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Abstract: We theoretically investigate the generation of electric currents
in quantum rings resulting from the optical excitation with twisted light.
Our model describes the kinetics of electrons in a two-band model of a
semiconductor-based mesoscopic quantum ring coupled to light having
orbital angular momentum (twisted light). We find the analytical solution,
which exhibits a “circular” photon-drag effect and an induced magneti-
zation, suggesting that this system is the circular analog of that of a bulk
semiconductor excited by plane waves. For realistic values of the electric
field and material parameters, the computed electric current can be as large
as μA; from an applied perspective, this opens new possibilities to the
optical control of the magnetization in semiconductors.
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1. Introduction

Intense research efforts are currently devoted to the development and application of appropriate
optical means capable of tracing the quantum dynamics down to the atto-second time scale and
with a spatial resolution down to the atomic scale [1–3]. The key element in these studies is the
coupling of matter to the electric field of the light source. For the study of the spin-dependent
dynamics [4], one relies then on intrinsic mechanisms of the sample that couple the spin to
the charge. Another route to access the spin dynamics is to utilize the magnetic field generated
by a charge current [5–8] which can be triggered in the sample by light irradiation ( [9] and
references therein). To achieve temporal and local control of the photo-generated current (and
hence the magnetic field) one may exploit the conduction intra-band dynamics initiated by
asymmetric electromagnetic pulses in semiconductor-based nanorings that are positioned on a
scanning tip [10–13]. Such rings are with the appropriate parameters ready available [14–17].
Photo-induced currents associated with inter-band excitations may be driven by quantum
interference of one- and two-photon carrier excitations [18]. In this contribution we point
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out the possibility of triggering directly, i.e. via one-photon processes, current-carrying
inter-band excitations by using twisted light (TL), i.e. light carrying orbital angular momentum
(OAM). Since the pioneering work of Allen et al [20] in 1992 on TL, the application of TL
has expanded substantially ( [21] and references therein) to cover diverse areas such as the
interaction with mesoscopic particles (optical tweezers) [22–24], the interaction with atoms
and molecules [25, 26], and the interaction with Bose-Einstein condensates [27]. Research
on the coupling between inhomogeneous electromagnetic fields and semiconductor has been
however scarcely pursued. On the other hand, the interaction of homogeneous fields with
inhomogeneous system (including synthesized structures such as quantum dots) is being
extensively investigated due to important potential applications.
Recent research on the interaction between TL and semiconductors were devoted to the
absorption of TL by bulk semiconductors [29], and to the study of the electronic transitions in
quantum dots [28]. Here we show that TL, i.e. an inhomogeneous electromagnetic field car-
rying orbital angular momentum (OAM), tuned to inter-band frequencies generates electrical
currents in quantum rings (QRing) and hence a light-controlled magnetic field localized around
the ring. We propose this method as a new mean for the light-controlled spin dynamics.

The paper is organized as follows: The physical system is introduced in Sect. 2, while Sect. 3
presents the Heisenberg equations of motion applied to the study of the kinetics of electrons in
the QRing. The OAM transferred from the light to the electrons is derived in Sect. 4. Section 5
describes our calculations of the electric current together with possible applications. The article
ends in Sect. 6 with our conclusions.

2. Model

We consider a phase-coherent semiconductor-based quantum ring illuminated by twisted light.
Such rings are readily feasible experimentally [14–17]. The ring we consider is such that its
width d and height h are much smaller than its radius r0. In a cylindrical coordinate system
where the z axis is perpendicular to the ring plane and intersects its center, we write the carrier
wave function as (r is the radial distance from the z axis and φ is the azimuthal angle)

ψbm(r) = [Φm(φ)R(r)Z(z)]ub(r)χ . (1)

Here m is the angular quantum number (OAM of the envelope function), ub(r) is the micro-
scopic and periodic wave function for the band b. The spin part and the envelope functions are
χ , and [Φm(φ)R(r)Z(z)]. The system parameters are such that the carrier wave length is longer
than d and h and hence only the lowest radial subbands are populated. Explicitly, within the
ring the envelope wave functions are

Φm(φ) =
1√
2π

eimφ , (2)

R(r) =
√

2
r0 d

sin
[π

d
(r− r0 +d/2)

]
, (3)

Z(z) =

√
2
h

cos
[π

h
(z− z0)

