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Summary. We present a method for estimating the minimal periodic orbit structure,
the topological entropy, and a fat representative of the homeomorphism associated with
the existence of a finite collection of periodic orbits of an orientation-preserving home-
omorphism of the disk D2. The method focuses on the concept of fold and recurrent
bogus transition and is more direct than existing techniques. In particular, we introduce
the notion of complexity to monitor the modification process used to obtain the desired
goals. An algorithm implementing the procedure is described and some examples are
presented at the end.
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1. Introduction

We are interested in 3-D dynamical systems (ODEs) that admit a Poincaré section �.
Hence, a Poincaré return map can be defined on� and the periodic orbit structure can be
understood in terms of the periodic points of the Poincaré return map F : � �→ �, which
is assumed to be an orientation-preserving homeomorphism. Periodic points of F are in
one-to-one correspondence with periodic orbits of the original flow (although it is clear
that F admits many different suspensions that can be classified according to their global
torsion [1]). We will focus in the case where � is a topological disk on the plane (an
example would be a flow defined on D2×S1 where the coordinateφ ∈ S1 satisfies φ̇ > 0).

Given a periodic orbit (or a collection of several periodic orbits) of the flow, and
an order for the p intersection points of the orbit(s) on �, one can associate with the
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orbit an element of the Braid group of p strands in the following way: (a) Project
� onto the interval [0, 1] in such a way that the order among the p points is pre-
served, i.e., 0 ≤ v1 < v2 < · · · < vp ≤ 1, (b) project analogously the images of �
by the time evolution onto a cylindric surface spawned from [0, 1], i.e., [0, 1] × S1,
thus producing strings on the cylindric surface representing portions of the orbit be-
tween points vi and v(i+1)mod(p), (c) keep track of the crossings among pairs of ad-
jacent strings by checking for each t associated with a crossing point on the projec-
tion, the signed distance δ on the time-evolved Poincaré surface �t between each in-
volved point and its (common) projection (which are either “left over right” if δ(left) >
δ(right) or otherwise “left under right”), and (d) recast the cylindric surface as the unit
square.

Different choices of Poincaré sections that are equivalent up to conjugation yield
conjugated braids associated with a given periodic orbit. Hence, rather than the braid
itself, the object that summarizes the dynamical information of a periodic orbit is its
equivalence class upon conjugation. This object is called the braid type [2].

In contrast with the periodic orbits of 3-D flows, periodic orbits of Poincaré maps do
not carry the linking information by themselves. Let P be the set of points belonging to
the periodic orbit (or collection of periodic orbits) of F under consideration. The “braid
content of the orbit” actually consists of the action of F on D2− P . Considering F as a
Poincaré map, we will in the sequel refer to the braid (or dynamical) content of the set
of periodic orbits P meaning the braid type of F in D2 − P .

The braid content of a collection of periodic orbits can be read directly on the Poincaré
section via the action of F . Let P be the ordered set {v1, v2, . . . , vp}. Consider a Jordan
curve on � joining (in order) the points in P as it is traveled in counterclockwise
form. The image by F of this Jordan curve is called the circle diagram of the braid.
The isotopy equivalence classes of circle diagrams are in one-to-one correspondence
with the elements of the braid group quotiented with the global torsions [3]. The braid
associated with {F, P} by this procedure depends on the choice of the Jordan curve
and the ordering of the points {v1, v2, . . . , vp}. However, it is not difficult to show [4]
that different choices of Jordan curves and orderings of the points are associated with
conjugated braids. Hence, the braid type associated with P by the action of F on D2− P
is independent of the ordering of the points of P and the choice of Jordan curve. In
practical applications one uses a standardized Jordan curve obtained by (a) conjugating
F so that the points of P lie on a straight line, (b) numbering these points 1 to p from
left to right, and (c) choosing the curve as a straight line joining all the points and an arc
joining vp to v1 counterclockwise.

Hall [5] considered in a similar context the line diagram. Given the permutation of
P acted by F , there is a one-to-one correspondence between the circle diagram and the
line diagram. A line diagram is obtained from the circle diagram by deleting the arc
going from vp to v1; conversely, the circle diagram is recovered from the line diagram
by closing a (topological) circle from vp to v1 with a counterclockwise orientation. For
simplicity we will mainly use the line diagram in the sequel.

The approach we will present allows us to consider a more general class of start-
ing diagrams—called “trees” below—than just line diagrams. The central question we
address in this article is: Given a tree (or in particular a line or circle diagram), which
periodic orbits of an orientation-preserving homeomorphism F are necessarily present
along with those given by the vertices of the tree? In other words, we aim to obtain a 2-D



Minimal Periodic Orbit Structure of 2-Dimensional Homeomorphisms 185

homeomorphism with the least number of periodic orbits for each period, compatible
with the tree.

All answers to the central question rely on Thurston’s classification theorem for
orientation-preserving homeomorphisms [6], which in our case reads as follows:

Theorem A (Thurston). Let � be compact and P a finite F-invariant set of points.
Then F is isotopic to a homeomorphism φ on�− P such that one of the following three
cases occur:

1. φn is the identity for some positive integer n (φ is said to have finite order).
2. φ is reducible, i.e., there exists a φ-invariant finite set of disjoint closed curves that

are not boundary homotopic nor puncture homotopic in � − P.
3. φ is pseudo-Anosov.

The simplest homeomorphisms of a disk are rigid rotations. A map whose irreducible
components are all of finite-order type will be called a collection of pure rotations. The
braid structure of homeomorphisms with zero topological entropy can be described as
a family of hereditarily rotation-compatible orbits, i.e., a finite or infinite sequence of
cabled rotations [7]. Gambaudo et al. have shown that the converse result is also true at
least for C1 diffeomorphisms [7].

In the reducible case, we can decompose P in a collection of two or more (irreducible)
φk-invariant sets. In fact, in the case that the points of P belong to just one periodic orbit,
for some k, φk maps each invariant curve onto itself and there are l = p/k points of P
within each curve. Hence, reducibility requires p to not be a prime number [2]. Con-
fining ourselves to prime periods, Thurston’s theorem reduces to two alternatives: finite
order or pseudo-Anosov homeomorphisms. The latter case implies positive topological
entropy and the existence of an infinite number of periodic orbits that are not cabled
rotations. A simple test on the braid word [2] of the orbit gives a sufficient condition for
its being pseudo-Anosov.

From the point of view of dynamics the last case in Thurston’s theorem is the most
interesting. In fact, pseudo-Anosov maps have many interesting properties that allow us
to assess a number of properties of the original (dynamical) map F . For a proper definition
of pseudo-Anosov maps, see e.g. [5]. For the present purposes the three properties that
are relevant are

1. Let φ be a pseudo-Anosov homeomorphism on D2 − P that maps periodically the
punctures of D2 and let Q be a periodic orbit of φ with braid type γ and period q not
lying completely in the border of D2. Then, the number of periodic orbits with braid
type γ and period q of any homeomorphism F in the isotopy class of φ is greater or
equal than the corresponding number for φ [5]. The result is not true for orbits lying
completely in the border of D2. This means that since F and φ both present the same
invariant set P and hence lie in the same class, F has at least the same number of
periodic orbits as φ for each period n ≥ 1 with the possible exception of the border
orbits (which are a finite number of rigid rotations).

2. The topological entropy of φ, h(φ), is a lower bound to that of F .
3. Pseudo-Anosov maps admit a Markov partition from which h(φ) can be computed

(it is the logarithm of the largest-modulus eigenvalue of the associated Markov ma-
trix) [8].
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Hall [5] noticed that certain line diagrams associated with maps belonging to a pseudo-
Anosov class can naturally be associated with a fat representative, i.e., a 2-D automor-
phism θ̂ from which the transition matrix can immediately be read. He develops the
concept of bogus transition, meaning that some power of θ̂ induces a horseshoe-like
folding on the line diagram that can be removed by isotopies. If a line diagram of a
p-periodic orbit does not present bogus transitions for the first p − 1 powers of θ̂ , then
the set of periodic orbits of θ̂ differs from the corresponding set of φ in a finite number
of orbits, and both maps have the same topological entropy and Markov matrix.

There are three published algorithms dealing with orbit implication, Markov par-
titions, and/or topological estimates in the context of Thurston’s theorem. The best
established implementation of Thurston’s results can be found in the paper by Bestvina
and Handel [9]. The authors start with a marked graph that is a homotopy equivalence
of the rose of p petals and with a topological representative F of the map of interest,
proceeding then to transform F until it becomes a train-track map. Although this pro-
cedure is sufficient to unravel the richness of Thurston’s theorem, one may regard as
a limitation the fact that the starting point of the process is fixed (what in our context
would be equivalent to starting the process with one given standard diagram). In a later
manuscript [10], this condition is lifted. In fact, the algorithm of Bestvina and Handel [9]
is more general than ours (it can be used for any surface of negative Euler characteristic)
but also more complicated since it requires “valence-2 homotopies” and the concept of
“peripheral subgraph.”

The algorithm by Los [11] relies on “valence-three graphs” (the concept of valence
is disccussed in the next section), and moreover it lacks a systematic monitoring of its
evolution: One has to test the outcome of the algorithm on a number of (conjugated)
representatives F .

Finally, the algorithm of Franks and Misiurewicz [12] is the inspiration for our work. It
is worth mentioning that Franks and Misiurewicz take advantage of the work performed
by Bestvina and Handel; hence, in some sense it is an elaboration of this pioneering
work. The present work can also be viewed as a further elaboration of [12]. Franks and
Misiurewicz developed an algorithm with about 10 steps with which from any starting
diagram containing the invariant set P as vertex points one can produce an associated
structure having the least topological entropy (meaning that the structure induces a
Markov partition for φ from which the topological entropy h(φ) can be computed).
Their algorithm proceeds by testing different modifications of their diagrams (adding
vertices, merging adjacent segments, or splitting a vertex) until a standardized structure
is obtained. The drawbacks are that it provides no systematics in the application of the
individual moves and it is unclear if all moves are necessary, as the authors state in their
work.

The identification of the braid content of a return map is relevant also for natural
sciences. An extensive program for the characterization of experimental data and the
validation of proposed models [13] has been in the process of being developed since the
late 80’s. For such matters, more relevant than the topological entropy is the production
of a fat representative[5], [12] of the return map.

The goal of this work is to merge the approaches of [5] (after suitable generalization)
and [12], producing a simpler algorithm where the steps to understanding the orbit impli-
cations given by the set P and to producing the lowest-entropy diagram are guided by the
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identification and elimination of a generalized type of bogus transitions. Our algorithm is
simpler than that of Misiurewicz and Franks [12] in that (using their language) only “glu-
ing,” “collapsing,” and homotopies are needed. We avoid the move called “dragging,”
which is the equivalent to the “valence-2 homotopies” in [10], as well as “splitting,”
which is the inverse of gluing.

The basic ideas of this manuscript were outlined in 1997. In the course of writing,
rewriting, and reviewing the manuscript, we became aware of two newer articles on the
subject, namely [14] and [15]. The first one presents an improvement on [12] that deals
with a better understanding of their splittings and is therefore not directly related to this
work since we avoid Franks and Misiurewicz’s splittings completely. The second one
has many contact points with this manuscript and with [12], since similar fat representa-
tives, collapses, and splittings are present. We will defer a comment on it until the final
section.

In Section 2 we define the main tools, in the following sections we present the sup-
porting results and describe the algorithm, and the final sections are devoted to examples
and discussion.

Reading Suggestions. For the reader who wants to use the algorithm and can leave the
details of the proof for a second lecture, it might be enough to read the definitions of
fold, fat representative, crossing, and bogus transition in Section 2 and those of preim-
age of a fold (PF and the related PFi ), collapse of a bogus transition, and exhaustion
as well as Lemma 6 (Lemma 10 invoked in the algorithm is a refinement of the more
intuitive Lemma 6) in Section 4 before going to the algorithm description at the end of
Section 4. Those readers should note that the examples in Section 5 are a mixture of of
“usage” and “proof verification.” For the mathematically oriented reader interested in
understanding how the procedure works, the whole manuscript is of course necessary,
but the key concepts are those of step and complexity in Section 4, while the collaps-
ing procedure is motivated by the elimination of portions of phase space discussed in
Theorem 1.

2. Elements of the Description

We formalize here the relevant parts of the above discussion.

2.1. Trees and Standard Maps

Let F be an orientation-preserving homeomorphism of the disk D2 ⊂ R2, and let
P = {v1, . . . , vp} be a finite F-invariant set with a given (arbitrarily chosen) numbering
of its points. After possibly conjugating F , without loss of generality we can assume
that the points of P lie on a (horizontal) straight line on D2 with the canonical ordering.

Definition. Consider a counterclockwise Jordan curve joining (in order) the points
{v1, . . . , vp} by straight lines and vp to v1 with an arc. The image by F of such curve is
called a circle diagram, C.



