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How Phase Transitions Induce Classical Behaviour

R. J. Rivers1,3 and F. C. Lombardo2

We continue the analysis of the onset of classical behaviour in a scalar field after
a continuous phase transition, in which the system-field, the long wavelength order
parameter of the model, interacts with an environment, of its own short-wavelength
modes and other fields, neutral and charged, with which it is expected to interact.
We compute the decoherence time for the system-field modes from the master equa-
tion and directly from the decoherence functional (with identical results). In sim-
ple circumstances the order parameter field is classical by the time the transition is
complete.
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1. INTRODUCTION

The standard big bang cosmological model of the early universe as-
sumes a period of rapid cooling, giving a strong likelihood of phase transi-
tions, at the grand unified and electroweak scales (Kolb and Turner, 1990) in
particular.

In this talk we describe how phase transitions naturally take us from a
quantum to classical description of the universe. Metaphysics aside, cosmol-
ogists rely on the fact that the relevant fields obey classical equations from
early times, since it is not possible to solve the quantum theory directly. For-
tunately, we have reason to believe that (continuous) transitions will move
us rapidly to classical behaviour. Classical behaviour arises in the following
way:

• Classical correlations: By this is meant that the Wigner function(al)
W [π, φ] peaks on classical phase-space trajectories, with a probabilistic
interpretation.
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• Diagonalisation: By this is meant that the density matrix ρ(t) should be-
come (approximately) diagonal, in this case in a field basis. Alternatively,
we can demand diagonalisation of the decoherence functional. In either
case a probabilistic description (no quantum interference) is obtained.

• Stochastic behaviour: The decoherence functional, which provides the
diffusion (noise) to diagonalise the density matrix also supplies the dis-
sipation that enables the fields to obey probabilistic stochastic equations,
which evolve into classical equations.

From the papers of Guth and Pi (1991) onwards, it has been appreciated that
unstable modes lead to classical correlations through squeezing. On the other
hand, we understand diagonalisation to be an almost inevitable consequence of
tracing over the ‘environment’ of the ‘system’ modes.

Continuous transitions supply both ingredients, from which the classical
equations follow. Firstly, the field ordering after such a transition is due to the
growth in amplitude of unstable long-wavelength modes, which arise automati-
cally from unstable maxima in the potential. Secondly, the stable short-wavelength
modes of the field, together with all the other fields with which it interacts, form
an environment whose coarse-graining enforces diagonalisation and makes the
long-wavelength modes decohere.

What matters are the time scales. An ideal situation, which we shall show
is possible, is that the theory becomes classical in the sense above, before the
transition is complete. However, to quantify this is difficult because, with fields,
we are dealing with infinite degree of freedom systems. One of us (F.C. Lombard)
has shown elsewhere (Lombardo et al., 2000) how classical correlations arise in
quantum mechanical systems that mimic the field theory that we shall consider
here, and we refer the reader to that paper for the role that classical correlations play.
Our concern in this talk is, rather, with diagonalisation, determined both through
the master equation for the evolution of the density matrix and the decoherence
functional, whose role is to describe consistent histories. Stochastic equations are
then a corollary to this same diagonalisation.

This talk builds upon earlier published work by us and Diego Mazzitelli
(Lombardo et al., 2001, 2003; Rivers et al., 2002a), together with our contribu-
tions to the proceedings of the 2001 meeting in Peyresq (Lombardo et al., 2002;
Rivers et al., 2002b) and we refer the reader to this earlier work for much of
the basic technical details. We restrict ourselves to flat space-time. The exten-
sion to non-trivial metrics is straightforward in principle. See the recent work
of Lombardo (2005), which complements this. The developments since the last
proceedings are our greater understanding of the use of trial configurations and
slower quenches (Lombardo et al., 2003), the parallel use of the decoherence
functional to characterise decoherence, and the extension of the theory to include
electromagnetism (Busca et al., in preparation).
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2. EVOLUTION OF THE DENSITY MATRIX

The evolution of a quantum field as it falls out of equilibrium at a transition
is determined in large part by its behaviour at early times, before interactions have
time to take effect. To be concrete, consider a real scalar field φ(x), described by
a Z2-symmetry breaking action (µ2 > 0)

S[φ] =
∫

d4x

{
1

2
∂µφ∂µφ + 1

2
µ2φ2 − λ

4!
φ4

}
, (1)

with symmetry breaking scale η2 = 6µ2/λ. On heating, this shows a continuous
transition, with critical temperature T 2

c = 2η2. If, by virtue of the expansion of the
universe the system is very rapidly cooled (quenched) from T > Tc to T < Tc, the
initial stages of the transition can be described by a free field theory with inverted
mass −µ2 < 0. The state of the field is initially concentrated on the local maximum
of the potential, and spreads out with time. This description is valid for short times,
until the field-wave functional explores the ground states of the potential.

