions. Besides, this plot provides
us with additional information concerning the resonances: the
red circles are connected with an even resonant mode since
the matrix A, whose determinant is responsible for the zeros
αr A, is associated with the cos(ky) dependence of the magnetic
field (see equations (5) and (15)). On the other hand, the black
circles, which are associated with matrix B , represent an odd
dependence of the form sin(ky), according to equations (5)
and (16).

Figure 4(b) corresponds to a compound structure with two
slits in each period. As reported in previous works [22, 26],
the transmittance response for normal incidence is similar
to that of a one-slit system, whereas a dip is found within
each FP peak when the illumination is no longer normal.
These dips are represented by the blue and green circles in
figure 4(b), which correspond to αi A and αi B , respectively.
These zeros describe a narrow forbidden band, which coincides
with the dark narrow band observed within each bright region
in figure 4(b) of [22]. No zeros (blue or green circles) were
found on the ordinates axis (for α0d = 0), which means that
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these minima in the transmission response are forbidden for
normal incidence. Besides, our simple model also provides
information about which modal amplitude resonates at each
frequency. Consistently with the results of figure 4(a) for a
simple grating, αr A (red circles) and αr B (black circles) give
the positions of the transmittance maxima.

As the number of slits per period increases, the transmitted
response becomes more complex, with more dips and peaks.
In this case, a transmission minimum appears within each
maximum even for normal incidence. For the off-normal
situation, one more dip is found within each transmission
peak, which can be identified as a narrow dark band within
the bright zone in figure 4(c) of [22]. In figure 4(c) of
the present work, the calculated zeros αs F for a structure
with three slits per period are shown, and it can be observed
that the characteristics already observed in the transmitted
response (figure 4(c) of [22]) are also evidenced. The minima,
represented by the zeros αi A and αi B (blue and green circles),
describe very accurately the spectral positions of the dips.
Also, the new forbidden bands that appear for non-normal
incidence can also be identified as new lines of blue and green
circles in the present results. Finally, for five slits per period,
more forbidden bands are found in the transmittance response,
and this behavior is also observed in the spectral positions of
the zeros in this case (figure 4(d)).

4. Conclusions

A simple model for the treatment of the diffraction problem
from a double-period slits structure has been developed,
which predicts the spectral positions of the transmittance
maxima, governed by FP resonances within the slits, and
of the transmittance minima, corresponding to the excitation
of phase resonances. The approximate model incorporates
two assumptions to the exact classical modal method: first,
the metal is considered perfectly conducting, and second, the
electric and magnetic fields within each slit are represented by
their fundamental eigenmodes only. The results show that there
is a close relationship between the zeros of the real and the
imaginary parts of the determinants of certain characteristic
matrices, and the spectral positions of the transmittance
maxima and minima, respectively. Consequently, this
method constitutes a practical and fast tool to accurately
predict the relevant characteristics of the transmitted response
of compound structures for normal and oblique incidence,
without the complete solution of the scattering problem. This
makes this model very useful for the design of compound
structures for particular applications. The possibility of
applying this simple model to other kinds of dual-period
structures is also being investigated.

Acknowledgments

D S would like to thank Dr Marina Inchaussandague and
Dr Ricardo Depine for stimulating and fruitful discussions.
The author gratefully acknowledges partial support from

Consejo Nacional de Investigaciones Cientı́ficas y Técnicas
(CONICET grant PIP 5700), Universidad de Buenos Aires
(UBA grants X283 and X208) and Agencia Nacional de
Promoción Cientı́fica y Tecnológica (ANPCyT-BID 1728/OC-
AR PICT 11-1785).

References

[1] Porto J A, Garcı́a-Vidal F J and Pendry J B 1999 Phys. Rev.
Lett. 83 2845

[2] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T and Wolff P A
1998 Nature 391 667

[3] Astilean S, Lalanne Ph and Palamaru M 2000 Opt. Commun.
175 265

[4] Takakura Y 2001 Phys. Rev. Lett. 86 5601
[5] Garcı́a-Vidal F J and Martı́n-Moreno L 2002 Phys. Rev. B

66 155412
[6] Martı́n-Moreno L, Garcı́a-Vidal F J, Lezec H J, Degiron A and

Ebbesen T W 2003 Phys. Rev. Lett. 90 167401
[7] Xie Y, Zakharian A R, Moloney J V and Mansuripur M 2004

Opt. Express 12 6106
[8] Bravo-Abad J, Martı́n-Moreno L and Garcı́a-Vidal F J 2004

Phys. Rev. E 69 026601
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J. Appl. Phys. 97 053507
[32] Skigin D C, Veremey V V and Mittra R 1999 IEEE Trans.

Antennas Propag. 47 376
[33] Fantino A N, Grosz S I and Skigin D C 2001 Phys. Rev. E

64 016605
[34] Skigin D C, Fantino A N and Grosz S I 2003 J. Opt. A: Pure

Appl. Opt. 5 S129

8

http://dx.doi.org/10.1103/PhysRevLett.83.2845
http://dx.doi.org/10.1038/35570
http://dx.doi.org/10.1016/S0030-4018(00)00462-4
http://dx.doi.org/10.1103/PhysRevLett.86.5601
http://dx.doi.org/10.1103/PhysRevB.66.155412
http://dx.doi.org/10.1103/PhysRevLett.90.167401
http://dx.doi.org/10.1364/OPEX.12.006106
http://dx.doi.org/10.1103/PhysRevE.69.026601
http://dx.doi.org/10.1364/OPEX.13.008730
http://dx.doi.org/10.1364/OE.14.006400
http://dx.doi.org/10.1103/PhysRevB.73.153405
http://dx.doi.org/10.1103/PhysRevLett.90.213901
http://dx.doi.org/10.1364/OPEX.12.001004
http://dx.doi.org/10.1109/LAWP.2004.839461
http://dx.doi.org/10.1109/LMWC.2005.845753
http://dx.doi.org/10.1063/1.2174104
http://dx.doi.org/10.1364/AO.46.001385
http://dx.doi.org/10.1364/AO.47.001711
http://dx.doi.org/10.1088/1464-4258/11/4/045705
http://dx.doi.org/10.1103/PhysRevLett.95.217402
http://dx.doi.org/10.1016/j.optcom.2006.01.006
http://dx.doi.org/10.1103/PhysRevE.74.046606
http://dx.doi.org/10.1103/PhysRevE.76.016604
http://dx.doi.org/10.1103/PhysRevLett.96.257402
http://dx.doi.org/10.1103/PhysRevE.76.031801
http://dx.doi.org/10.1063/1.3086892
http://dx.doi.org/10.1103/PhysRevB.73.153405
http://dx.doi.org/10.1063/1.1854727
http://dx.doi.org/10.1109/8.761078
http://dx.doi.org/10.1103/PhysRevE.64.016605
http://dx.doi.org/10.1088/1464-4258/5/5/353

	1. Introduction
	2. Approximate modal method
	3. Results
	4. Conclusions
	Acknowledgments
	References