188 H. G. Solari and M. A. Natiello

Definition. The Jordan arc from F(v1) to F(vp) of a circle diagram (i.e., removing the
image of the arc vp → v1) is called a line diagram, L.

The preimage L0 of the line diagram (which can be taken to be a horizontal straight
line), will be of use below.

Theorem B (NS [3]). The isotopy equivalence classes of circle diagrams are in one-
to-one correspondence with the group Bp/Z(Bp), i.e., the braid group of p strands
quotiented with its center, Z(Bp), corresponding to the full-twists or global torsions.

This equivalence is more refined than just on braid types. The whole braid group
quotiented with its center is one-to-one with the circle diagrams. Braids within a given
braid type differing in a conjugation that is not a global torsion will have different
diagrams.

It is clear that the circle diagram isotopy equivalence classes can be put in one-to-one
correspondence with line diagram isotopy equivalence classes, so the above theorem is
valid for line diagrams as well.

Definition (Tree). A tree is a connected finite 1-D CW-complex that does not contain
any subset homeomorphic to a circle [12]. In simpler terms, consider a set P of periodic
points. Join the points with nonintersecting straight line segments in such a way that no
loops are formed. We call the resulting graph a tree, the points of P are called vertices,
and the line segments are called edges.

The number of edges emerging from a vertex is called the valence of the vertex. L0

is a good example of a tree, having vertices of valence 2 and 1 (the endpoints).
We need to define a “standard” map that hosts the given periodic orbit and tree.

Following Franks and Misiurewicz [12], we let π : D2 �→ T be a projection with the
following properties:

(a) π is continuous and onto.
(b) π maps the points of P bijectively onto a subset of the vertices of T (which includes

all endpoints of T ).
(c) For every vertex v of T , π−1(v) is a closed disk.
(d) For every p ∈ P , p ∈ Int(π−1(π(p))).
(e) For every open edge (i.e., without the endpoints) e of T , there is a homeomorphism

He of e × [0, 1] such that π ◦ He is the projection onto the first coordinate.
(f) If e1, e2 are distinct open edges of T , then the closures of π−1(e1) and π−1(e2) are

disjoint.

There is a natural Markov partition of T taking the segments joining the points of P
(edges) as units. This partition induces a corresponding transition matrix for π(F(·)),
which we will call M0. The matrix element {M0}i j is a nonnegative integer indicating
the number of times the edge i is mapped over the edge j by π(F(·)).

The definition ofπ suggests that one can recast the disk D2 as a collection of rectangles
and disks forming a thickened tree. Such disks and rectangles will be called fat vertices
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Fig. 1. A tree, its image by F , along with T̂ , its induced partition, and its
image by θ̂ (see below for a definition of the map θ̂ ). The point v1 of P
has the label 0. Sectors are illustrated as well.

and fat edges respectively. In this sense, π : D2 �→ T defines a thick tree structure of
(D, P) over (T, P) [12].

Given for example, five periodic points on the disk, one may construct many different
trees. Which one to start with is a matter of choice; it is the final result of the algorithm that
provides a unique answer in terms of minimal topological entropy. Figure 1 illustrates
the construction of a tree for a map of the disk with a periodic orbit of period 5. In the
first row of the figure, the choice of tree is shown along with its image by F , as well as
the modifications of the border of the circle along the projection π . Full lines indicate
the tree and dotted lines its image by F (same colour for each edge and its respective
image). The choice of endpoints is illustrated by the shaded circles, i.e., the border of
the disk is partitioned via the endpoints, thus determining the labeling of the different
components of the tree (see below). We will use this idea to define a standard map on
the disk inheriting the properties of F .

Let T̂ be the topological disk obtained from T by means of a suitable choice of π−1.
Consider the tree T as a point set embedded in T̂ . Everyfat vertex of valence k of T̂ is
divided by T in k connected subsets that we will term sectors. (The boundary of each
sector contains only one vertex in T and portion(s) of edge(s) of T at that vertex. We
will consider that the boundary belongs to the sector whenever necessary.)

See the second and third rows of Figure 1 for an illustration of the concept of sector
partition, for a tree with three endpoints and four fat-edges labeled a, b, c, d. We will
use the same labels for edges and fat-edges and for vertices and fat vertices when no
confusion arises.
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Definition (Fat Representative). Let T̂ be the topological disk obtained from T by
means of a suitable choice of π−1. We define the fat representative θ̂ of F [5] as a map
θ̂ : T̂ → T̂ with the following properties:

1. θ̂ is one-to-one and continuous.
2. θ̂ (T̂ ) ⊂ int(T̂ ).
3. θ̂ coincides with F on P .
4. θ̂ (T ) is homotopically equivalent to F(T ) on T̂ − P .
5. The image by θ̂ of a fat vertex is contained in the interior of a fat vertex.
6. Given r belonging to an open edge of T , then for all t such that π(t) = r , π(θ̂(t)) =
π(θ̂(r)) and, moreover, |θ̂ (r)− θ̂ (t)| = k|r−t |, for some positive k < 1. k is constant
on each open edge.

The existence of a map θ̂ with the proposed properties results from the following
observations: First, consider F(T ) as a collection of segments with endpoints in P .
Then, it is always possible to produce a tight model of F(T ), i.e., with lines parallel to
the edges in T along the fat edges by applying suitable homotopies to F |T (F restricted
to T ). We can name such a map θ̂ |T : T → T̂ . Additionally, we require that θ̂ |T never
contracts. Secondly, the map θ̂ |T can be extended to the fat edges as a map of a set of
disjoint rectangles that contracts uniformly by a factor k in one direction and expands as
θ̂ |T along the perpendicular direction with stable and unstable foliations in coincidence
with the (local) Cartesian coordinates of the rectangle. Such a map coincides with the
restriction of θ̂ to the union of fat edges.

Finally, in identical form, the image of a fat vertex is a fattened version of the restriction
of θ̂ |T to the corresponding vertex in such a way that the “gaps” between images of edges
are filled and θ̂ maps T̂ continuously and injectively on its interior.

We define the projected map θ : T → T as θ(r) = π(θ̂(r)). This map will be
considered repeatedly in the rest of this paper.

In Figure 1 we show a tree T and its image by F (first row) and the corresponding T̂
with thickened edges and vertices (second row) along with the image of T̂ by θ̂ (third
row), which is purposely drawn within the original T̂ .

2.2. Folds and Bogus Transitions

A central concept in our understanding of the problem is that of “folding point” or “fold.”

Definition (Fold). Let v′ be a vertex of T and v the vertex of T that is the unique vertex
preimage of v′ by θ̂ . We say that θ has a fold f at v′ whenever θ is not one-to-one
restricted to any small neighborhood of v. We say that θ̂ has a fold at v′ whenever θ has
a fold at v′. We count one fold for every pair of contiguous edges at v with the same
image by θ locally around v′.

These two contiguous edges at v define a unique sector x(v) in T̂ . We will call fold
the subset of θ̂ (T̂ ) given by θ̂ (x(v)). The fold has a border in θ̂ (T ) given by θ̂ (x(v)∩T ),
and a local interior in θ̂ (T̂ ) that is the complement of the border in the fold (the fold
“minus” its border). θ maps {x(v)∩ T − {π(v)}} two-to-one onto a portion of one edge
at v′.
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Some regions in T̂ will stretch, fold, and map onto themselves by some power of
θ̂ as a consequence of the existence of the invariant set P . Some of these foldings
may be unavoidable, but others may be avoided via homotopies that collapse the whole
stretched and folded region and all its preimages to a point. Our next goal is to identify
these regions.

Definition (Fold Preimage Set). Let θ̂ have a fold f at v and let x be the sector at
the preimage of v mapping onto the local interior of the fold by θ̂ . We define the set
of fold preimages P I ( f ) having sectors as elements as follows: x ∈ P I ( f ), and in
addition y ∈ P I ( f ) iff y ∩ T maps (locally) one-to-one by θ k onto x ∩ T , for k ≥ 1.
Note that a sector cannot be associated with more than one fold, and the sector at an
endpoint cannot belong to P I ( f ) since it cannot be mapped by θ one-to-one and onto
the local part of T at a valence-m vertex with m > 1 in the way prescribed above.
We will call P I (θ̂) = ∪ f P I ( f ), the set of all the sectors associated with folds in the
map.

Definition (Crossings). Consider an open edge e and its image by θ̂ . If we can di-
vide e in three consecutive nonempty portions e0, e1, e2 such that θ̂ (ei ), i = 0, . . . , 2
intersect three consecutive elements (sectors or edges) of the tree, we will say that θ̂ (e)
crosses the second intersected element (the one corresponding to e1). Notice that if
θ̂ (e) crosses an edge, the edge portions e0, e2 intersect sectors, since edges connect sec-
tors. See for example, Figure 2. The image of the edge joining vertices 2 and 3 crosses
the fat edge 2–3, two sectors at vertex 3 (labeled below as 3D and 3R), and the fat
edge 3–5. Also, the image of the edge 1–2 crosses the fat edge 3–5, sector 3R, and fat
edge 3–4.

The expressions “an edge maps along. . . ” and “an edge maps over. . . ” used above
when discussing Markov partitions and edges can easily be restated in terms of crossings.

In more general terms, consider a connected region of the fat tree composed of
successive sectors (or unions of consecutive sectors) and fat edges, hi i ∈ 1, . . . , k, then
θ̂ (e) crosses the region if there are adjacent nonempty portions of e, ei i = 0, . . . , k+ 1,
such that θ̂ (e0) and θ̂ (ek+1) cross elements of the tree (fat edges or sectors) adjacent to
the region considered while θ̂ (ei ) crosses the element hi .

Definition (Bogus Transition). Consider the set of fold crossings CR(θ̂) indicating
which sectors or unions of consecutive sectors associated with the points P are crossed
by the image by θ̂ of an edge of T . The orbit by θ̂ of the elements in CR consists of
a sequence of sectors or union of consecutive sectors that could either map into one or
more folds in a finite number of steps or be infinite. In the same way, the orbit by θ of
the border of these sectors in T either is two-to-one after a finite number of steps (in
which case we say that the orbit terminates in the fold) or keeps being one-to-one for
any number of iterates. We say that the tree T has a bogus transition at all the folds lying
in the forward image by θ̂ of an element of CR(θ̂) whose orbit terminates, in the present
sense.
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1
2U 3L 3R

4

5

θ(5) θ(3) θ(4)

θ(2)

θ(1)

f1

f23D

Fig. 2. A tree with bogus transitions at 5 and 2. The fold f 1 is the image of 2U while f 2 is the
image of 3D. CR = {3D + 3R, 3R}, P I ( f 1) = {3R, 2U }, and P I ( f 2) = {3D}. The orbit of
3R is 3R → 2U → f 1; hence f 1 has a bogus transition and BT ( f 1) = P I ( f 1); the orbit of
3D + 3R is 3D + 3R → f 2 + 2U → f 1 and then besides f 1, f 2 also has a bogus transition.
BT ( f 2) = P I ( f 2) since 3D ∩ (3D + 3R) = 3D.

The set P I ( f ) has a natural order given by θ̂ . We give to the sector x the label n
(which is the cardinality of P I ( f )) and the remaining sectors in P I ( f ) are ordered in
such a way that xi maps by θ̂ onto xi+1 for i = 1, . . . , n − 1. Hence, the element xk

maps (for the first time) into the interior of the fold after n − k + 1 iterations of θ̂ .
We introduce the set BT ( f ) for future use. For each fold with a bogus transition,

BT ( f ) is the subset of P I ( f ), with the natural order given by θ̂ , that has nonempty
intersection with the forward image of the elements of CR(θ̂). BT ( f ) indicates the
sectors where tree modifications will be necessary. If this set is empty, there are no
bogus transitions associated with f . We will abuse notation often in the sequel and
regard P I ( f ), CR(θ̂), and BT ( f ) as the sets of associated vertices rather than sectors.

We illustrate the definition of bogus transition in Figure 2. θ̂ has two folds: f 1 at
vertex 5, which is the image of vertex 2, and f 2 at vertex 2, which is the image of 3.
The sector 2U (at vertex 2) maps on the local interior of the fold f 1. We have that
CR = {3D + 3R, 3R}, P I ( f 1) = {3R, 2U }, and P I ( f 2) = {3D}. The orbit of 3R is
3R → 2U → f 1; hence f 1 has a bogus transition and BT ( f 1) = P I ( f 1); the orbit
of 3D + 3R is 3D + 3R→ f 2+ 2U → f 1 and then besides f 1, f 2 also has a bogus
transition. BT ( f 2) = P I ( f 2) since 3D ∩ (3D + 3R) = 3D.

Let φ denote the collection of irreducible components of a map conjugate to F
according to Thurston’s theorem (in the irreducible case, φ is just one map: the pseudo-
Anosov or pure rotation conjugate map to F).