The φ-field ordering after the transition is due to the growth in amplitude of
its unstable long-wavelength modes, which we term φ<(x). For an instantaneous
quench, these have wave-number k < µ for all time. Although the situation is
more complicated for slower quenches, until the transition is complete there are
always unstable modes. As a complement to these, we anticipate that the stable
short-wavelength modes of the field φ>(x), where

φ(x) = φ<(x) + φ>(x), (2)

will form an environment whose coarse-graining makes the long-wavelength
modes decohere (Lumbardo and Mazzitelli, 1996). In practice, the boundary be-
tween stable and unstable is not crucially important, provided there is enough time
for the power in the field fluctuations to be firmly in the long-wavelength modes.
This requires weak coupling λ � 1. Of course, all the other fields with which φ

interacts will contribute to its decoherence, but for the moment we ignore such
fields (before returning to them in the last section).

After splitting, the action (1) can be written as

S[φ] = S[φ<] + S[φ>] + Sint[φ<, φ>], (3)

where the interaction term is dominated (Lombardo et al., 2001, 2003) by its
biquadratic term

Sint[φ<, φ>] ≈ −1

6
λ

∫
d4x φ2

<(x)φ2
>(x). (4)

The total density matrix (for the system and bath fields) is defined by

ρr[φ
+, φ−, t] = ρ[φ+

<, φ+
>, φ−

<, φ−
>, t] = 〈φ+

<φ+
> |ρ̂|φ−

<φ−
>〉, (5)
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and we assume that, initially, the thermal system and its environment are not
correlated.

On tracing out the short-wavelength modes, the reduced density matrix

ρr[φ
+
<, φ−

<, t] =
∫

Dφ>ρ[φ+
<, φ>, φ−

<, φ>, t], (6)

whose diagonalisation determines the onset of classical behaviour, evolves as

ρr[t] =
∫

dφ+
<i

∫
dφ−

<i Jr[t, ti] ρr[ti], (7)

where Jr[t, ti] is the evolution operator

Jr[t, ti] =
∫ φ+

<f

φ+
<i

Dφ+
<

∫ φ−
<f

φfl−
<i

Dφ−
< exp{iSCG[φ+

<, φ−
< ]}. (8)

SCG[φ+
<, φ−

< ] is the coarse-grained effective action, of the closed time-path form

SCG[φ+
<, φ−

< ] = S[φ+
< ] − S[φ−

< ] + δS[φ+
<, φ−

< ]. (9)

All the information about the effect of the environment is encoded in δS[φ+
<, φ−

< ]
through the influence functional (or Feynman-Vernon functional (Feynman and
Vernon, 1963))

F [φ+
<, φ−

< ] = exp{iδS[φ+
<, φ−

< ]}. (10)

δS has a well defined diagrammatic expansion, of the form

δS[φ+
<, φ−

< ] = 〈Sint[φ
+
<, φ+

> ]〉 − 〈Sint[φ
−
<, φ−

> ]〉

+ i

2

{〈S2
int[φ

+
<, φ+

> ]〉 − [〈Sint[φ
+
<, φ+

> ]〉]2
}

− i〈Sint[φ
+
<, φ+

> ]Sint[φ
−
<, φ−

> ]〉
+ i〈Sint[φ

+
<, φ+

> ]〉〈Sint[φ
−
<, φ−

> ]〉

+ i

2

{
S2

int[φ
−
<, φ−

> ]〉 − [〈Sint[φ
−
<, φ−

> ]〉]2}
. (11)

The quantum averages of the functionals of the fields are with respect to the free
field action of the environment, defined as

〈B[φ+
>, φ−

> ]〉 =
∫

dφ+
>i

∫
dφ−

>i ρ>[φ+
>i, φ

−
>i, t0]

×
∫

dφ+
>f

∫ φ+
>f

φ+
>i

Dφ+
>

∫ φ−
>f

φ−
>i

Dφ−
>

× exp
i

h
{S0[φ+

>] − S0[φ−
> ]}B[φ+

>, φ−
> ].
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To lowest order λ2 diagrams are one-loop in the short wavelength
modes.

2.1. The Master Equation

Once the reduced density matrix has become approximately diagonal, quan-
tum interference has effectively disappeared and the density matrix permits a
conventional probability interpretation. To see how the diagonalisation of ρr oc-
curs, we construct the master equation, which casts its evolution in differential
form. As a first approximation, we make a saddle-point approximation for Jr in
Eq. (8),

Jr[φ
+
<f, φ

−
<f, tf|φ+

<i, φ
−
<i, ti] ≈ exp(iSCG[φ+

<cl, φ
−
<cl]), (12)

In (12) φ±
<cl is the solution to the equation of motion

δRe SCG

δφ+
<

∣∣∣∣
φ+

<=φ−
<

= 0, (13)

with boundary conditions φ±
cl (t0) = φ±

<i and φ±
<cl(t) = φ±

<f .
It is very difficult to solve this equation analytically. We exploit the fact that,

even if the universe is completely homogeneous prior to the transition then, after
the transition, causality requires (Kibble, 1980) that it be inhomogeneous because
of the finite speed at which the order parameter fields can order themselves.
This is in contra-distinction to the usual adiabatic analysis in which (for the
continuous transition that interest us here) the correlation length diverges at the
transition.