]
, (4)

with R(r) = 0 and Z(z) = 0 outside the ring. The energy spectrum reads

εvm =
h̄2 m2

2m∗
v r2

0

εcm = Eg +
h̄2 m2

2m∗
c r2

0
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with the effective masses m∗
b, and the band gap energy Eg and with the light frequency tuned

to inter-band transitions. Due to the aforementioned conditions, we can restrict to a two-band
model, one valence and one conduction bands. ∗

The ring is subjected to TL pulse propagating along the ring z axis. The pulse duration is
much longer than the time scale of the carrier dynamics (as specified below). A twisted light
field, carrying OAM h̄ l, is characterized by the angular dependence exp(i l φ), and a radial
dependence either of the Laguerre-Gaussian or the Bessel mode type. For the purpose of our
study, the radial dependence of the field is irrelevant, since we have assumed that d � r0. The
field inhomogeneity is preserved in the angular dependence.

The main contribution to the TL-QRing interaction originates from the transverse part of the
vector potential, as readily seen for the case of a TL Bessel beam [21,29]

A±(r, t) = e± F(r)ei(qz z−ωt)eilφ + c.c. . (5)

The polarization vector e± = x̂± iŷ is in the ring plane. F(r) is the amplitude of the vector
potential, qz is the wave number, ω is the light frequency, and l quantifies the amount of OAM
carried by the photons.

3. Equation of motion

The Heisenberg equations of motion describe the evolution of the populations and the inter-
and intra- band coherences of the carriers under the action of the TL-electromagnetic field. To
setup these equations we start from the total Halmiltonian

H = ∑
bm

εbm a†
bmabm + ∑

bm,b′m′
〈b′m′|hI |bm〉a†

b′m′abm . (6)

a†
bm (abm) creates (annihilates) single particles in the orbitals ψbm(r) = 〈r|bm〉. For moderate

photon intensities, the light-matter interaction is described by the lowest order in the vector
potential hI = (−q/m)p ·Aσ (r, t) (q is the carrier charge).

Expressed in the basis {ψbm} (eq.1), the Heisenberg equations of motion read

ih̄
d
dt

a†
b′m′abm = [a†

b′m′abm,H]. (7)

As usual the quantities of interest are the expectation values ρvm′,cm = 〈â†
vm′ âcm〉, ρv,m′m =

〈â†
vm′ âvm〉, and ρc,m′m = 〈â†

cmâcm〉 where the average 〈. . .〉 is taken over the initial state of the
semiconductor. These expectation values represent populations when they have repeated indices
(diagonal elements of the density matrix) and quantum coherences when they are off-diagonal
elements. To calculate the matrix elements of the interaction 〈b′m′|hI |bm〉 [Eq. (6)] in the basis
of Eq. (1) we proceed as in Quinteiro et al [28] and obtain for the photoabsorption

〈cm′|h(+)
I |vm〉 = ξ δm−m′,−l ,

and for the photoemission

〈vm′|h(−)
I |cm〉 = ξ ∗ δm−m′,l ,

where ξ = − q
m (eσ · pcm′ vm)F(r0)eiqz z0 , and pcm′ vm the transition matrix element of the mo-

mentum operator between the indexed states (σ ≡ ±). In what follows ξ does not play any

∗Two arguments justify this assumption. First, the confinement causes a splitting of the heavy- and the light-hole va-
lence bands. Tuning the frequency of the light beam one or the other valence band can be selected. Second, when no fine
frequency tuning is desirable or possible, both the heavy- and light-hole bands are excited and evolve independently.
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dynamical role, as it is simply as a complex constant. The spin indices has been already taken
into account (they determine the selection rule for the transitions between specific valence and
conduction bands). The use of these matrix elements in Eq. (7) yields the final equations of
motion

ih̄
d
dt

ρv,m′ m = (εvm − εvm′)ρv,m′ m +ξ ∗ ρ̃vm′,cm+l −ξ ρ̃cm′+l,vm, (8)

ih̄
d
dt

ρc,m′ m = (εcm − εcm′)ρc,m′ m +ξ ρ̃cm′,vm−l −ξ ∗ ρ̃vm′−l,cm, (9)

ih̄
d
dt

ρ̃vm′,cm = (εcm − εvm′ − h̄ω) ρ̃vm′,cm +ξ
(
ρv,m′ m−l −ρc,m′+l m

)
, (10)

with ρ̂vm′,cm = ρ̃vm′,cme−iωt .