Definition. We say that θ̂ has minimal periodic orbit structure in the isotopy class of
F [5] whenever it has the same number of orbits as φ on the interior of D2 for all braid
types plus at most a finite number of orbits of the same braid type as P (same braid type
as the irreducible components associated with P) and if the orbits of θ̂ on ∂D2 differ
from those of φ in a finite number of rigid rotations.

Theorem C (Hall [5]). For F, P, φ, and θ̂ belonging to a pseudo-Anosov isotopy
class and all defined as above, the line diagram of P has no bogus transitions if and
only if θ̂ has minimal periodic orbit structure. Moreover, the transition matrix of θ̂ is



Minimal Periodic Orbit Structure of 2-Dimensional Homeomorphisms 193

Perron-Frobenius (see below for a definition) and the logarithm of its largest-modulus
eigenvalue is a lower bound for the topological entropy of F.

The concept of bogus transition developed by Hall in [5] is closely related to the
concept of gluing reduction possibility (GRP) of Franks and Misiurewicz [12, p. 83].
For P in the irreducible case, the absence of GRP in a tree is enough to warrant that
the entropy is minimal (see [12]); however, some tree maps presenting bogus transitions
also have minimal entropy. It is actually not difficult to find line diagrams with zero
associated entropy that present bogus transitions.

2.3. Recurrence

In order to have periodic orbits, it is necessary to have some kind of recurrence in θ̂
(some regions of T̂ that return onto themselves). A sufficient condition for recurrence
is to have a transition matrix M0 (all entries of M0 are nonnegative) such that for every
pair i, j there exists an m ≥ 1 such that (Mm

0 )i j > 0. We call such a matrix, and the
corresponding map θ , transitive. If some power of M0 has all entries strictly positive,
the matrix is called Perron-Frobenius. Such matrices have a largest-modulus eigen-
value λ > 1 with multiplicity 1. In particular, a transitive matrix with positive trace is
Perron-Frobenius.

A concept related to transitivity is that of matrix reducibility. A reducible matrix
(in the sense of matrices, hereafter called matrix reducible) implies the existence of
a proper subset of edges that maps within itself. Then, M0 can be written in such a
way that it has a non-diagonal block identically zero. Matrix-reducible matrices are not
transitive.

Necessary conditions for having a map with positive topological entropy are (a)
recurrence, in order to have periodic orbits, and (b) expansivity, in order to have folds.
Folds will eventually be involved in horseshoe-like formations in some power of θ̂ . By
expansive we mean a map θ such that at least one edge maps onto two or more edges
(or onto the same edge twice). In terms of M0 at least one row has two or more nonzero
entries (or some entry larger than one). A map θ̂ that has an associated expansive map θ
will also be called expansive.

The presence of a bogus transition indicates the possible existence of an infinite set
of periodic orbits that can be removed by a suitable homotopy. The actual existence of
this removable set of orbits depends on the bogus transition being recurrent. This will
be the basic ingredient of Theorem 1.

Definition (Recurrent Bogus Transition). Let θ (and consequently θ̂ ) have a fold f
at v′ and let v be the unique vertex preimage of v′. Further, let a and b be the consecutive
edges at v that will map (via some positive power k of θ ) onto the edge bt at v′. Finally
let x denote the sector at v that maps onto the local interior of the fold. We say that
a bogus transition is recurrent whenever there exists m > 0 such that the following
three conditions hold: (i) θ̂m(bt) ∩ x �= ∅; (ii) θm(bt) ∩ a �= ∅; and (iii) θm(bt) ∩ b �=
∅, in other words: θ̂ (bt) crosses x . It follows immediately that a ⊆ θm(bt) ∩ a and
b ⊆ θm(bt) ∩ b.
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3. Supporting Results

Throughout this section, let θ be a tight tree map.

Lemma 1. θ has folds if and only if θ is expansive.

Proof. We will use throughout that θ is onto.
If θ is not expansive, each edge maps onto just one edge. No two edges can map onto

the same edge, and hence θ has no folds.
We shall now prove that there is a contradiction between θ being expansive and θ

having no folds.
Since θ̂ is expansive, there is at least one fat edge such that its intersection with θ̂ (T )

consists of more than one edge portion. We also observe that if θ̂ has no folds, every
valence-k vertex is mapped onto a valence-k vertex and, additionally, all the edges locally
at the vertex are mapped one-to-one (locally) into edges of the image.

Let e be an edge of T with several preimages; call v one of the end vertices of e and
a �= e the closest edge portion of θ̂ (T ) crossing the fat edge E , where π(E) = e. We
shall further consider the point r ∈ a at the border of E ∩ a such that π(r) = v.

Since the tree is connected, there is a unique oriented path between the preimage of
v in T and the preimage of r in T . The image of this path is a path in θ̂ (T ) that begins
and ends at the same fat vertex of T . Since the image-path is almost a closed loop, there
must be at least one “turning point” along it—let us call it t—and π(t) must certainly
be a vertex. Assume for the moment that t is not a vertex, since otherwise there is a fold
at t .

If there are no folds, the image path on θ̂ (T )must proceed from one branch at a vertex
to a consecutive branch considered in the cyclic order of the edges at the vertex. Hence,
the only possibility for a path to turn back into the same fat-vertex is to wind around
an endpoint of the tree where the only edge that reaches the endpoint in T is also its
consecutive edge.

So far we have shown that if the map is expansive and has no folds, there is an edge
with one of its associated vertices being an endpoint that has several preimages. We can
now proceed to draw θ̂ (T ) with images of simple paths of the form described above but
starting from an endpoint (i.e., the endpoint rounded in the previous step). Each path will
reveal the existence of at least another endpoint that does not belong to the path. Since
the number of endpoints is finite, this process must terminate, but the process requires
the existence of yet one more disconnected endpoint to go around. It follows that it is
impossible to have a tree θ̂ (T ) without folds for an expansive map θ̂ .

Lemma 2. θ has no folds if and only if θ acts as a permutation on the set of edges.
Furthermore, if M0 is M-irreducible, then the permutation is cyclic.

Proof. It is clear that a map that permutes edges cannot have folds since no column of
M0 can have in such case more than one nonzero entry as is required by expansivity.
On the other hand, if the map has no folds, by Lemma 1 it is not expansive; hence each
line of M0 has only one nonzero entry, which in addition is equal to one. Considering
that θ(T ) = T , we see that no column of M0 can have all entries equal to zero. Hence,
M0 has as many nonzero entries as there are edges in T , these entries are equal to one,
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and there is exactly one nonzero entry for each column, i.e., the matrix is a permutation
matrix. It is also clear that if the permutation is not cyclic, then it can be decomposed in
two (or more) cyclic permutations and hence its matrix cannot be transitive.

Lemma 3. (i) If M0
k is not transitive for some k ≥ 1, then θ̂ is reducible in the sense

of Thurston’s classification theorem or it is a collection of pure rotations. (ii) If θ̂ is
irreducible and expansive, then M0 is Perron-Frobenius.

Proof. (i) Let k be the least integer such that M0
k is not transitive.

Then there exists at least one invariant set Y ⊂ T consisting of unions of edges such
that θ k(Y ) = Y and Y �= T . We shall consider X to be the union of all such minimal
(i.e., with no proper invariant subsets) invariant sets.

Consider first the case when X �= T . Decompose X in connected components
{Xi }, i = 1, . . . , n, and it is clear that θm(Xi ) ⊆ X j for some 1 ≤ j ≤ n and that each
Xi is the image of one and only one X j . θ permutes the sets {Xi }. Then, θm(Xi )∩Xi = ∅
for m = 1, . . . , k − 1, since otherwise Mm

0 would be matrix reducible for some m < k.
In this case, the essential curves required by the reducible case of Thurston’s theorem

encompass the component(s) of X . Note that the curves are not puncture homotopic
since the component(s) of X are unions of edges and hence contain at least two vertices.
An example of this situation can be read in Figure 3.

Secondly, consider the case when X = T and decompose X in its minimal invariant
subsets under θ k : {Xi }, i = 1, . . . , n. We have that n > 1, since otherwise T is the
minimal invariant subset of θ k , which is a contradiction (recall X is the union of sets
such that θ k(Y ) = Y and Y �= T ). Moreover, θm(Xi ) ∩ Xi for m = 1, . . . , k − 1, is at
most one point, since θm(Xi ) is invariant and minimal. Hence θ cyclically permutes the
sets θm(Xi ) with m = 0, . . . , k − 1, and there are n/k such orbits of θ .

The sets Xi consist of unions of closed edges (including vertices), and hence they do
intersect since T is connected. The orbit of the intersection point has period q, where q
divides k. Moreover, q = 1, since if k > q > 1, we have that k is not minimal, and if
q = k, then T is not a tree (since in such a case there would be a loop in T ), in either
case contradicting the hypothesis.

If each Xi contains just one point of P (other than the common point), then T is an
n-star (i.e., a tree consisting of one central vertex of valence n, and n vertices of valence
1, each joined to the central vertex by a corresponding edge) and θ is a collection of
rotations of period k with a common center. Otherwise, consider the set of Jordan curves
obtained as curves that encompass each set Xi minus their intersection in a periodic
point, we are again in the reducible case of Thurston or in the presence of a k-star.

2 1 30 θ(3) θ(1) θ(0) θ(2)

Fig. 3. Reducible case. The rightmost and leftmost edges form an invariant set and M0
2 is not

transitive. Then, by Lemma 3, θ̂ is reducible, being the decomposing system of closed loops
homotopic to 0–2 and 1–3 in D − {P}.
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(ii) Since θ is irreducible by hypothesis and is not a cyclic rotation (because of
expansivity and Lemmas 1 and 2), then by part (i) M0

k is transitive for all k ≥ 1. Hence,
there exists l such that T r(M0

l) > 0 and then M0
l is Perron-Frobenius (and therefore

also M0).

When we are in the reducible case, by Lemma 3, there exists a minimal integer k
such that θ k leaves all Xi invariant; see Figure 3. Hence, we can induce two (or more)
irreducible “sub”-trees and corresponding fat representatives in the following way: (a) the
tree corresponding to the θ k-invariant subset Xi , with map π−1 ◦ θ k restricted to Xi , and
(b) the tree obtained by collapsing each Xi to a point in T (via a projection µ), with map
π−1 ◦ µ ◦ θ .

Lemma 4. There is a one-to-one relationship between the periodic points in θ̂ and the
periodic points in the fat representatives corresponding to the factor(s) of T , except for
the periodic points of π−1 ◦µ◦ θ that correspond to {µ(Xi )} which have no counterpart
in θ̂ .

Proof. No periodic orbits of θ̂ belong to both ∪i (π
−1(Xi )) and its complement in T̂ .

Hence they will belong to the fat representative of one of the factors. In addition, since
the sets Xi are also represented (by points) in µ(T̂ ), the map π−1 ◦ µ ◦ θ will have a
finite number of extra periodic points corresponding to this set of points.

We can now extend the concept of minimal periodic orbit structure to the reducible
case. We say that θ̂ has minimal periodic orbit structure if the induced fat represen-
tative maps θ̂i of each one of the irreducible factors of T have minimal periodic orbit
structure.

Theorem 1. An expansive θ̂ presents no recurrent bogus transitions if and only if it has
minimal periodic orbit structure.

Proof. If θ̂ is irreducible and has no recurrent bogus transitions, then it has no bogus
transitions, since by Lemma 3(ii) M0 is Perron-Frobenius and hence all bogus transitions
are recurrent. Hence , by [12][Th.10.1 and corollaries, p. 108], there is a one-to-one
relationship between the orbits of θ̂ , θ and a pseudo-Anosov map of D2 − P (except
for a finite set of orbits either of the same braid type as P or lying entirely on ∂D2).
Hence, θ̂ has minimal periodic orbit structure. If θ̂ is reducible and has nonrecurrent
bogus transitions, recall that by Lemma 4 there are no periodic orbits associated with
the bogus transition, since all periodic orbits belong to the irreducible factors. The fat
representative of each of the factors of T is irreducible and has no bogus transitions
(otherwise θ̂ would have recurrent bogus transitions). Hence, it has minimal periodic
orbit structure and, by Lemma 4 again, θ̂ has minimal periodic orbit structure.

We claim now that if θ̂ has a recurrent bogus transition, then it does not have minimal
periodic orbit structure since there is another map in its isotopy class having fewer
orbits of infinitely many periods. The proof of this claim completes the proof of this
theorem.
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Fig. 4. The collapse process. The shaded part of fat edges a and b disap-
pears and a new vertex is added at the end of the collapse. The correspond-
ing parts of a and b build a new fat edge ab.

To prove the claim, note the following facts:

1. We may choose θ so that it never contracts; hence θ̂ is expanding along edges.
2. The edges of T form a basis for the symbolic dynamics in T .
3. The periodic orbits of θ̂ in the interior of T̂ are in one-to-one correspondence with

the periodic orbits of θ .
4. Let a, b, bt , v, x , v′, f , k, and m be as in the definition of recurrent bogus transition.