Since the field cannot be homogeneous in either of its groundstates φ = η or
φ = −η there is an effective ‘domain’ structure in which the domain boundaries
are ‘walls’ across which φ flips from one groundstate to the other. Further, these
domains have a characteristic size ξ , where ξ−1 = πk0 labels the dominant mo-
mentum in the power of the φ-field fluctuations as the unstable long-wavelength
modes grow exponentially. For simplicity, we adopt a ’minisuperspace’ approx-
imation, in which we assume regular domains, enabling φ<cl(�x, s) to be written
as

φ<cl(�x, s) = f (s, t)	(x)	(y)	(z), (14)

where 	(0) = 	(ξ ) = 0, and

	(x + ξ ) = −	(x).

f (s, t) satisfies f (0, t) = φ<i and f (t, t) = φ<f . We write it as

f (s, t) = φ<iu1(s, t) + φ<fu2(s, t). (15)
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Fig. 1. The field profile (14) in two dimensions, with lattice size ξ .
Dark areas represent φ ≈ η, light areas φ ≈ −η. The boundaries
are domain walls, with profile given above.

In (Lombardo et al., 2003) we made the simplest choice for 	(x),

	(x) = cos k0x.

Extensions to include more Fourier modes are straightforward in principle,
but our work in (Lombardo et al., 2003) was sufficient to show that the re-
sults only depend weakly on the details of the domain function 	(x) for few
Fourier modes. In the light of the more qualitative comments made here, we
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refer the reader again to (Lombardo et al., 2003) for details. On the other hand,
the ui(s, t) are solutions of the mode equation for wavenumber k0 during the
quench, with boundary conditions u1(0, t) = 1, u1(t, t) = 0 and u2(0, t) = 0,
u2(t, t) = 1.

In order to obtain the master equation we must compute the final time deriva-
tive of the propagator Jr. After that, all the dependence on the initial field configura-
tions φ±

i (coming from the classical solutions φ±
cl ) must be eliminated. Assuming

that the unstable growth has implemented diagonalisation before back-reaction
is important, Jr can be determined, approximately, from the free propagators as

J0[t, ti] =
∫ φ+

<f

φ+
<i

Dφ+
<

∫ φ−
<f

φfl−
<i

Dφ−
< exp{i[S0(φ+

< ) − S0(φ−
<)]} (16)

where S0 is the free-field action. This satisfies the general identities (Lombardo
and Mazzitelli, 1996)

φ±
cl (s)J0 =

[
φ±

f [u2(s) − u̇2(t)

u̇1(t)
u1(s)] ∓ i

u1(s)

u̇1(t)
∂φ±

<f

]
J0 (17)

which allow us to remove the initial field configurations φ±
i , and obtain the master

equation.
Even with these simplifications, the full equation is very complicated, but it

is sufficient to calculate the correction to the usual unitary evolution coming from
the noise (diffusion) kernels (to be defined later). The result reads

iρ̇r = 〈φ+
<f|[H, ρr]|φ−

<f〉 − iV 
2D(ω0, t)ρr + . . . (18)

where D is the diffusion coefficient and


 = (
φ+2

<f − φ−2
<f

)/
2

for the final field configurations (henceforth we drop the suffix). The ellipsis
denotes other terms coming from the time derivative that do not contribute to
the diffusive effects. V is understood as the minimal volume inside which there
are no coherent superpositions of macroscopically distinguishable states for the
field.

2.2. The Diagonalisation of ρr

The effect of the diffusion coefficient in driving the diagonaliation can be
seen by considering the following approximate solution to the master equation:

ρr[φ
+
<, φ−

< ; t] ≈ ρu
r [φ+

<, φ−
< ; t] exp

[
−V 
2

∫ t

0
ds D(k0, s)

]
, (19)



1862 Rivers and Lombardo

where ρu
r is the solution of the unitary part of the master equation (i.e. without

environment). The system will decohere when the non-diagonal elements of the
reduced density matrix are much smaller than the diagonal ones.

The decoherence time tD sets the scale after which we have a classical system-
field configuration, and depends strongly on the properties of the environment. It
satisfies,

1 ≈ V 
2
∫ tD

0
ds D(k0, s), (20)

and corresponds to the time after which we are able to distinguish between two
different field amplitudes, inside a given volume V .