3.1. Exact solution

We obtained an exact solution of equations Eqs. (8)-(10). This is done by first inspecting the
population of the valence band, i.e. by specializing Eq. (8) to m = m′. It is readily seen that this
equation couples to the intra-band coherence ρ̃vm,cm+l . In turn, the differential equation for the
latter couples to the conduction ρc,m+l m+l and valence ρv,mm band populations. Thus, a closed
system of equations is found:

h̄
d
dt

ρv,mm = 2ℑ
[
ξ ∗ ρ̃vm,cm+l

]

h̄
d
dt

ρc,m+l m+l = −2ℑ
[
ξ ∗ ρ̃vm,cm+l

]

ih̄
d
dt

ρ̃vm,cm+l = Δcm+l,vm ρ̃vm,cm+l +ξ
(
ρv,mm −ρc,m+l m+l

)
,

with ℑ[. . .] the imaginary part, and Δcm+l,vm = εcm+l − εvm − h̄ω . Due to their resemblance, we
rename the functions to the terms used in conventional Optical Bloch Equations [30], i.e. the
population difference W = ρc,m+l m+l −ρv,mm, and coherences † U = ρ̃vm,cm+l + ρ̃∗

vm,cm+l , and
V = i ρ̃vm,cm+l − i ρ̃∗

vm,cm+l . Then,

Ẇ =
2
h̄

[ℜ(ξ )V − iℑ(ξ )U ]

U̇ = −Δ
h̄

V − 2
h̄

ℑ(ξ )W

V̇ =
Δ
h̄

U − 2
h̄

ℜ(ξ )W ,

with ℜ[. . .] the real part. These are the Bloch equations in the absence of decay for the Rabi
frequencies R2 = R2

0 + (Δcm+l,vm/h̄)2, R0 = − 2
h̄ ℜ(ξ ), and ℑ(ξ ) = 0 (for brevity we re-

place Δcm+l,vm by Δ, unless otherwise stated). For the initial conditions of an unexcited QRing
{ρvc(0) = 0;ρv(0) = 1;ρc(0) = 0} the solution reads

W (t) =
(

R0

R

)2

[1− cos(R t)]−1

U(t) =
R0 Δ
h̄R2 [1− cos(R t)]

V (t) = −R0

R
sin(R t) .

†In the standard Optical Bloch Eqs. problem U and V represent the dipole moment.
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Transforming back we find

ρv,mm(t) = 1+
1
2

(
R0

R

)2

[cos(R t)−1]

ρc,m+l m+l(t) = −1
2

(
R0

R

)2

[cos(R t)−1]

ρvm,cm+l(t) =
R0

2R
e−iωt

{
Δ

h̄R
[1− cos(R t)]+ isin(Rt)

}
. (11)

For a better understanding of our results, we briefly digress on two particular issues of the
interaction of plane-waves with bulk semiconductors. The photon-drag effect [32,33] accounts
for the transfer of linear momentum of the photons to the electrons; it is explained in terms
of transitions between states differing in their linear quasi-momentum by the small amount
qz carried by the photon. It has been studied both theoretically as well as demonstrated in
experiments [34], and it is shown to induce an electric voltage between the sides of the material
(which may be viewed as a macroscopic polarization) or equivalently an electric current; this
effect has technology applications, such as light detection [35]. On the other hand, when qz

is neglected (the usual approximation of “vertical” transitions) the global polarization of the
semiconductor is directly related to the induced inter-band coherence [31]. This polarization
has a microscopic origin, since it mathematically arises from the integral

∫
a3 u∗b′(r)erub(r)dr

over the semiconductor’s unit cell of the linear size a. Both sources of the polarization are
distinct, and in principle may be simultaneously present.

Equations (11) show that the action of the TL field is to induce “tilted” transition between the
valence and conduction bands, connecting states differing in their OAM h̄m by the amount h̄l
given/taken by the TL field. Here, we appreciate the connection to the photon-drag effect of a
bulk semiconductor. The inter-band coherence will be shown later to produce a magnetization;
therefore, we think this is the equivalent to the inter-band polarization of the linear system.
Summarizing, we assert that our problem is the circular analog of the well-known problem
of bulk interacting with plane-waves. We further support our view by noting that the QRing
is a rotationally invariant system, and the TL transfers to it OAM; this is in contrast to plane
waves transferring linear momentum to a translationally invariant system. As usual [31], our
inter-band coherence has a frequency component at light frequency ω , whereas the populations
oscillate with the Rabi frequency R � ω (typically R/ω < 0.1).