Then, θ̂ k(x) ⊂ π−1(bt), and θ̂m(π−1(bt)) crosses π−1(a ∪ b). This fact holds for a
larger portion of T̂ than just x . In fact, the sector x can actually be extended along
a and b to π−1([α, β]) where α ∈ a, β ∈ b, and θ k(α) = θ k(β) is the endpoint
of bt different from v′. Since θm(v′) �= v, by the recurrence condition on the bogus
transition we have that θ̂ k+m applied to π−1([α, β]) is a horseshoe map.

5. This horseshoe can be eliminated by identifying in T a ∩ x and b ∩ x and all their
k− 1 forward images by θ (the k-th image was already identified by θ ). We illustrate
this process in Figure 4. Further details will be given in Section 4.

6. After identification the new map does not have the horseshoe orbits, and it still lies in
the isotopy class of the original map. Hence, the original map did not have minimal
periodic orbit structure.

The process of adding vertices in order to eliminate bogus transitions will be con-
structed and described in the following section. One consequence of it will be that instead
of the original set of punctures P , we will in the sequel consider an extended set V con-
sisting of P and the added vertices. Whenever the algorithm produces a reducible θ̂ that
decomposes T in invariant proper subsets each containing only one vertex of P and
the same positive number of vertices of V − P , we will proceed to collapse the added
sections (vertices and edges) to the associated point of P in order to free T from such
somewhat artificial constructs. In this way, we will systematically avoid the existence of
loops homotopic (in the sense of Thurston’s theorem) to the “punctures” in V − P .

4. Algorithm

The relevant task to understand the periodic orbit structure associated with a map F and
an F-invariant set P is to transform the initial tree T of P into a tree such that its fat
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representative θ̂ does not have recurrent bogus transitions. In such a case θ̂ is either finite
order or essentially the pseudo-Anosov representative φ of the isotopy class of F (apart
from trivial identifications in the reducible case).

The basic idea on how to proceed is given by Lemma 4 and Theorem 1. The goal is
to obtain a tree without recurrent bogus transitions. The guideline for the algorithm is to
detect all folds with recurrent bogus transitions and to perform continuous deformations
of the fat tree identifying portions of T̂ for each relevant fold in order to eliminate its
recurrent bogus transitions.

We first state the definitions and lemmas that contribute to the goal and then end this
section by stating the algorithm.

4.1. Construction of the Algorithm

Before we proceed with the proof of several lemmas and the proof that the algorithm
always ends in a finite number of steps, we need to define the notion of extension of the
fold, since we will have to deal with fold exhaustions.

In what follows, we will be modifying, giving increasing precision, the fat repre-
sentative θ̂ by incorporating some periodic orbits (and eventually periodic orbits for
intermediate steps) to the original set P . Let us define V as the set of all vertices of a
tree. P is then a subset of V . In the coming figures, added vertices will be drawn in white
in order to easily distinguish them from the elements of P . The notions of fat tree, fold,
bogus transition, and recurrent bogus transition translate directly from replacing P by V .

4.1.1. Interior, Extension, Collapse, and Exhaustion

Definition (Preimage of a Fold). Let θ̂ have a fold f at v′. The two (adjacent) folding
edges at the point v, the unique vertex preimage of v′, define two branches on the tree T .

Consider the sector x( f ) associated by θ̂ with the local interior of the fold discussed in
the definition of fold. Let A( f ) and B( f ) be the extreme points of the arc belonging to the
border of the fat tree at the sector x( f ), ∂ T̂ ∩ x( f ). Further, consider α( f ) = π(A( f ))
and β( f ) = π(B( f )) and the transversal arcs A( f )−α( f ) and B( f )−β( f ). We have
that θ(α( f )) = θ(β( f )).

The connected region limited by the arc in ∂ T̂ connecting A( f ) and B( f ) through
the fat-vertex v, the transversal arcs A( f ) − α( f ), B( f ) − β( f ), and the tree, T , will
be called a preimage of the fold, PF( f ).

The region PF( f ) can be extended by montonically moving the points A( f ) and
B( f ) on ∂ T̂ in opposite directions as long as the following requirements are satisfied:

1. θ(α( f )) = θ(β( f )).
2. θ̂ (∂ T̂ ∩ PF( f )) can be deformed into a portion of a segment transversal to the tree

at θ(α( f )).

Any such region will also be called a preimage of the fold. In particular, we will be
interested in the largest possible region of this kind, which we call MPF( f ), the maximal
preimage of the fold.
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Definition (Crossing a PF). We will say that the image of an edge e crosses PF( f )
whenever there are two points in e, eA and eB , defining a portion of an edge e2 = [eA, eB]
and such that θ(eA) = α( f ), θ(eB) = β( f ), and θ̂ (e2) is homotopic in T̂ − {V } to
PF ∩ ∂ T̂ , keeping θ(eA) and θ(eB) fixed in the homotopy.

Continuing with the discussion of requirement (2) above for extending the preimage
of a fold, it is worth rendering its motivation clearer. Suppose that for some integer n
and edge e, θ̂n(e) crosses PF, then θ̂n+1(e) will map across the fold region in the same
way as θ̂ (∂ T̂ ∩ PF( f )). If this image is homotopic to a transverse arc, it will disappear
via a suitable homotopy when θ̂n+1 is pulled tight; however, if there are “obstacles” in
the form of vertices (added stars or original vertices), such homotopy cannot exist.

When the map presents a single fold, the MPF is easily identified. However, when
more than one fold is present in a map, the folds may have adjacent prefold regions. By
adjacent, we mean that A( f ) = B( f ′) or A( f ′) = B( f ), i.e., we are not considering as
adjacent two regions that lie at different sides of a common edge. Under such circum-
stances it is possible to make further identifications considering simultaneously all the
folds of the map.

Definition (Extension of the Fold). For a fold, f , whose MPF( f ) is not adjacent
to any other PF, the extended preimage (or extension) of the fold, Ext( f ), coincides
with MPF( f ). In the case where two or more folds have adjacent PFs, we consider
the endpoints, say A( f ) and B( f ′) (each one belonging to different folds adjacent at
B( f ) = A( f ′)), and continue to enlarge the region encompassed by them as if the
adjacent folds were a single (composed) fold. We will assign to each of the folds in
the composed fold the extended preimage corresponding to the largest possible PF of
the composed fold. Note that composed folds may be adjacent to other folds and the
described situation might need to be considered a finite number of times until only
nonadjacent (groups of) folds are present (see Figure 5). Hence, we have that for any
fold f , MPF( f ) ⊂ Ext( f ). Notice that in the case of adjacent PFs, Ext( f ) = Ext( f ′). In
particular, note that the definition of crossing PF( f ) above can immediately be applied
to crossing Ext( f ).

As a final technical point, we will consider that a sector of a fat vertex is included in
Ext( f ) if and only if it lies in between two fat edges included in Ext( f ); i.e., a sector at
the extremes of Ext( f ) is hereafter explicitly excluded to facilitate the exposition.

Definition (Interior of the Fold). We will call interior of the fold a region Int( f )
homotopic to θ̂ (Ext( f ) − T ), where the image of ∂ T̂ ∩ Ext( f ) is deformed in T̂ − V
into a portion of a transversal segment (pulled tight). The local interior of the fold is a
subset of the interior of the fold.

Definition (Collapse of a Fold). Let θ̂ have a fold at v′. The collapse of a fold consists
in identifying points in T̂ in such a way that α and β coincide and PF has an empty
interior. We call the identified end point ∗v = α = β.

Since α and β exist arbitrarily close to v, one may regard the collapse as gradually
increasing as long as it is “convenient.” Too large a collapse may eliminate the fold at
the cost of creating a new one [12], possibly with a zero net improvement from the point
of view of reducing the topological entropy. Our goal, in fact, is not to eliminate folds
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Int(f2)
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Ext(f) Int(f)
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Ext(f3)=Ext(f1)

PF(f1)PF(f3)
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PF(f)
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θ(3)
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Fig. 5. Prefolds and extended preimage of a fold. In the upper line there is only one fold and
MPF( f ) coincides with Ext( f ). The example in the lower line presents three folds, two of which
are adjacent and present an extended preimage that is larger than the MPF of the folds involved.

but to eliminate recurrent bogus transitions without creating new ones. Hence, it may be
convenient that the actual collapse stops before the whole extended preimage of the fold
is completely collapsed (we say then that the fold has moved from v′ = θ(v) to θ(∗v)).
Rather than collapsing just a fold, our interest will be to collapse the fold along with all
its relevant preimages. The following definition will set us on the right track.

Definition (Collapse of a Bogus Transition). Let θ̂ have a fold at v′. The collapse of
a bogus transition consists of (a) the simultaneous collapse of disjoint regions (with the
exception of at most a common endpoint for adjacent regions) around all the preimage
sectors of the sector at v involved in a (recurrent) bogus transition (i.e., the set BT defined
in Section 2), and (b) the collapse of interior portions of the edges that map by θ k on the
collapsed regions.

We need to label the regions to be collapsed in T . We will call such regions PFi ( f ),
defining them as follows: PFn( f ) = PF( f ), and for n > i ≥ 1, PFi ( f ) is a preim-
age of the fold under θ̂n−i+1. PFi ( f ) − T is a simply connected region of T̂ − {V }
that has as boundaries: (i) a piece of the tree ([αi ( f ), βi ( f )] ⊂ T ) extending at both
sides of a vertex preimage by θ̂n+1−i of the vertex v′ where the fold lies, (ii) two seg-
ments perpendicular to the tree [αi ( f ), Ai ( f )] and [βi ( f ), Bi ( f )], and (iii) an arc of the
boundary of the fat tree going from Ai ( f ) to Bi ( f ) (note that π(A(i ( f ))) = αi ( f ) and
π(B(i ( f ))) = βi ( f )). Finally, θ(αi ( f )) = αi+1( f ) and θ(βi ( f )) = βi+1( f ). Notice
that by construction θ̂ ([Ai ( f ), Bi ( f )]) crosses PFi+1( f ). As in the previous defini-
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Region marked
for collapse

Silently
collapsed region

0 4 θ(0)θ(4)
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θ(4)

θ(4)
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Fig. 6. The regions of explicit collapse and silent collapse are indicated in the first line. The
collapse begins by adding a star in the region of the explicit collapse (second line); the collapse is
increased (third line) until the star reaches a pre-existing vertex, completing the third part of the
collapse (fourth line).

tion, αi and βi exist arbitrarily close to each corresponding vertex, and the collapse can
gradually be increased as long as it is convenient.

In (a), we label the regions to be collapsed in T PFi ( f ) in such a way that after the
collapse θ(∗i) = ∗(i + 1), i = 1, . . . , n − 1 and we define ∗ f to be the image by θ̂ of
∗n. The added star ∗k appears as the result of collapsing portions of the edges around vk

up to αk and βk , which are identified with ∗k at the end of the collapse, for k = 1, . . . , n.
Regarding (b), the collapse of the portions of edges will be called silent collapse.

It is introduced in order to assure that no θ̂–image of an edge will spontaneously bend
(fold) onto itself (in the language of [12], we want θ̂ to be “tight”). Since we describe
the action of θ by drawing the edges of θ̂ (T ) as short as possible, compatible with the
underlying T , the (b) collapse is automatically performed in the action of drawing θ̂ (T ),
without marking the regions with stars, hence the word “silent” is used as opposed to the
explicitly marked regions collapsed in (a). See an illustration of the concept in Figure 6.

The two moves in a collapse of a bogus transition, labeled (a) and (b), relate to the
notions of gluing and pulling tight [12], respectively. The tree, T , obtained from the
explicit part, (a), of the collapse results in a new tree with part of its branches glued
pairwise. The collapse emphasizes the operation on the fat tree, T̂ , which results in
the remotion of some orbits of the fat representative θ̂ simply by removing part of the
associated phase space at one side of the tree T .

The silent collapse of a region of phase space, move (b), produces the tightening of
the image of the tree starting from the image modified according to the move (a). Once
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again, we emphasize the effects on phase space rather than on the image of the tree. In
this case, parts of phase space centered at a preimage of f that is not a vertex of the
tree are collapsed at both sides of an edge into a transversal segment. In general, we will
need to keep track only of a finite number of these regions identified by its central point,
those that might eventually be large enough to include a vertex point in the process of
collapse of a bogus transition. The infinitely many preimages of these regions can be
collapsed without requiring special consideration.

Note that when the region of collapse is gradually increased it might eventually occur
that a silently collapsed region reaches a vertex v where an edge of θ̂ (T ) previously
associated with the bogus transition begins (or ends). Under these circumstances it
might be necessary to perform a new determination of the collapsing regions (if the
bogus transition persists) to avoid the creation of a fold at θ̂ (v). In practice, this means
incorporating new sectors to the set BT .