To terms up to order λ2 and one loop in the h expansion (we continue to
work in units in which h = kB = 1), the influence action due to the biquadratic
interaction between system and environment has real imaginary parts

Re δS =
∫

d4x

∫
d4y 
(x)K(x, y)�(y), (21)

and

Im δS = −1

2

∫
d4x

∫
d4y
(x)N (x, y)
(y), (22)

where K(x, y) = 1
2λ2θ (t − t ′)ImG>2

++(x − y) is the dissipation kernel and
N (x, y) = 1

2λ2ReG>2
++(x, y) is the noise (diffusion) kernel. G>

++(x, y) is the ther-
mal short-wavelength closed time-path correlator. The UV singular parts of the
loop diagrams are implicitly removed by renormalisation, leaving the finite tem-
perature parts which are O(T 2). We have also defined

� = 1

2
(φ+2

< + φ−2
< ) (23)

for final state modes.
Explicit calculation shows that D(k0, t) is built from the diffusion kernel N

as

D(k0, t) =
∫ t

0
ds u(s, t) F (k0, s, t) (24)

where

u(s, t) =
[
u2(s, t) − u̇2(t, t)

u̇1(t, t)
u1(s, t)

]2

.

F (k0, s, t) is constructed from the spatial Fourier transforms of the overlap
of the diffusion kernel with the field profiles 	(x)	(y)	(z). For the single mode
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	(x) = sin k0x

F (k0, s, t) = λ2

64

[
Re G>2

++(0; t − s)

+ 3

2
Re G>2

++(2k0; t − s) + 3

4
Re G>2

++(2
√

2k0; t − s)

+ 1

8
Re G>2

++(2
√

3k0; t − s)
]
. (25)

In the integrand of (24), u(s, t) is rapidly varying, driven by the unstable modes,
and F (k0, s, t) is slowly varying. For long-wavelengths k0 � µ we have, approx-
imately,

F (k0, s, t) = O(N (k0 = 0; t − s)),

whereby

D(k0, t) ≈ F (k0, 0, t)
∫ t

0
ds u(s, t). (26)

That is, the diffusion coefficient factorises into the environmental term F , relatively
insensitive to both wavenumber and time, and the rapidly growing integral that
measures the classical growth of the unstable system modes that are ordered in
the transition.

To be specific, we restrict ourselves to the simplest case of an instantaneous
quench from a temperature T = O(Tc) > Tc, for which

u1 = sinh[ω0(t − s)]

sinh(ω0t)
, u2(s, t) = sinh(ω0s)

sinh(ω0t),
, (27)

where ω2
0 = µ2 − k2

0 ≈ µ2. It follows that

u(s, t) = cosh2[ω0(t − s)], (28)

from whose end-point behaviour at s = 0 of the integral (26) we find the even
simpler result

D(k0, t) ∼ µ−1F (k0, 0, t) u(0, t) ∼ (λTc/4πµ)2 exp[2µt], (29)

assuming µtD � 1. The O(T 2
c ) behaviour of F derives from the thermal short-

wavelength modes.
For more general quenches, growth is more complicated than simple expo-

nential behaviour but a similar separation into fast and slow components applies.
We have omitted a large amount of complicated technical detail (see

Lombardo et al., 2003), to give such a simple final result. This suggests that
we could have reached the same conclusion more directly.

We now indicate how we can obtain the same results by demanding consistent
histories of the φ field.
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3. THE DECOHERENCE FUNCTIONAL

The notion of consistent histories provides a parallel approach to classicality.
Quantum evolution can be considered as a coherent superposition of fine-grained
histories. If one defines the c-number field φ(x) as specifying a fine-grained history,
the quantum amplitude for that history is �[φ] ∼ eiS[φ] (we continue to work in
units in which h = 1).

In the quantum open system approach that we have adopted here, we are
concerned with coarse-grained histories

�[α] =
∫

Dφ eiS[φ]α[φ] (30)

where α[φ] is the filter function that defines the coarse-graining.
From this we define the decoherence function for two coarse-grained histories

as

D[α+, α−] =
∫

Dφ+Dφ− ei(S[φ+]−S[φ−])α+[φ+]α−[φ−]. (31)

D[α+, α−] does not factorise because the histories φ± are not independent; they
must assume identical values on a space-like surface in the far future. Decoher-
ence means physically that the different coarse-graining histories making up the
full-quantum evolution acquire individual reality, and may therefore be assigned
definite probabilities in the classical sense.

A necessary and sufficient condition for the validity of the sum rules of
probability theory (i.e. no quantum interference terms) is (Griffiths, 1984)

ReD [α+, α−] ≈ 0, (32)

when α+ �= α− (although in most cases the stronger condition D[α+, α−] ≈ 0
holds Omnès, 1990, 1992). Such histories are consistent (Gell-Mann and Hartle,
1993; Halliwell, 1999).