It is of interest to analyze two particular cases of the general solution Eqs. (11). The first we
address is the “low excitation” regime (or perturbation theory solution) which, from a physical
point of view, is realized when the semiconductor is illuminated by a weak or out of resonance
electromagnetic field. In mathematical terms we seek a solution in the limit |ξ/Δ|� 1 in which
case R = Δ/h̄ and the equations simplify to

ρv,mm(t) 	 1+2

(
ξ
Δ

)2 [
cos

(
Δ
h̄

t

)
−1

]

ρc,m+l m+l(t) 	 −2

(
ξ
Δ

)2 [
cos

(
Δ
h̄

t

)
−1

]

ρvm,cm+l(t) 	
(

ξ
Δ

)(
1− e−iΔt/h̄

)
e−iωt , (12)

valid for all times. We note that the lowest order is the inter-band coherence. Our second case
is that of short times and any value of |ξ/Δ|; hereafter this regime is defined as that for which t
satisfies the condition 2π/ω < t < h̄/Δ (typically 1 fs< t < 1 ps). By a Taylor expansion around
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t = 0 we find

ρv,mm(t) 	 1− 1
4

R2
0 t2

ρc,m+l m+l(t) 	 1
4

R2
0 t2

ρvm,cm+l(t) 	 i
2

R0 t e−iωt .

We note that the inter-band coherence evolves in time linearly while the populations does it
quadratically. The magnitude of the coherence and populations depend on the Rabi frequency
at zero detuning R0. Both approximate solutions are in full agreement with the Optical Bloch
solutions for the atomic case. In addition, we have seen that the inter-band coherence is the
largest effect for either short times or weak excitation. This may be exploited to simplify the
study of additional effects, such as the electron-electron interaction; to this end one would need
to solve only for the differential equation of the inter-band coherence (including the additional
terms to account for the new effects), assuming constant populations.

4. Orbital angular momentum

The OAM of electrons is of special interest as it is related to the photo-induced electric current
and the magnetization. We have derived a second quantization formula for the operator Lz =
−ih̄∂φ , and we refer the interested reader to App. A for details.

The z-component of the OAM of electrons can be split into two contributions, namely the
“coherence-” and the “population-” based OAM

L(coh)
z = ∑

mm′
2ℜ

[
L

(p)
vm′cm ρvm′,cm

]

L(pop)
z = ∑

m
h̄mρc,mm +∑

m
(lz + h̄m) ρv,mm ,

with L
(p)

vm′cm 
= 0 only for m = m′ ± 1. In what follows we will not study the lz term. It is a
consequence of the difference in “band” OAM between valence and conduction bands, and
even though interesting, it is independent of the OAM of the electromagnetic field, being also

present when a plane-wave light is used. The terms L(coh)
z and L(pop)

z may be interpreted as
microscopic and macroscopic contributions to the OAM, respectively.

Figure 1 shows the temporal evolution of L(coh)
z and L(pop)

z for different values of the OAM of
the TL pulsed beam, and same number M of excited electrons (or excited states in the Brillouin
Zone). We assign a value to M based on the physical argument that a light pulse having a spec-
tral width Δω will resonantly excite M levels, according to the relation h̄Δω = h̄2M2/(2m∗

cr2
0).

We have verified that Lz = 0 when l = 0. We stress that, due to L
(p)

vm′cm, the coherence-based
contribution only exists for l =±1. Both contributions to the OAM exhibit distinctive temporal
behaviors, that should easily be resolved in an experiment (e.g. Faraday rotation).

Clear expressions for both OAM contributions are obtained for short times in the regime of
weak excitation. We start with the coherence-based OAM

L(coh)
z 	±1

2
δl,±1 r0(2M +1)R0 [px,vc cos(ωt)± py,vc sin(ωt)] t , (13)

where p±,vc = px,vc ± i py,vc. This can be compared to the contribution L(pop)
z

L(pop)
z 	 1

4
h̄ l (2M +1)R0

2 t2 . (14)
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Fig. 1. (color online) Orbital angular momentum: population-based contribution for l = 1
in dotted (blue) and for l = 5 in dashed (black) lines, and coherence-based contribution
for l = 1 in full (red) line. The ordinate is given in values of h̄, the OAM of a single
electron orbiting the QRing. The parameters for the ring are: GaAs semiconductor QRing,
number of electrons excited M = 100, r0 = 1μm; for the TL-beam pico-seconds pulsed
beam: wavelength λ = 300nm, ω = 21015s−1, average electric field per pulse 5107V/m,
detuning 0.06eV. The Rabi frequency is R 	 1014s−1.