We can think of collapsing a bogus transition as the simultaneous collapse of folds
occurring in successively higher powers of θ̂ . If n > 1, a collapse around the ∗n-th
region is not enough since the (n − 1)-th region qualifies as PF for θ̂2. We proceed to
collapse this fold in several steps until exhausting the set BT .

The continuous increment of the PF( f ) and some of its preimages required by the
collapse of a bogus transition might encounter some problems derived from considering
folds one by one.

While the first condition to identify a PF( f ) for the map θ̂n−i+1—namely, θn−i+1(αi )

= θn−i+1(βi ), n ≥ i > 1—is satisfied as long as it is satisfied for i = 1, the second
condition requires closer examination. If a PF( f ) cannot be enlarged because it is no
longer possible to deform the arc θ̂n−i+1(∂ T̂ ∩ PF( f )) into a segment transversal to the
tree at θ(α( f )), the segment and the arc enclose a region of the fat tree where a point
of V lies, and such a situation will also happen for the images of the region. Hence, the
collapse process will be controlled by how large the first region can be while remaining
compatible with the definitions.

Our first goal is therefore to collapse the largest possible region around v1 compatible
with the definition of collapse of a bogus transition, without creating a new bogus
transition. How the collapse proceeds (start, evolution, and end) will be specified by the
following definition and lemmas. In the sequel we assume that whenever the collapsing
process stops at any step we will revise and update the collapsing regions.

Definition (Exhaustion of a Fold). A fold is exhausted by a collapsing operation when-
ever the collapsed region in θ̂ (T ) reaches the extended preimage of the fold. We also
say that the fold is partially exhausted by a collapsing operation if there is at least one
collapsed region, say j < n, such that it is the maximal j-preimage of the fold, PFj ( f ).
A partial exhaustion implies the presence of other folds, a fact that will be discussed in
Lemmas 11 and 13.

Definition (Exhaustion Flavors). We shall call normal exhaustion the case when all
the collapsed areas in T̂ end at points in T that are preexisting vertices. Abnormal
exhaustion occurs when π(∗ f ) coincides with a preexisting vertex but no end point of
the region collapsed in T̂ does. Perfect exhaustion happens when π(∗ f ) coincides with
an added star in T .

Note that we can regard abnormal exhaustion as a special case of partial exhaustion.
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We shall now discuss the details of the collapse of a fold in several lemmas. We begin
by establishing a necessary condition to eliminate a bogus transition.

Lemma 5. A necessary condition for a collapse to eliminate a bogus transition is that
at the end of the procedure π(∗ f ) coincides with some vertex of (the modified) T .

Proof. Using Theorem 1 and the concept of preimage of a fold, we can regard the
addition of valence-3 stars at ∗i as the addition of valence-2 stars at the ends αi and βi

(i = 1, . . . , n) of the collapsible segments ai and bi followed by the identification of
these regions up to ∗i .

Increasing the collapsible region continuously, the arc of T̂ that goes through π−1(vn)

to produce the bogus transition will still pass through the fat vertex unless one of its
endpoints maps in π−1(vn). In such a case, ∗n coincides either with the image of a
preexisting vertex or with one of the added stars, or with ∗ f , and in all cases ∗ f does
not lies halfway between vertices but coincides with one vertex.

Assume then that π(∗ f ) does not coincide with a vertex, but rather lies halfway
between θ̂ (vn) and some contiguous vertex. The fold at π(∗ f ) is limited by (reduced)
portions of the same edges that limited the fold at F(vn) before the collapse.

Since θ(∗n) is not a vertex point, the points in a neighborhood of ∗n map into the
same segment, in such a way that the fold condition is satisfied. In such a situation there
is still a bogus transition at ∗ f since θ maps edges into one or several complete edges.
The θ̂ -image of an edge passing through ab has a (respectively b) as its intersection with
a (b), as required in the definition of bogus transition.

The converse of Lemma 5 does not hold.

4.1.2. The Collapsing Process: Complexity and Steps

Preliminary Considerations. Consider a bogus transition. Then, there is at least a
portion of an edge e of T that is involved in the bogus transition with the fold f . It is
clear that θ̂ (e) crosses PFj ( f ) for some 1 ≤ j ≤ n. There is a region of silent collapse
in e whose center is r(e).

In the process of increasing PF1, and consequently all the PFi s, there are only two
situations where one may consider arresting the process and stopping the collapse:

(i) If the collapse were incremented, θ̂ (e) would no longer cross the region PFj ( f ).
(ii) The regions PFi cannot be further increased since either they would overlap or at

least one of them would be maximal.

If none of these requirements is met, we can continue with the collapse.
In both cases, one region of silent collapse has reached a vertex (preexisting or added)

and consequently its forward images have reached a vertex too.
The case (i) does not represent an obstacle to the collapse; actually, it is the kind of

situation that we want to achieve and will later be called a step. In particular, there is no
need to increase the collapse if there is no longer a bogus transition.
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The case (ii) corresponds to fold exhaustion or partial exhaustion, and at least PFn( f )
has reached the end of an edge, hence ∗n corresponds to a preexisting vertex; or, if the
interaction corresponds to different regions in {PFj ( f )} becoming adjacent, there are
two added stars in coincidence.

We shall then consider the situations that can be reached in the process of collapsing
a bogus transition without creating new bogus transitions.

Lemma 6. The collapse of a bogus transition can be increased without creating new
folds until one of the following situations arise:

1. Two adjacent collapsing regions have one endpoint in common.
2. All added stars are in coincidence with preexisting vertices and the bogus transition

no longer exists.
3. All added stars are in coincidence with preexisting vertices and the number of explic-

itly collapsed regions needs to be increased to continue the collapse.
4. The fold is partially exhausted.
5. The fold is exhausted.

Proof. Note that a fold occurs only when local portions of two contiguous edges at a
vertex are identified by θ while their preimages are not. In turn, this can happen only to
silently collapsed (portions of) edges, since the sectors associated with the set BT are
preimages of each other (with the possible exception of the highest preimage, which has
either no sector as a preimage or no edge maps under any number of iterations into its
preimage. In this later case, a fold is introduced at the beginning of the collapse but no
bogus transition is created.

Hence, along the process described, no bogus transition is created.
The only situation in which a fold with an associated bogus transition could be created

is if the collapse is continued beyond the point where a silently collapsed region reaches
a vertex, since in such a case an arc of θ̂ (T ) that was not previously mapping into a
collapsed region might begin to partially map into one of them.

The vertex reached can be (A) a preexisting vertex v, or (B) an added star (say ∗i).
In case (A), when two regions of collapse PFi+1( f ) and PFk( f ) become adjacent, we

have that θ(∗i) = ∗k and new regions of collapse are delimited in the form prescribed
to determine the extended preimage of the fold. The fold remains at θ̂ (∗n) and we are
in case (1).

In case (B), consider the image of the silently collapsed region under consideration to
be ∗k, there are two subcases: first, we consider the situation when k > 1; and second,
the case when k = 1.

In the first subcase, it is not possible to extend the regions i for i = 1, . . . , k − 1
since ∗k �= θ̂ (v) and ∗k ∈ π−1(θ̂(v)). Hence, in the terms stated in the discussion of the
collapse of a bogus transition, the fold of θ̂n−k+1 at ∗k has an empty interior, and we are
in the presence of a partial exhaustion, case (4).

In the second subcase, k = 1, it is clear that all the explicitly collapsed regions have
reached a vertex since k = 1. There are then just two possibilities: either the bogus
transition no longer exists and hence case (2) holds, or at least a region around the
vertex reached by the silent collapse has to be added to the preexisting regions of explicit
collapse (3) since more collapse at ∗1 is needed.
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If none of the situations described by (1)–(4) is reached, the collapse can be continued
up to the exhaustion of the fold if needed. Hence, case (5) is achieved.

Definition (Parts of the Collapse). The collapsing process can be regarded as consist-
ing of three parts, which we will call beginning, middle, and end. The first one corresponds
to the introduction of a finite set of added stars (valence three vertices) indicating the
identification of certain adjacent edges as described above. The middle part corresponds
to the gradual increase of the regions PFj ( f ) by letting the added stars move along the
edges where they lie, i.e., gradually increasing the portions of adjacent edges that are
identified, as long as the conditions for continuing the process are still valid (see Figure
6). The end of the collapse corresponds to one of the situations discussed in Lemma 6
above.

At the beginning of the collapse, when the added stars are introduced, sectors associ-
ated with the added star ∗ j map into sectors of ∗( j + 1) for 1 ≤ j < n while ∗n maps
into the fold. The chain of sectors (organized by θ̂ ) belonging to BT ( f ) is separated
and isolated from any other sectors associated with the same vertex. The mapping of
sectors by θ̂ might have changed at this point and the same could happen at the end of
the collapse. The mapping of sectors is not modified in the middle part of the collapse,
since the gradual displacement of added stars along edges can be restored by suitable
homotopies.

The form in which the mapping of the preexisting sectors is altered at the beginning
of the collapse is simple: Assume that x(v) is a sector to be collapsed in the step under
consideration and that z(u) is mapped by θ̂ as θ̂ (z(u)) = x(v)∪ · · · y(v). As soon as the
collapse begins, the map is changed into θ̂ (z(u)) = · · · y(v).

Regarding the end of the collapse, assume that the collapse proceeds along the edge
e. x(v), y(v) are the two sectors separated by e at v. Let us call x(v) the sector that is
reached by the collapsed region at ∗1, y(v) the sector that lies at the other side of the
collapsed region associated with e, and z(v) the new sector that is incorporated with ∗1.
Then, either z(v) has the same preimage as x(v) or the same preimage as y(v).

When x(v) and z(v) share the same preimage, the orbit passing through y(v) is
not changed, while any orbit going through x(v) will be changed at points ∗ j by the
inclusion of the sector z(∗ j) until the old mapping is recovered at the n + 1 image.
Any consideration of finiteness of the orbit of an element of CR will be the same as
that before the collapse, except perhaps that the fold f may no longer have a bogus
transition.

If y(v) and z(v) share the same preimage instead, the orbit of x(v) becomes finite as
well as any orbit of an element of CR that had x(v) as an element; however this only
would imply that the fold f moved by the collapse still has a bogus transition. As for the
orbit that now includes the union of sectors y(v)∪ z(v), it will map after n iterations into
the union of elements previously in the orbit of x(v) and y(v) and will be finite if and
only if both the orbit of x(v) and y(v) were finite previously; no new bogus transitions
can occur, but some bogus transitions may have disappeared.

Lemma 7 (Collapsing lemma). In the collapsing process described in Lemma 6, no
bogus transitions are created.
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Proof. No new folds are created during any step in the collapsing process as shown in
Lemma 6, although the fold under consideration might very well persist.

Since the presence of new bogus transitions or the disappearance of previously existing
bogus transitions is associated directly with the mapping of sectors by θ̂ , such events
can happen only at the beginning or end of the collapse but not during the middle
part.

Beginning. The set CR is changed at the beginning of the collapse. If a sector x(v)
that is being collapsed is an element of CR, this property will be inherited by a sector
at the corresponding added star. If x(v) belongs to a union of consecutive sectors in
CR, then after the collapse begins the element x(v) is simply deleted from the union
while its complement in the union of consecutive sectors continues to be an element
of CR.

Hence, the orbit of any element of CR will be finite immediately after the changes
operated at the beginning of the collapse if and only if it was finite before the collapse.
Consequently, the folds with bogus transitions do not change at the beginning of the
collapse except for the bogus transition at f that is inherited by ∗ f .

Middle. There are no changes in the mapping of sectors in the middle part of the collapse,
and consequently no bogus transition can be destroyed or created in this part.

End. The five different situations considered in Lemma 6 can be grouped for the present
analysis in three groups: (A) Case (1) whether it happens in coincidence with cases (4)
or (5) or not; (B) Cases (2) and (3) when added stars are in coincidence with preexisting
vertices; and (C) Cases (4) and (5) when they do not happen in coincidence with other
cases.

The situation (C) is the simplest since it implies no modification of the set CR except
for those elements consisting of added stars, some (or all) of which must be removed
from CR. Hence no bogus transition can be created at this point.

The situation (A) implies changes in the mapping of the sectors associated with the
added stars where the only fold present is ∗ f ; hence at most the bogus transition persists,
but no new bogus transitions can be created.

Finally, in the case (B) some sectors are added at preexisting vertices as a result of
the collision of an added star and a vertex. These sectors map according to the mapping
inherited from the added stars; hence the only effective change will occur in the mapping
of sectors whose image lies in the vertex, v, that collides with ∗1.

In any case the inclusion of the sector z(v) described above and the associated change
of the mapping of sectors do not introduce new bogus transitions.

Hence, no new bogus transition is created at any part of the collapse, be it beginning,
middle, or end.