For our particular application, we wish to consider as a single coarse-
grained history all those fine-grained ones where the full field φ remains close
to a prescribed classical field configuration φcl. The filter function takes the
form

αcl[φ] =
∫

DJ ei
∫

J (φ−φcl)αcl[J ]. (33)

In the general case, α[φ] is a smooth function (we exclude the case α[φ] = const.,
where there is no coarse-graining at all). Using

Jφ ≡
∫

d4xJ (x)φ(x), (34)
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we may write the decoherence functional between two classical histories as

D[α+, α−] =
∫

DJ+DJ− eiW [J+,J−]−(J+φ+
cl −J−φ−

cl )

× α+[J+]α−∗[J−], (35)

where

eiW [J+,J−] =
∫

Dφ+Dφ− ei(S[φ+]−S[φ−]+J+φ+−J−φ−), (36)

is the closed-path-time generating functional.
In principle, we can examine general classical solutions for their consistency

but, in practice, it is simplest to restrict ourselves to solutions of the form (14).
In that case, we have made a de facto separation into long- and short-wavelength
modes whereby, in a saddle-point approximation over J . In this way, we can see
that the above expression is formally equivalent to the definition of the influence
functional (See Lombardor and Mazzitelli, 1996 for details). Thus, we may write

D(φ+
cl , φ

−
cl ) ∼ exp{iSCG[φ+

cl , φ
−
cl ]}. (37)

As a result,

|D(φ+
cl , φ

−
cl )| ∼ exp{−Im δS[φ+

cl , φ
−
cl ]} (38)

For the instantaneous quench of (27), using the late time behaviour φ±
cl ∼ eµsφ±

0 ,
Im δS[φ+

cl , φ
−
cl ] takes the form

Im δS ∼ V 
2

µ2

∫ t

0
ds

∫ t

0
ds ′e2µs e2µs ′

F (k0, s, s
′). (39)

From this viewpoint, adjacent histories become consistent at the time tD, for
which

1 ≈
∫ tD

0
dt Im δS. (40)

At this level, after performing the stationary phase approximation, it is equiv-
alent to evaluate the decoherence time scale from the master equation (through
diffusion terms) or directly from the decoherence functional (or the influence
functional).

4. THE DECOHERENCE TIME

We have used the same terminology for the time tD since, on inspection, (40)
is identical to (20) in defining the onset of classical behaviour. As we noted, in
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practice the use of the decoherence functional looks to be less restrictive than the
master equation, and we hope to show this elsewhere.

For the moment what is of interest is whether tD, based on linearisation of the
model, occurs before back-reaction sets in, to invalidate this assumption. When
all the details are taken into account, whether from (15) or (27), tD satisfies

1 = O
(

λ2V T 2
c

µ3

2

)
exp(4µtD), (41)

or, equivalently

exp(4µtD) = O
(

µ3

λ2V T 2
c 
2

)
. (42)

For the rapid quenches considered here, linearisation manifestly breaks down by
the time t∗, for which 〈φ2〉t∗ ∼ η2, given by

exp(2µt∗) = O
(

µ

λTc

)
. (43)

The exponential factor, as always, arises from the growth of the unstable
long-wavelength modes. The factor T −1

c comes from the coth(βω/2) factor that
encodes the initial Boltzmann distribution at temperature T � Tc.

Our conservative choice is that the volume factor V is O(µ−3) since µ−1 (the
Compton wavelength) is the smallest scale at which we need to look. With this
choice it follows that

exp 2(t∗ − tD) = O
( |
|

µ2

)
) = O(φ̄δ), (44)

where φ̄ = (φ+
< + φ−

< )/2µ, and δ = |φ+
< − φ−

< |/2µ. Within the volume V , we do
not discriminate between field amplitudes which differ by O(µ), and therefore
take δ = O(1). For φ̄ we note that, if tD were to equal t∗, then φ̄2 = O(1/λ) =
O(T 2

c /µ2) � 1, and in general φ̄ > 1. As a result, if there are no large numerical
factors, we have

tD < t∗, (45)

and the density matrix has become diagonal before the transition is complete.
Detailed calculation shows (Lombardo et al., 2003) that there are no large
factors.4

We already see a significant difference between the behaviour for the case of
a biquadratic interaction with an environment given by (20) and the more familiar
linear interaction, adopted because it can be solvable (e.g. Kim and Lee, 2002).

4 In evaluating F we perform the loop diagram using the full propagator rather than just its short
wavelength modes. Since the Tc behaviour comes entirely from the short wavelength part of the
integral, this is justified.



How Phase Transitions Induce Classical Behaviour 1867

This latter would have replaced 
/µ2 just by δ, incapable of inducing decoherence
before the transition is complete. Although linear environments can be justified in
quantum mechanics, in quantum field theory a purely linear environment corre-
sponds to an inappropriate digonalisation of the action.

We note that, once the interaction strength is sufficiently weak for classical
behaviour to appear before the transition is complete, this persists, however weak
the coupling becomes. It remains the case that, the weaker the coupling, the longer
it takes for the environment to decohere the system but, at the same time, the
longer it takes for the transition to be completed, and the ordering (45) remains the
same. This is equally true for more general quenches provided the system remains
approximately Gaussian until the transition is complete.