To this level of approximation, the non-verticality of the induced transition (or asymmetry of
the population distribution in the conduction band) is responsible for the net transfer of OAM,
by the factor 2M + 1; this shows clearly the “circular” photon-drag effect. For more precise
approximate solutions (as well as for the exact solution) the Rabi frequency R shows up, and
new phenomena arise. For instance, at long times interference and/or beating of the OAM signal
is observed, due to the superposition of many different frequency contributions from each value
of m.

As anticipated, the OAM may be used to derive other quantities; a simple analysis – based
on classical electrodynamics – yields the electric current I = qLz/(2πr2

0mi) and magnetization
M = πr2

0I or M = qLz/(2mi) with mi the mass. More will be said about the electric current in
Sect. 5.

The use of the picture of a current loop to relate the current with the magnetization is well
justified here because the rings are quite large. Equations (12) indicates that the inter-band
coherence is the source for the linear response of the system; then, within linear response the
magnetization is fully determined by the inter-band coherence. We here have found a significant
difference with the model of a plane wave coupled to a bulk semiconductor, where the quantity
that relates to the inter-band coherence is actually the polarization of the system. On the other
hand, a linear susceptibility may be defined to link magnetization and vector potential. Even
though the vector potential gives rise to both electric and magnetic fields, the semiconductor
response to optical fields is mainly due to the electric component. Thus, our analysis predicts
a cross term linking the magnetization to the electric field, which is still in line with symmetry
consideration as the light electric field carries OAM.

5. Electric current

Viewing the excited ring as a classical current loop we write I = qLz/(2πr2
0mi), where the

mass mi is the effective valence or conduction band mass for the case of J(pop)
z , or the electron
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mass for the case of J(coh)
z , and Lz is either L(coh)

z or L(pop)
z ; a plot is displayed in Figure 2. As

clearly seen, the fast oscillation of J(coh)
z is at the frequency of the light. We remind that the

coherence-based contribution only exists for l = ±1.
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Fig. 2. (color online) Electric current: population-based contribution for l = 1 in dotted
(blue) and for l = 5 in dashed (black) lines, and coherence-based contribution for l = 1
in full (red) line. The parameters for the ring are: GaAs semiconductor QRing, number
of electrons excited M = 100, r0 = 1μm; for the TL-beam pico-seconds pulsed beam:
wavelength λ = 300nm, ω = 21015s−1, average electric field per pulse 5107V/m, detuning
0.06eV. The Rabi frequency is R 	 1014s−1.

The distinct origin of J(coh)
z and J(pop)

z suggests possible ways to utilize the electric current.
A simple model of a two-level system coupled to light tells that, after the light has been turned
off, the populations become frozen, while the coherence develops oscillations at the frequency
of the level splitting. After long times – compared to the period of coherence oscillations – the
population will decay due to processes not accounted for here. In addition, when a multitude of
non-interacting two-level systems, having slightly different splitting (e.g. the QRing bands), is
analyzed a new element arises: any quantity containing the sum of coherences (e.g. the OAM)
exhibits destructive interference for times comparable to the inverse of the frequency spread of
the whole set of excited levels. In view of these considerations, a steady electric current can be
established in the system.

The easiest way to set a constant electric current is to use a TL field with |l| > 1 that causes

J(coh)
z = 0. By choosing the duration of the TL pulse, one can freeze the electric current after

the pulse is turned off to the desired value. For instance, a TL source generating 30fs top-hat
pulses with an average electric field per pulse of 3107V/m and l = 5 exciting a r0 = 1μm GaAs
QRing (detuning 0.06eV at band edge, and estimated M = 470) yields a steady electric current

of J(pop)
z (t) 	 0.2μA for t > 30fs.

For a TL field having l = ±1 we envisage two cases, namely that of short or long pulses,
where a steady electric current may be obtained. For a short pulse of TL, we expect a large
amount of states to be excited, leading to a rapid destructive interference in the coherence-
based OAM, leaving only the frozen population-based contribution. Let us consider a specific
situation: a GaAs QRing of r0 = 1μm is excited by a TL source generating 30fs top-hat pulses
with an average electric field per pulse of 3107V/m and l = 1, with an estimated M = 470
and detuning 0.06eV. After the TL pulse is turned off, the free evolution of the coherence-
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based current will exhibit destructive interfere, roughly after 30fs; as a result, the effective

value of the current will be that of the population-based one J(pop)
z (t) 	 40nA for t > 30fs.