Since we assume that after each stop dictated by Lemma 6 the collapsing regions
are updated (to incorporate new vertices, if needed, when a silent collapse reaches a
vertex), no bogus transition is created when further continuing the collapse beyond each
stop.
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In other words, after stopping a collapse according to Lemma 6 and eventual update of
the collapsing regions (be they explicit or silent), the process can continue (if necessary)
without creating new bogus transitions.

Complexity of a Fold. Given a fold f at v presenting a bogus transition, there exist at
least an edge e and a vertex vq with the following properties:

1. θ̂q(vq) = v for some q ≥ 1.
2. θ̂ (e) crosses a sector x , at vq .
3. θ̂q(x) maps into the interior of the fold.
4. There is arc3 rq+1 ∈ Int(e) such that θ(rq+1) = vq . We write e(rq+1) to identify

the edge e. Every arc rq+1 associated with the fold in this form denotes an interior
portion of a silently collapsing region that we will call primarily involved in the bogus
transition.

5. θ̂q(e) ∩ Ext( f ) �= ∅ (Ext( f ) denotes the extension of the fold).

The last point is a consequence of the previous ones, but we leave it explicitly for the
sake of clarity.

For every fold f we will collect all such arcs rq+1 for any value of q in a set SO( f ).
The edges e(rq+1) thus identified are those crossing the interior of the sectors in the set
BT ( f ). The cardinality of SO( f ) is the number of silently collapsing regions primarily
involved with the fold f to produce a bogus transition. Every edge whose interior maps
into the fold by θ̂ k for some k has at least one of the elements e(r), r ∈ SO( f ), in its
orbit. If SO( f ) is empty, then f has no bogus transitions.

Unfortunately, we cannot rule out the need to increase the number of explicitly col-
lapsed regions in the process of removing a bogus transition described in Lemma 6
because of case (3). We will then seek an upper bound to the number of regions that
could eventually be necessary to consider explicitly by enlarging the set SO( f ). Let
Ext( f ) denote the extended preimage of the fold as previously defined. Consider the arc
rq+1 indicating a silent collapse and the corresponding image θ̂q(rq+1) ⊂ θ̂q(e(rq+1)).
Extending the arc rq+1 along its parent edge e, its image by θ̂q will stretch along some
portion of Ext( f ). One of the following situations can occur:

(a) θ̂q(e) crosses Ext( f ), i.e., some connected portion of e containing the arc rq+1 has
an image that crosses the whole of Ext( f ).

(b) θ̂q(e) does not cross Ext( f ), and there is at least an arc s of e (necessarily disjoint
with rq+1) such that θ̂q(s) crosses one or more sectors or fat edges that are not in
Ext( f ). In this case θ̂q(e) crosses some connected portion of Ext( f ) and also crosses
other regions of the tree not related to Ext( f ).

(c) θ̂q(e) does not cross Ext( f ) and there is at least an arc s ′ of e such that s ′ contains
rq+1 and a vertex of e and θ̂q(s ′) crosses only fat edges and sectors in Ext( f ). In this
case the silent collapse marked by the arc rq+1 could eventually be extended all the

3 Note that the labeling of the arcs follows the opposite convention to that of added stars: While it was natural
to define ∗1 as the highest preimage of the fold and to study its forward images all the way until ∗n = ∗ f , it
is natural in the present context to label the set of arcs with the θ̂ -preimages of v. Hence, a lower value of the
index requires fewer iterations to map into the interior of the fold than a higher one.
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way up to one vertex of e in such a way that the image of the edge portion crosses a
connected portion of Ext( f ).

The above facts are a consequence of the definitions. Since an arc along an edge has two
endpoints, it might happen that situations (b) and (c) occur for one and the same edge,
if e.g. one endpoint of the edge has image within Ext( f ), while the image of the other
endpoint lies outside Ext( f ).

In case (a) there is no need to enlarge the set SO( f ). In fact, if θ̂q(e(rq)) crosses
Ext( f ) for every rq ∈ SO( f ) where Ext( f ) is the extended preimage of the fold, the
set SO( f ) needs no enlargement. If (a) does not occur, either (b) or (c) occurs at each
endpoint of the edge e. In case (b) the silent collapse will never reach a vertex since it
terminates away from the vertices of e. Hence, the only situation in which it might be
necessary to enlarge SO( f ) is when the arc rq+1 can be extended up to one vertex of e
according to case (c) above.

Letw now be the endpoint of e considered in case (c) and x(w) a sector atw such that
there exist k > q , an edge a, and an arc rk+1 ∈ Int(a) with the following two properties:

(ca) θ̂ k−q+1(rk+1) crosses the sector x(w), and
(cb) θ̂ k+1(rk+1) crosses a sector at Ext( f ).

(Notice that sectors in Ext( f ) can be crossed only in the form edge-sector-edge.)
In such a case, we enlarge SO( f ) by adding to it all the elements rk+1 associated

with the vertex w of e(rq+1). We produce in this way a new set XSO( f ). This process of
enlargement is recursively repeated for all the elements incorporated to XSO( f ) until the
required conditions are no longer satisfied. We shall see below that this process is finite.

We shall now introduce the notion of complexity of a fold.

Definition (Complexity). The cardinality of XSO( f ) is the complexity of the fold.
It can immediately be realized that a fold without bogus transitions has zero com-

plexity since in that case XSO( f ) is empty.

Lemma 8. The complexity of the fold is finite.

Proof. The number of arcs in SO( f ) is clearly finite. By construction, every edge in
T whose image crosses the local interior of the fold in k + 1 (recall the definition of
SO) or fewer iterations is an element of SO( f ) and then of XSO. Additionally, any silent
collapse of the map is the preimage of one of the silent collapses identified by their
centers with the arcs in SO( f ).

Next, we observe that π(θ̂ k−q(a)) ∩ e ∈ {e,∅} for any k > q since θ maps edges
into unions of complete edges, it is one-to-one on the vertex set, and θ̂ is “tight” (see
above). Hence if there is a sequence of arcs such that rq+1 ∈ e is a forward image of
rk+1 ∈ a, then π(θ̂ k(a)) � π(θ̂q(e)) and the sequence of sets θ̂ (θ̂ k−1(e(rk+1)))∩Ext( f )
is nondecreasing (with k) for any sequence {rk}.

Every enlargement of the set XSO( f ) involves a finite increment of extension of
θ̂ (θ̂ k−1(e(rk+1)))∩Ext( f ), which is performed by including in XSO( f ) a finite number
of terms of the corresponding sequence. That the number of terms is finite is clear from
the fact that the number of edges in the tree is finite, and for each edge a requiring an
enlargement according to condition (ca), there is a sector y such that θ̂ (a) crosses y and
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θ̂ l(a), l = 1, . . . , L , crosses the sectors where the image of θ̂ l−1(y) lies, until the image
of the sector reaches for the first time x(w) for l = L . Since the number of sectors is
finite, the number of iterations involved is also finite.

The recursive enlargement of the set XSO( f ) will reach an end after a finite number
of recursive steps, since at every required enlargement the image of the collapsed region
crosses at least one fat edge more of Ext( f ) than at the previous step, and the number of
fat edges involved in Ext( f ) is necessarily finite.

Collapsing steps. Lemmas 5 and 6 show that we have to pay attention only to the
situations in which π(∗ f ) coincides with an added star or a preexistent vertex after
starting a collapse.

Let us consider the first possibility to begin with. We will say that two colliding
regions are at the same side of an edge whenever they have a (transversal) common
border; while when they have only one point in common (necessarily on the edge) we
will refer to them as being at opposite sides of the edge.

Lemma 9. When in the process described by Lemma 6 the fold persists and two or
more collapsible regions on T are adjacent and have one common endpoint (case (1) of
Lemma 6), then there is a q-periodic orbit (n > q > 0) of stars, and

i. If the colliding regions, say k and (k + q) are at the same side of the edge, then the
orbit persists under further collapse,

ii. If the colliding regions are at the same side of the edge and there are eventually
periodic stars, the fold has a bogus transition.

iii. If the colliding regions are at opposite sides of an edge and the periodic orbit persists,
the region 1 no longer has an associated bogus transition; otherwise all regions can
be further collapsed, splitting the periodic orbit.

Proof. Let n be the number of added stars, n ≥ 2 since otherwise the conditions of
case (1) of Lemma 6 are impossible to meet. As stated before, we consider the labeling
of stars given by θ(∗i) = ∗(i + 1), i = 1, . . . , n − 1 and θ̂ (∗n) = ∗ f . Since after the
collapse there exists i and k < i such that∗k = ∗i , it follows that∗n = ∗(k+n−i); hence
θ(∗n) = ∗(n−i+k+1). We define m ≡ n−i+k+1. Let q = n−m+1 = i−k > 0. The
added valence-3 stars {∗s} for s = m, . . . , n form an orbit of period q of θ . Moreover,
since ∗n = ∗(m − 1), we can assume that the periodic orbit extends from ∗(m − 1) to
∗(n − 1) (or identically from ∗k to ∗(i − 1)) and that there remain at most n − 1 stars
at the end of the process, so q < n and m ≥ 2. This proves the first statement.

Note that at this point the fold has moved from the original vertex θ̂ (v) to θ̂ (∗n) = ∗m.
Let ∗k be the colliding star with lowest index. Then m > k, and if k > 1, there are

eventually periodic added stars left.
Statement (i) is proved observing that the regions ∗k and ∗ j (and their images) have

become adjacent. Further collapsing, if needed, will identify points at the same side of the
edge that are separated by the collapsing regions; hence a valence-3 (or higher valence)
star (and its periodic orbit) will remain identified even if further collapse is needed.

Regarding statement (ii), let ∗ j be the highest eventually periodic preimage of the
fold at θ̂ (∗n). Then, no endpoint of an edge maps into ∗ j . Since θ maps edges into one or
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Fig. 7. Collapsing regions at opposite places at a vertex. First line, left: the extended preimage
of the fold, and preimages PF2 and PF1 of the fold to be collapsed. Right: the image of the tree
(solid line) and the image of θ̂ 2(c) (dotted line). Second line: After the first collapse, the bogus
transition persists, but the collapse proceeds only at the first preimage of the fold. Third line: the
fold persists, but there is no longer a bogus transition. (See paragraph Third example for details.)

several complete edges, the portions of θ̂ k(T ) (for adequate k ≥ 1) that mapped into the
j-region when the step of the collapse started will still pass around ∗ j when the collapse
ends. Hence, they will be mapped (stretched and bended) inside the fold and the bogus
transition will still be present.

We turn to case (iii), in which the colliding regions are at opposite sides of an edge;
see Figure 7. Consider the region k in its collision with region (k + q). As the colliding
regions are at opposite sides of an edge, the continuation of such regions are opposed
by the vertex of the valence-4 star formed in the collapse. Hence, if further collapse is
needed in the lowest k colliding region, all higher regions will have to undergo further
collapse and the periodic orbit will split into valence-3 vertices, preserving the former
mapping. Thus, if the region 1 still has an associated bogus transition, further collapse
will be required in all vertices, including those involved in collisions, and the periodic
orbit will split. Otherwise, if the region 1 is no longer associated with a bogus transition,
then we have reached a case of exhaustion.

We are now in a position to give a proper definition of the notion of step (which we
have been using intuitively up to now) in the elimination of a bogus transition.

Definition (Step). Since the enlargement of the collapsing regions proceeds continu-
ously until the bogus transition is eliminated or until there is a need to reconsider the
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collapsing regions, we say that a step has been made in the elimination of a bogus
transition when either of these two situations occur.

Lemma 10. The steps in the elimination of a bogus transition correspond to one of the
following situations:

1. Two adjacent collapsing regions at the same side of an edge collide.
2. All added stars are in coincidence with preexisting vertices and the bogus transition

no longer exists.
3. All added stars are in coincidence with preexisting vertices and the number of explic-

itly collapsed regions needs to be increased to continue the collapse.
4. The fold is partially exhausted.
5. The fold is exhausted.

Proof. The result is the direct consequence of Lemmas 6 and 9. Statement (iii) of
Lemma 9 shows that the collision of collapsing regions at opposite sides of an edge either
does not require a reconsideration of the collapsing regions or happens in coincidence
with a (total or partial) exhaustion.

Concerning examples for the different cases mentioned in the Lemma, case (1) is
described in Figure 10, case (2) in the example of Figure 6 while case (4) and (5) are
shown in Figure 8 (for case (4) see also Figure 9 below). Unfortunately, we could not
find an example for case (3) despite the fact that we cannot rule out its occurrence.

4.1.3. The End of the Tale: Finiteness of the Procedure. We shall now turn our
attention to the question of exhaustion in Lemma 6, namely when we can collapse
completely (all or some) marked regions of T̂ . The exhaustion of a fold by a collapsing
operation can be produced in three slightly different ways according to the branching
point reached by π(∗ f ) at exhaustion (added star or preexisting vertex) and whether the
collapsed regions end at a star in T that coincides with a preexisting vertex.