4.1. Back-reaction

In both calculations for the decoherence time we have been obliged to assume
that free-field behaviour explains the exponential growth of the long-wavelength
modes. In reality, we are thinking of φ<f as describing the symmetry-broken
phase, with magnitude η, the symmetry breaking scale (if we normalise |	(x)|
to be unity at its maxima). It can be shown (Karra and Rivers, 1997) that, for
an instantaneous quench at least, nonlinear behaviour that stops the exponential
growth only becomes important just before t∗. To see this, we adopt the Hartree
approximation, in which the equations of motion are linearised self-consistently.
With a little work we find that the theory only ceases to behave like a free Gaussian
theory with upside-down potential at a time tB, where

t∗ − tB = O(µ−1). (46)

It follows that tB ≥ tD in our ordering of scales Tc � µ.

5. LATE-TIME BEHAVIOUR

When (45) is valid, we see that ρr becomes diagonal before non-linear
terms could be relevant. Although we have not discussed it here, classical be-
haviour has been achieved before quantum effects can destroy the positivity of
the Wigner function Wr, which is enforced by the unstable modes. Really, our
tD sets the time after which we have a classical probability distribution (positive
definite) even for times t > tB. The existence of the environment is crucial in doing
this.

This result also justifies in part the use of phenomenological stochastic equa-
tions to describe the dynamical evolution of the system field, as we will now
discuss. As it is well known (Greiner and Muller, 1997; Lombardo and Mazzitelli,
1996), one can regard the imaginary part of δS as coming from a noise source
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ξ (x), with a Gaussian functional probability distribution.

P [ξ (x)] = Nξ exp

{
− 1

2

∫
d4x

∫
d4y ξ (x)N−1ξ (y)

}
, (47)

where Nξ is a normalization factor. This enables us to write the imaginary part of
the influence action as a functional integral over the Gaussian field ξ (x)∫

Dξ (x)P [ξ ] exp

[
−i

{ ∫
d4x 
(x)ξ (x)

}]

= exp

{
− i

2

∫
d4x

∫
d4y

[

(x) N (x, y) 
(y)

]}
. (48)

In consequence, the coarse-grained effective action can be rewritten as

SCG[φ+
<, φ−

< ] = −1

i
ln

∫
DξP [ξ ] exp

{
iSeff[φ

+
<, φ−

<, ξ ]

}
, (49)

where

Seff[φ
+
<, φ−

<, ξ ] = Re SCG[φ+
<, φ−

< ] −
∫

d4x
[

(x)ξ (x)

]
. (50)

The functional variation equation

δSeff[φ+
<, φ−

<, ξ2]

δφ+
<

∣∣∣∣
φ+

<=φ−
<

= 0, (51)

“semiclassical-Langevin” equation for the system-field (Greiner and Muller, 1997;
Lombardo and Mazzitelli, 1996)

δRe SCG[φ+
<, φ−

<, ξ2]

δφ+
<

∣∣∣∣
φ±

<=φ<

= ξ (x)φ<. (52)

The evolution equation for the reduced Wigner functional Wr now becomes
the Fokker-Planck counterpart to (52).

Each part of the environment that we include leads to a further ‘dissipative’
term on the left hand side of (52) with a countervailing noise term on the right
hand side. Although the φ<φ3

> and φ3
<φ> terms were ignorable in the bounding of

tD, in the Langevin equations they give further terms, with quadratic φ2
<ξ3 noise

and linear (additive) noise ξ1, respectively.
For times later than tB, neither perturbation theory nor more general non-

Gaussian methods are valid. It is difficult to imagine an ab initio derivation of
the dissipative and noise terms from the full quantum field theory. In this sense,
a reasonable alternative is to analyze phenomenological stochastic equations nu-
merically and check the robustness of the predictions against different choices
of the dissipative kernels and of the type of noise. Hitherto, pure additive noise
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has been the basis for empirical stochastic equations in relativistic field theory
that confirm Kibble’s causal analysis (Laguna and Zurek, 1997, 1998; Yates and
Zurek, 1998). However, recent numerical simulations with a more realistic mix of
additive and multiplicative noise has shown that domain formation is unchanged
(Antunes and Gandra, in preparation).

6. FURTHER ENVIRONMENTS: NEUTRAL FIELDS

Finally, it has to be said that taking only the short wavelength modes of the
field as a one-loop system environment is not a robust approximation. This is
particularly so for the Langevin Equation (52) (Gleiser and Romos, 1994). We
should be summing over hard thermal loops in the φ-propagators. To be in proper
control of the diffusion, we need an environment that interacts with the system,
without the system having a strong impact on the environment. This requires us
to introduce further deconfining environments. We are helped in that, in the early
universe, the order parameter field φ will interact with any field χ for which there
is no selection rule. Again, it is the biquadratic interactions that are the most
important.