For long pulses, the amount of excited levels is smaller, and the destructive interference of the
coherence-based current may occur at times comparable to the decay time of the population.
However, when the purpose is the control of other degrees of freedom, having slow dynamics,
it becomes admissible to take a time-average of the electric current(< .. . >= (1/T )

∫ t+T
t . . . in

a period T = 2π/ω); then, the average current will again be that of the frozen population-based
contribution.

In this work we did not address the relaxation and decoherence pathways of the excited
system. In a previous study [11, 36] we investigated these issues for the intra-band dynamics
triggered by asymmetric pulses with the following results: In the low excitation regime, which
also applies to the present case, relaxation of the excited intraband population is caused by
scattering from longitudinal acoustic phonons; optical phonons play no role but are expected to
be important for interband relaxation processes. The intraband decay time scale can be as large
as nanoseconds [11,36]; effects due to radiative damping and emission of coherent phonons act
on a longer or a comparable time scale [36]. As we are interested here in the sub-picosecond
time scale (cf. Fig.2, Fig.1) we expect that relaxation and decoherence, as treated in Refs.
[11, 36], will not qualitatively modify our conclusions.

6. Conclusions

The generation of electric currents in semiconductor-based quantum rings induced by twisted
light has been investigated theoretically, using the formalism of Heisenberg equations of motion
of the population and coherence of electrons.

A full analytical solution for the kinetics of electrons without dissipation has been found,
describing the transition from states in the valence band to states in the conduction band dif-
fering in their orbital angular momentum by the amount h̄l conveyed by the twisted light field.
We have compared these findings with the well-known phenomena exhibit by the interaction of
plane-waves with bulk semiconductors, namely the photon-drag effect and the polarization of
the system. We conclude that our problem is the circular analog of the problem of a plane wave
interacting with a bulk semiconductor.

As a result of the transfer of orbital angular momentum from the light to the electrons, a
net electric current appears in the system. Our model indicates that, for realistic values of the
parameters, this current could be as large as μA. Moreover, if the field is turned off when there
is a finite current, this will persist for times comparable to the typical decay time. The photo-
induced magnetic field is exploitable for the study and for the temporal and local control of
magnetization, e.g. of magnetic nanoparticles positioned within the ring.

A. Orbital angular momentum

We seek to derive a second quantization formula for the z component of the OAM L̂z =
∑mm′b′b〈b′m′|(−ih̄∂φ ) |bm〉a†

b′m′ abm with respect to the center of the laser profile. The matrix
element is given by

〈b′m′|(−ih̄∂φ ) |bm〉 =
∫

L3
d3r |R(r)|2 |Z(z)|2 ×

{
Φm′(φ)∗u∗b′(r)Φm(φ)[−ih̄∂φ ub(r)] + Φm′(φ)∗u∗b′(r)[h̄mΦm(φ)]ub(r)

}
.

Our next step is to resolve the integration over the whole system into a sum over all unit cells
and an integral inside a unit cell; we notice that the required change of variables leads to lz �→
lz +r×p|z. In addition, we argue that there is no need to consider large values of {m,m′}, since
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the equations of motion will only be studied close to the band edge. This procedure yields three

terms 〈b′m′| L̂z |bm〉 = lz,b′b δm′m +δb′b δm′m h̄m+L
(p)

b′m′bm , where

lz,b′b =
1
a3

∫
a3

d3ru∗b′(r)(−ih̄∂φ )ub(r)

L
(p)

b′m′bm =
∫

drr|R(r)|2
∫

dφ Φm′(φ)∗Φm(φ)(r×pb′b|z) .

The ub(r) has a given symmetry according to what band represents; we choose the quantization
axis in z. For the case of the heavy hole band, this is an eigenfunction of l̂z with eigenvalues mz =
±1. For the case of the conduction band mz = 0. Then, lz,b′b = 〈mb′| lz |mb〉 = lz〈mb′|mb〉 =
lzδb′b which does not depend on m, and for each combination of bands it is: lz,cv = lz,cc = 0 and

lz,vv = lz 
= 0. After some algebra L
(p)

b′m′bm is simplified to

L
(p)

b′m′bm =
r0

2

{
(py,b′b − i px,b′b)δm−m′,1 +(py,b′b + i px,b′b)δm−m′,−1

}
,

where we used that
∫

drr2|R(r)|2 	 r0.
The final result is

L̂z = ∑
mm′

(
L

(p)
cm′vm ρcm′,vm +L

(p)
vm′cm ρvm′,cm

)
+

∑
m

h̄mρc,mm +∑
m

[lz + h̄m] ρv,mm .
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