We will start by considering “complete” exhaustion in the following lemmas, handling
partial exhaustion afterwards.

Lemma 11. After a normal exhaustion, there remain no eventually periodic stars.

Proof. The result is evident by the definition of normal exhaustion.

Lemma 12. After a perfect exhaustion, a periodic orbit of θ is evinced by vertices and
no eventually periodic stars remain.

Proof. Consider the stars ∗i with i = 1 . . . n signaling on T the end of the collapsed
regions. Since the end of the fold corresponds to a point where π(∗ f ) = π(θ̂(∗n)) =
θ(∗n) is in coincidence with one of the added stars, say ∗ j , then there is a periodic orbit
of θ with points ∗k, k = j . . . n.

We shall now show that j = 1, i.e., that there remain no eventually periodic stars.
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Fig. 8. Cases (4) and (5) of Lemma 10. First line: the tree and region to be
collapsed. Second line: the image by θ̂ of the tree and the fold. Third line: the
new tree after the collapse and the region to be collapsed. Fourth line: the image
of the tree. The occurrence of case (4) of Lemma 10 is indicated. Different
colors correspond to different periodic orbits. Lines five and six correspond to
case (5) of Lemma 10. After the first collapse, the tree presents no folds (fold
exhaustion).

Assume that j �= 1, θ(∗( j − 1)) = ∗ j = θ(∗n). We first notice that ∗i cannot
be in coincidence with a preexisting vertex for any i , since otherwise π(∗ f ) would
be in coincidence with a preexisting vertex, contradicting the hypothesis of perfect
exhaustion.

Secondly, the exhaustion of a fold while two (or more) collapsed regions become
adjacent is not possible. In such a case, the region ( j−1) becomes adjacent to the region
n, and after the collapse the valence of ∗ j is strictly smaller than the valence of ∗n, and
the fold persists.

Thirdly, by construction, θ and then θ̂ are one-to-one locally around ∗( j − 1). Since
no collapsed regions are adjacent, the valence of ∗( j − 1) and ∗ j is 3 and the edges
emerging from ∗( j−1)map approximately by θ̂ (exactly by θ ) onto the edges emerging
from ∗ j . The edges arising from ∗ j divide the corresponding fat vertex of T̂ in three
sectors.

Then, since θ̂ (T )maps the local part of T around ∗n into the fat vertex at ∗ j , it must
map this local part into one and only one sector of the fat vertex ∗ j (otherwise θ̂ would
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not be one-to-one). Hence, the edges emerging from ∗n that are not in the collapsed
region map into the same edge and the fold persists.

In any case, we arrive at a contradiction arising from the assumption j �= 1.

Chains of Folds. We are now left with the problem of understanding abnormal and
partial exhaustion. Both of them leave eventually periodic stars behind. In order to make
the exposition clearer, we will discuss first a simple result.

Let v be a vertex belonging to a period-p orbit. θ p locally maps the vertex v onto
itself, as well as the edge-germs emerging from it, thus determining a map for the sectors
at v. We will simply let θ p act on the sectors at v since this has an obvious meaning. We
claim the following:

Proposition 1. If θ p maps a sector, say z, into two or more (adjacent) sectors x, y,
then θ p has a fold at v and x, y or x ∪ y are preimages of that fold of some order not
necessarily 1.

Proof. The map θ p considered in a neighborhood of v and applied to the sectors at v
can be presented as a matrix, Z , of order m ×m, where m is the number of sectors at v,
with Zi j = 0 if the sector xj does not map on the sector xi and Zi j = 1 when xj maps
on xi .

The following properties of Z are immediately realized:

1. Every row in Z has at least one nonzero entry (every sector has a preimage under θ̂ p).
2. There is only one nonzero entry for each row (a sector cannot be the image of two

different sectors).
3. The vector (1, . . . , 1)† is an eigenvector of Z with eigenvalue 1 (this is an interesting

fact, but it is not explicitly used in the sequel).
4.

∑
i, j Zi j = m, the number of sectors at v.

5. Columns of Z corresponding to a preimage of a fold are identically zero.

According to (2) and (4), if one column has more than one nonzero entry, then there
has to exist another column that is identically zero. Hence, by (5), for every sector that
maps onto n > 1 sectors there exists at least one fold. In other words, the condition that
z maps onto x ∪ y ∪ . . . implies the existence of at least a fold at v, thus proving our first
claim.

We can reorder the labeling of sectors so that sectors mapping into folds and their
preimages (mapping into folds under higher iterations of θ p) have the largest index.
Then, the matrix Z can be block-diagonalized as

Z =
[

A 0
B N

]
. (1)

The sectors eventually mapping into folds correspond to rows and columns in N , while
the rows and columns in A are associated with sectors having at least part of their image
onto sectors outside N . The fact that the sectors in A never map (entirely) into folds
is made evident by the zero upper-right block of Z : sectors in A are not preimages of
sectors in N .



214 H. G. Solari and M. A. Natiello

Fat vertex

v

*v

θ

x

w
y

ε

v’

....

....

Fig. 9. An abnormal exhaustion.

It is easy to realize that A is a permutation matrix since each sector in A has to have
as preimage another sector in A, and thus every column in A has only one nonzero entry.

To finish the proof, we notice that x, y are not associated with A, since in such a case
A would have two equal rows and hence a zero eigenvalue, thus contradicting the fact
that A is a permutation matrix. Hence at least one of x , y has entries in N and eventually
maps into a fold.

We note in passing that N is nilpotent, although this fact is not explicitly needed. The
following lemma will help us to understand the situations in which eventually periodic
orbits are left after a collapse.

Lemma 13.

(a) The remaining eventually periodic stars occurring in an abnormal or a partial
exhaustion are associated another fold.

(b) The fold associated with the eventually periodic stars had bogus transitions before
the collapse originating the eventually periodic stars was initiated.

Proof. We consider first an abnormal exhaustion. Note that since the collapse is per-
formed at the fold and its preimages in such a way that the forward image by θ̂ of a
collapsed region is also a collapsed region all the way up to the fold, the phenomenon
of abnormal exhaustion can be considered to happen at the fold.

Let v′ be the fold point. We start the collapse by identifying corresponding portions of
contiguous edges at v = θ̂−1(v′) in T until the images by θ of the regions beyond α and β
cannot be identified. We call ∗v the end of the identified region andw = θ(∗v) = π(∗ f ).
The edge joining w and v′ will be denoted by ε. By hypothesis, the collapse around the
fold stopped before ∗ f reaches w because there are no larger identifiable regions near
the preimages of v′. In other words, we have ∗ f = θ̂ (∗v) �= θ(∗v) = w; see Figure 9.

First we note that there is no local edge in θ̂ (T ) along ε connecting to w, since that
part of θ̂ (T ) would intersect an edge in a point that is not a vertex.

Call x and y the two sectors in T̂ near w having ε locally as one border. We are then
under the hypothesis of Proposition 1, which proves the existence of a fold associated
with at least one of x , y. Let us say that x (y) maps into a fold to fix ideas.
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To prove the second claim, we simply observe that the edges of T emerging from w

map precisely across the sectors x and y under the hypothesis of the theorem. Hence
there is a bogus transition associated with x (y).

Final considerations. So far we have considered partial results concerning the collapse
of one fold with bogus transitions on an individual basis. We will now collect the results
to show that the algorithm ends.

Lemma 14.

A. A fold f no longer has an associated bogus transition if and only if its complexity is
zero.

B. A step in the collapsing process reduces the complexity of the fold by an integer value.

Proof. The proof of (A) is immediate by the definition of complexity: SO( f ) is empty
if and only if BT ( f ) is empty and XSO( f ) is empty if and only if SO( f ) is empty.

Regarding statement (B), this fact is assured by Lemma 10. In the case of exhaustion
of the fold (case (5) of Lemma 10), the remaining complexity is zero and the same
happens in case (2) of Lemma 10 since there is no longer a bogus transition associated
with the fold.

In case (3) of Lemma 10 a silent collapse becomes explicit. Let r be the center of
this collapsed region, e(r) the edge where r lies, and q such that θq+1(r) = v, where
the fold lies. We notice that r ∈ XSO( f ) before the collapse, since it is a member of a
sequence of preimages of the fold and moreover θ̂q(e(r)) does not cross Ext( f ). After
the collapse, the collapsed region is identified by an endpoint that in case (3) of Lemma
10 needs to be marked for further collapse. Hence, the point representative of r is no
longer in XSO( f ), and the cardinality of XSO( f ) has been reduced by at least one.

Concerning case (4) of Lemma 10, the edge e in the set BT associated with silent
collapses around ∗1 no longer maps into the fold and the complexity decreases by at
least one.

Regarding the collision of collapsed regions at the same side of an edge (case (1)
of Lemma 10), it is clear that any segment mapping in the collapsing region 1 will
map along the complete segments limiting the region. Hence it will map after a suitable
number of iterations into two colliding regions. Before the collision the segment had at
least two different silently collapsing regions. After the collision the number of silently
collapsing regions on this segment has decreased by at least one and the complexity has
been reduced by at least one.

Hence, statement (B) holds for all the cases of Lemma 10.

We now turn our attention to the elimination of eventually periodic vertices of valence
3 that might have been left in the process of eliminating the bogus transitions.

Lemma 15. If after a number of collapsing steps a tree has eventually periodic stars,
then there is still a fold with bogus transition and consequently positive complexity.
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Proof. Eventually periodic stars might be left in cases (1), (4), and (5) of Lemma 10.
Regarding case (1), Lemma 12 ensures that if eventually periodic points are left, then the
fold persists, and the application of Lemma 9 implies that the bogus transition persists.

If the eventually periodic stars arose in an abnormal or partial exhaustion (cases (4)
and (5) of Lemma 10), then by Lemma 13 they are associated with a fold whose bogus
transition is under consideration or has not been collapsed yet. We then consider this
fold for collapse.

If there remain eventually periodic stars, we are again in the previous situation, but
by Lemma 14 the complexity of the fold has decreased; however, this can happen only
a finite number of times.

Theorem 2.

A. The elimination of a bogus transition does not introduce any additional folds/bogus
transitions.

B. A (recurrent) bogus transition can always be eliminated in a finite number of col-
lapsing steps.

C. The collapsing process ends in a finite number of collapsing steps.
D. The final tree has only periodic vertices

Proof. Statement (A) follows from Lemmas 6 and 7. Statement (B) is a corollary of
Lemmas 8 and 14 since the complexity of a fold is a finite integer and the collapse
reduces the complexity in integer steps; hence the complexity can be reduced to zero
in a finite number of steps. Statement (C) follows immediately since there exist only
a finite number of folds with (recurrent) bogus transitions. Statement (D) is the direct
consequence of Lemma 15.

5. Algorithm and Examples of Use

In this section we will present a few examples in exhaustive form. We start by stating
the algorithm that summarizes the previous results.

Algorithm.

1. Identify all folds in the map.
2. Detect folds with recurrent bogus transitions. If there are no recurrent bogus transi-

tions, end.
3. Select the fold with eventually periodic stars associated (if there is any) or a fold with

(recurrent) bogus transitions, otherwise (i.e., a fold with nonzero complexity). If no
fold can be selected, end; otherwise collapse the bogus transition or fold:
(a) Mark regions to be collapsed adding valence-3 stars at points of BT .
(b) Perform one collapsing step (Lemma 10).
(c) Eliminate cycles among edges with at least one star as endpoint, collapsing the

edges to a point.
(d) Go to (3).
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Fig. 10. A period-7 horseshoe orbit. Extension of the folds are marked with colored boxes.

Item 3(c) follows from the fact that the Markov matrix associated with the tree before
operating the elimination has a zero extra-diagonal block (the edges build a subcycle),
and hence the eigenvalues of the Markov matrix equal the eigenvalues of the two diagonal
blocks. After elimination of the block in 3(c), we obtain a simpler tree containing the
original points in P with smaller Markov matrix and the same entropy bounds. This
steps restores irreducibility of the tree, whenever relevant.

Note that by Lemma 7 once the complexity of a fold is zero, it never increases
(recurrent bogus transitions cannot be created by collapsing). However, after having
collapsing one fold, the (nonzero) complexity of not-yet-collapsed folds may be altered
in any direction. In any case, when the collapsing turn arrives to any such fold, its
complexity at the end of its cycle will finally be zero.

First example. In Figure 10 we display a chaotic period-7 orbit. Each row of the figure
displays T along with θ̂ (T ). The different rows are produced after successive applications
of steps of the algorithm. Added stars are white.

Labeling the vertices vi , i = 0 . . . 6 from left to right, we see from row 1 that there is
one fold (hence necessarily at an end point, v6 = θ̂ (v3)). The dotted regions above (U )
and below (D) points of T denote the regions that map on the fold by the iterates of θ̂ ,
the sequence defining P I is then

2U → 5U → 1D→ 4D→ 3U → ∗ f = v6.