The most simple additional environment is one of a large number N � 1 of
weakly coupled scalar fields χa, for which the action (1) is extended to

S[φ, χ ] = S[φ] + S[χ ] + Sint[φ, χ ], (53)

where S[φ] is as before, and

S[χa] =
N∑

a=1

∫
d4x

{
1

2
∂µχa∂

µχa − 1

2
m2

aχ
2
a

}
,

Sint[φ, χ ] = −
N∑

a=1

ga

8

∫
d4xφ2(x)χ2

a (x), (54)

where m2
a > 0. For simplicity, we take weak couplings λ � ga and comparable

masses ma � µ. The effect of a large number of weakly interacting environmental
fields is 2-fold. Firstly, the χa fields reduce the critical temperature Tc and, in
order that T 2

c = 2µ2

λ+∑
ga

� µ2, we must take λ + ∑
ga � 1. Secondly, the single

χ -loop contribution to the diffusion coefficient is the dominant χ -field effect
if, for order of magnitude estimates, we take identical ga = ḡ/

√
N , whereby

1 � 1/
√

N � ḡ � λ. With this choice the effect of the φ-field on the χa thermal
masses is, relatively, O(1/

√
N ) and can be ignored. We stress that this is not a

Hartree or large-N approximation of the type that, to date, has been the main way
to proceed (Boyanovsky et al., 1994, 1995; Cooper et al., 1997; Ramsey and Hu,
1997; Stephens et al., 1999) for a closed system.
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Provided the change in temperature is not too slow the exponential insta-
bilities of the φ-field grow so fast that the field has populated the degenerate
vacua well before the temperature dropped to zero. Since the temperature Tc has
no particular significance for the environment field, for these early times we can
keep the temperature of the environment fixed at Tχ = O(Tc) (our calculations
are only at the level of orders of magnitude). As before, we split the field as
φ = φ< + φ>. The χ -fields give an additional one-loop contribution to D(k0, t)
with the same u(s) but a G++ constructed from (all the modes of) the χ -field.
The separation of the diffusion coefficient due to χ into fast and slow factors
proceeds as before to give a term that is identical to (29) or (39), but for its ḡ2

prefactor.
Diffusion effects are additive at the one-loop level, and the final effect is to

replace λ2 in (41) by λ2 + ḡ2 > λ2, while leaving (43) unchanged. Although, the
relationship between Tc and λ has been uncoupled by the presence of the χa , the
relationship (44) persists, with an enhanced right hand side, requiring that (45) is
even better satisfied.

7. CHARGED FIELDS

Given that the effect of further environmental fields is to increase the
diffusion coefficient and speed up the onset of classical behaviour, additional
fields interacting with the φ field seem superfluous. However, the symmetries
of the universe seem to be local (gauge symmetries), rather than global, and
we should take gauge fields into account. We conclude with some observa-
tions from our work in progress (Busca and Lombardo) with local symmetry
breaking.

Local symmetry breaking is not possible for our real φ field but, as a first step
(Rivers et al., 2002a), it is not difficult to extend our model to that of a complex
φ-field. At the level of O(2), global interactions with external fields and with
its own short-wavelength modes, everything goes through essentially as before.
The main difference is in the choice of single degree of freedom configurations.
Writing

φ(x) = 1√
2

(φ1(x) + iφ2(x)),

we assume that the φa behave independently until back-reaction is important. The
simplest single-mode approximation to the long-wavelength system field is

φ1,<cl(�x, s) = f1(s, t)	(x)	(y)	(z), (55)

say, and

φ2,<cl(�x, s) = f2(s, t)	(x + a)	(y + b)	(z + c), (56)
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for some non-zero a, b, c. fa(s, t) satisfies fa(0, t) = φa,i and fa(t, t) = φa,f . We
write them as

fa(s, t) = φa,iu1(s, t) + φa,fu2(s, t), (57)

as before. Whereas the classical mode (14) of the real scalar described a regular
array of domain walls, separation ξ , defined by the zeroes φ<cl(�x) = 0, the complex
φ<cl(�x) describes a regular array of line zeroes (the intersections of φ1<cl(�x) =
0 = φ2<cl(�x)), which will evolve into global vortices after the transition. Although
our assumption of a regular lattice of vortices is an extreme simplification, the
production of vortices with typical separation ξ is as we would expect (Kibble,
1980).

In fact, to date we have not even been as sophisticated as (55) and (56),
but have just taken periodicity in a single direction (Rivers et al., 2002b). This
is sufficient to see that the system decoheres before the transition is complete,
with an almost identical relation (44). We assume that the insensitivity of the
prefactor F (k0, s, t) to the regular lattice in both (24) and (39) is equally true
here.

Local U (1) symmetry breaking is most easily accommodated by taking the
φ-field to interact with other charged fields χ through the local U (1) action

S[φ,Aµ, χ ] = S[φ,Aµ] + Sχ [Aµ, χ ], (58)

in which

S[φ,Aµ] =
∫

d4x

{
(Dµφ)∗Dµφ + µ2φ∗φ − λ

4
(φ∗φ)2 − 1

4
FµνFµν

}
, (59)

and

S[Aµ, χ ] =
∫

d4x
{
(Dµχ )∗Dµχ + m2χ∗χ

}
. (60)

We have taken a single χ -field. The theory (58) shows a phase transition, and we
assume couplings are such as to make this transition continuous.

For simplicity, let us just take χ to be the environment to the system field φ,
which we do not separate into short- and long-wavelength modes. On integrating
out the χ -field environment, the reduced density matrix ρr[φ+, A+

µ, φ−, A−
µ, t]

evolves as

ρr[t] =
∫

dφ+
i

∫
dφ−

i

∫
dA+

i

∫
dA−

i Jr[t, ti] ρr[ti]. (61)

(We have dropped the indices on Aµ for clarity). Yet again, we make a saddle-point
approximation,

Jr[tf , ti] ≈ exp(iSCG[φ+
cl , A

+
cl, φ

−
cl .A

−
cl ]), (62)
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where the coarse-grained action SCG has the form

SCG[φ+, A+, φ−, A−] = S[φ+, A+] − S[φ−, A−]

+ δS[φ+, A+, φ−, A−]. (63)

As before, δS encodes all the interactions between the environment and the system.
In (62), φ±

cl is the solution to the equation of motion

δReSCG

δφ+ = δReSCG

δA+ = 0 (64)

subject to φ+ = φ− and A+ = A−, with boundary conditions φ±
cl (t0) = φ±

i and
φ±

cl (t) = φ±
f , and similarly for A±

cl .
We stress that we are not tracing over the electromagnetic degrees of freedom,

but determining the indirect effect of the χ -environment on the φ-field, mediated
by electromagnetism.

Again, for simplicity, we assume an instantaneous quench. The diffusion is
again driven by the unstable φ modes that, approximately as

(� − µ2)φcl(s, x) = (� − µ2)φ∗
cl(s, x) = 0 (65)

for times s � t∗. This unstable scalar φcl is the source for the classical elec-
tromagnetic field, A

µ

cl(s, x), satisfying

∂νFνµ(s, x) + (e2|φcl|2 + e2G++(0))Aµ,cl(s, x)

+ e2
∫ s

0
dt

∫
d3y Im 
µν(s − t, x − y)Aν

cl(s, y)

= jµ(s, x), (66)

in the Lorentz gauge, where jµ = −ieφ∗
cl∂

↔
µ φcl.

In (66), G++(x − y) = Tr[T (χ (x)χ†(y)ρχ (0)] is the hot χ -propagator at
temperature T . The G++(0) term is the χ -loop thermal mass contribution to the
Aµ field.

We interpret (66) as being the start of an expansion with solution

Aµ,cl(s, x) =
∫

d3y dt Dµν(s, t ; x − y)jν(t, y), (67)

where Dµν(s, t ; x − y) is the thermal Aµ-field propagator in the χ -heatbath. We
have ignored the oscillatory solution of Aµ to the homogeneous equation, since
this will not induce the exponentially growing diffusion that we need for rapid
decoherence.

Just as for the other models considered earlier, when the transition is com-
pleted, there is a characteristic scale, the separation of the local vortices that
express the frustration die to causal bounds. If we adopt a single characteristic
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scale before then, Im δS now has two contributions. We have already seen that
the first, of the form (22), but from the χ -loop, is sufficient to enforce decoher-
ence before the transition is complete, for acceptable parameters. We also have a
contribution of the form (Busca et al., in preparation).

Im δS = −e2

2

∫
d4x

∫
d4y(
A)µ(x)Re 
µν(x, y)(
A)ν(y), (68)

due to the electromagnetic field, where (
A)µ = A
+µ

cl − A
−µ

cl , derived from φ

through (67), and


µν(x − y) =
(

∂

∂zµ
− ∂

∂xµ

)(
∂

∂wµ
− ∂

∂yµ

)

×G++(x − w)G++(z − y)|z=x
w=y (69)

This additional term to the diffusion function has derivative couplings. Hav-
ing made a gauge choice, these give rise to explicit momenta factors kµ in the
generalisation of F . Unlike the contributions to D that we have seen so far, which
are largely insensitive to the momentum scale k0, these contributions are strongly
damped at large wavelength. In consequence, it is likely that they barely enhance
the onset of classical behaviour but, given that the effect of the other environmental
modes is to enforce classical behaviour so quickly, it hardly matters. We intend to
give a fuller discussion of this elsewhere (Busca et al.).

8. CONCLUSION

We have shown how, for fast quenches, weakly coupled environments make
a scalar order parameter field decohere before the transition is complete, under
very general assumptions. An essential ingredient for rapid decoherence is non-
linear coupling to the environment, inevitable when that environment contains
the short-wavelength modes of the order parameter field. Had we only considered
linear coupling to the environment, as in (Kim and Lee, 2002), for example (but
an assumption that is ubiquitous in quantum mechanical models, from Brownian
motion onwards) decoherence would not have happened before the transition was
complete, and we would not know how to proceed, although classical correlations
would have occurred. For weak couplings, further scalar environments with local
interactions with the system field only make decoherence more rapid. However,
it seems that, for the relevant case of a charged environment, also interacting
indirectly through electromagnetic interactions, this indirect contribution has little
effect on a decoherence that is already effective.
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