We have that CR={2U, 3D, 4U, 5U}, and since 2U is in CR, we have that P I =
BT . The set P I contains all elements of the above sequence up to (and except) the
fold v6.
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Let us label the edges of the tree with a, b, c, d, e, g from left to right. The extended
preimage of the fold consists of all sectors and upper portions of the fat edges (as
delimited by the tree) between v0 and a point lying on e.

To compute the set SO( f ) two arcs are interesting in the first place since BT has
two elements: (i) There is an interior arc r of d mapping by θ on 5U and reaching the
fold after four extra iterations. Hence, r belongs to SO( f ) and no enlargement is needed
since θ̂4(d) crosses the extended preimage of the fold. (ii) An interior point s of e maps
on 2U ; hence s belongs to SO( f ) and no enlargement is needed since θ̂5(e) also crosses
the extended preimage of the fold. Hence, the complexity of the fold is 2.

Pieces of θ̂ (T ) passing above or below the dotted vertices indicate the existence of
bogus transitions. Collapsing around the dots produces five added stars ∗2 → ∗5 →
∗1 → ∗4 → ∗3, which eventually become four after collision of the preimage of ∗ f
(namely ∗3), and its contiguous star, ∗2 (row 2). At this point, Lemmas 6 and 9 apply.
The complexity of the fold is reduced to zero and the collapsing is finished. Further, the
two outermost edges having added points as endpoints map onto each other and can be
collapsed (row 3, item 3(c) of the algorithm). The resulting diagram still has a fold but
no bogus transition.

Second example. Let us now turn to the example in the second row of Figure 5. We
label the vertices from left to right as 0, 1, 2, 3, 4, letting the unaligned vertex be number
3. We label the sectors at each vertex as U , D, L , or R (up, down, left, right), as suits
the natural orientation of the figure (vertex 2 has sectors L , R, and D but no U -sector).
Finally, label the edges from left to right as a, b, c, d, with c being the vertical edge.
CR = {0, 1D, 2L , 2R, 2R + 2L}, while P I ( f1) = 2D, P I ( f2) = 2R, P I ( f3) = 1D,
for the three folds indicated in the figure. Among the elements of CR, only 1D and 2R
have finite orbits; all others, or their images, are the only sector at an endpoint. Hence,
BT ( f2) = P I ( f2), BT ( f3) = P I ( f3), since the corresponding P I s are subsets of the
set of elements of CR having finite orbits. On the other hand, BT ( f1) = ∅, and f1 has
no bogus transition.

Regarding f2, we have that v = 4. For q = 1, v1 = 2 and θ̂ (b) crosses 2R, where b
is the edge between vertices 1 and 2. For q = 2, v2 = 3. No edge portion crosses sectors
at 3 mapping into the fold, and hence the complexity is 1 since b crosses the whole of
Ext( f1) and there is no need for enlargement.

As for f3, we have that v = 3. For q = 1, v1 = 1. θ̂ (a) and θ̂ (d) cross 2D. For
q = 2, v2 = 4, no edge portion crosses relevant sectors, and the complexity is 2 since
the conditions for enlargement are not met. It is a bit unfair to compute the complexity of
f3 before having dealt with f2 since we cannot foresee how the modifications imposed
to the tree while collapsing f2 will affect the analysis of f3. In fact, it turns out to be
unnecessary since after collapsing f2 up to exhausting the fold (case 5 of Lemma 10),
f3 disappears while f1 remains, still with zero complexity. The resulting tree with zero
complexity is shown in Figure 11.

Third example. Next, we consider the case of Figure 7. Vertices and interesting sectors
are labeled in the the first row of the figure. Name the edges as a, b, c, from left to
right. There is a fold at v = 4 with CR = {2D, 3D, 3U, 1} and P I = {3U, 2D} = BT
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Fig. 11. The example in Figure 5 revisited.

(trivial). Ext( f ) consists of all the upper sectors and upper portions of edges (as delimited
by the tree) plus the lower sectors and corresponding lower portions of edges up to some
interior point of edge b (see marked zone in Figure 7, first row). The set SO has three
elements since a portion of c crosses 3U for q = 1, while portions of b and c cross 2D
for q = 2.

We have to consider the possible enlargement of SO at 2 = θ̂ (1). We realize that θ̂ (1)
is an endpoint and the sector associated with it cannot satisfy the requirement (cb) for
an enlargement since the image of arcs crossing the sector at an endpoint cannot cross
just one sector at a valence-m vertex with m > 1. Next consider the arc in b associated
with the fold with q = 2. θ̂ (b) = b + 2D + a and θ̂2(b) = a + 2D + b + 3U + c.
Notice that θ̂2(b) exits Ext( f ) at 2 (and “reenters” after crossing edge b); hence the part
to be considered of this image is just b + 3U + c, and no enlargement is needed since
the requirement (cb) is not met. The final possibility to be considered is an enlargement
associated with the arc in c. We have that θ̂ (c) = b+3U +c+1+c+3D+b+2D+a
and θ̂2(c) = (c+3U +b+2D+a)+ (4)+ (a+2D+b+3D+ c+1+ c+3U +b)+
(2U+2D)+(b+3U+c+1+c+3D+b+2D+a)+( f old)+(a+2D+b) (indicated
with a dotted line in Figure 7). One end point of θ̂ (c) lies outside Ext( f ), while it is not
possible to reach the other endpoint without crossing elements outside Ext( f ); hence
there are no possibilities of enlargement. The complexity of the fold is then 3.

After collapsing we arrive at the figure shown in the second row of Figure 7, with
four edges and five vertices. This first collapsing step ended with a partial exhaustion of
the fold (case 4 of Lemma 10) when the two added collapsing regions at opposite sides
of an edge are in contact (case (iii) of Lemma 9). Labeling the sectors at the period-1
added star that appeared in the form described by case (iii) of Lemma 9 x1, x2, x3, x4

in counterclockwise order starting from the preimage of the fold (x1), we can see that
CR = {x1, x4, 3, 1} and P I = {x1}; hence there is just one arc in SO associated with
the fold with q = 1 lying in the edge connecting 1 with the added star. The complexity
of the fold is now 1 since there is no need of any enlargement (actually, this arc is what
remains of the arc at c associated with q = 1).

The final step is taken collapsing at x1 until the bogus transition is eliminated when
the region of collapse reaches 2 (case 2 of Lemma 10). The remaining tree has a fold but
no bogus transition.

Last Example. We conclude the examples section by considering a case shown in [12],
which we display in Figure 12.

There are two folds, one at 5 = θ̂ (4), which we call fold f 1, and fold f 2 at 4 =
θ̂ (3). P I ( f 1) = {3L , 4U }, while P I ( f 2) = {3D}. CR = {3L , 3D + 3L , 5, 2D}
(U, D, R, L indicate above, below, right, and left respectively, as mentioned above),
BT ( f 1) = {3L , 4U } and BT ( f 2) = {3D} (note that 3D is in the orbit of 2D). The
bogus transitions are eliminated after two steps, yielding the third row of the figure. In the
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Fig. 12. The example in [12], Figure 14, p. 103, revisited. In the first step the fold f 1 is eliminated
in a perfect exhaustion identifying a period-two orbit {A, B}. In the second step the collapse is
performed under 2 and 3 eliminating the bogus transition at f 2.

first step the fold f 1 is exhausted, leaving a period-two orbit behind (perfect exhaustion).
In the second step the bogus transition at f 2 is eliminated (Lemma 10, case 2, the fold
moves all the way to A passing first through B, and an added star remains under A
produced by drawing *2 and B together in the collapse). The edge connecting both stars
maps onto itself and can be eliminated by item (3c) of the algorithm, leaving behind
a period-1 added star. Note that in this second collapse the set P I ( f 2) = {2D, 3D}
contains two elements; one of them (2D) was not present in the previous analysis. The
sets BT ( f ) and P I ( f ) may change after a step is performed, which explains why it is
not possible to extrapolate the complexity of a map from the complexity of each fold.

6. Discussion

This article is much indebted to previous work by Hall [5] and Franks and Misiurewicz
[12]. Indeed, we produce an improved version of the algorithm in [12] using concepts
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extended from ideas in [5]. The improvement is a consequence of focusing on the minimal
periodic orbit structure rather than on the topological entropy (this being the largest
entropy of the irreducible components associated with P).

The relevant differences with [12] are the following:

1. All types of invariant sets are treated on equal footing regardless of whether they are
the reducible or irreducible cases, a single periodic orbit, or a link.

2. The end condition of our algorithm is the absence of (recurrent)4 bogus transitions.
3. The regions where a collapse should be practiced are detected beforehand using the

concepts of recurrent bogus transition and fold.
4. There is no need for additional algorithm moves such as “splittings” [12] (see below).

Theorem 1 establishes that the goal of an algorithm transforming a given tree into a
new tree on which the fat representative θ̂ presents minimal periodic orbit structure is
to eliminate all recurrent bogus transitions. The guideline of the algorithm is therefore
the detection of folds and the bogus transitions associated with each fold, and next to
attempt to eliminate all bogus transitions associated with each fold. In this way, the folds
and bogus transitions focus and organize the method.

The improved efficiency of the algorithm comes from the number of different moves
required to transform the original line diagram into a suitable tree. There is essentially
one move in the present algorithm consisting of eliminating regions of phase space, a
property that was somehow guessed by Franks and Misiurewicz [12], who commented
on the fact that in all their examples (published and unpublished) only the move called
“gluing” appeared to be necessary. Gluing in [12] corresponds approximately to our
collapse of a fold. In fact, [12] introduces splittings (the opposite of gluing) in order to
solve two problems in their scheme, namely (a) to get rid of eventually periodic added
vertices and (b) to assure that added vertices belonging to the same periodic orbit have
the same valence. In our formulation, (a) is dealt with by collapses only while we dispose
of (b) since it does not influence the periodic orbit structure of the map. However, no
systematic efficiency comparisons were performed.

The recent paper by de Carvalho and Hall [15] deals with the possibility of destroying
dynamics of a two-dimensional orientation-preserving homeomorphism. In fact, after
constructing an object equivalent to T̂ , they proceed to eliminate part of the dynamics
in it by prunings, which loosely speaking are halfway between our collapses and Franks
and Misiurewicz’s gluings. The goal of that manuscript is to illustrate the action of
pruning away part of the dynamics rather than finding the pseudo-Anosov representative
(when proper) as in the present manuscript. However, the work shows that the pseudo-
Anosov representative lies among the collection of pruned maps, referring to Bestvina
and Handel’s algorithm for its computation, improved by de Carvalho and Hall’s pruning.

Apart from the different focus in both papers, the main difference with our paper lies
in the way the prunings are done. In this respect, the introduction in the present work of
silent collapses and a notion of complexity, which monitors the necessity and extent of a
collapse, represents a definite advantage of the present algorithm. Indeed, prunings are
performed with three basic steps, an identification step followed by a splitting step that

4 The algorithm eliminates bogus transitions regardless of whether they are recurrent. The pertinence of an
elimination should be controlled by the user.
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roughly parallel the gluing and splittings in [12], and the third step is a move, resembling
the dragging in [12]—consisting of the removal of added valence-2 vertices—warranting
that no new periodic orbit is introduced. The authors of [15] note that the technicalities
involved in the formalization and in showing the finiteness of the algorithm are “intri-
cate, tedious” and the “effort is not worthwhile” [15, p. 328]. These inconveniences are
dealt with by our method in a simpler way since the monitoring of the process via the
complexity and silent collapses guarantees a finite algorithm that is free from splittings
and that progresses monotonically, removing regions of the phase space.
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Phys. Théor., 49:335, 1989.

[8] A. Casson and S. Bleiler. Automorphisms of Surfaces after Nielsen and Thurston. Cambridge
University Press, Cambridge, 1988.

[9] M. Bestvina and M. Handel. Train tracks and automorphisms of free groups. Ann. Math.,
135:1–51, 1992.

[10] M. Bestvina and M. Handel. Train tracks for surface homeomorphisms. Topology, 34:109–
140, 1995.

[11] J. E. Los. Pseudo-Anosov maps and invariant train tracks in disks: A finite algorithm. Proc.
London Math. Soc., 66:400–430, 1993.

[12] J. Franks and M. Misiurewicz. Cycles for disk homeomorphisms and thick trees. Contemp.
Math., 152:69–139, 1993.

[13] R. Gilmore. Topological analysis of chaotic dynamical systems. R. Mod. Phys., 70:1455–
1530, 1999.

[14] E. Hayakawa. Markov maps on trees. Math. Japonica, 31:235–240, 2000.
[15] A. de Carvallo and T. Hall. Pruning theory and Thurston’s classification of surface homeo-

morphisms. J. Eur. Math. Soc., 3:287–333, 2001.


