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Abstract This work presents a discrete-time sliding

mode neuro-adaptive control (DTSMNAC) method for

robot manipulators. Due to the dynamics variations and

uncertainties in the robot model, the trajectory tracking of

robot manipulators has been one of the research areas for

the last years. The proposed control structure is a practical

design that combines a discrete-time neuro-adaptation

technique with sliding mode control to compensate the

dynamics variations in the robot. Using an online adapta-

tion technique, a DTSMNAC controller is used to

approximate the equivalent control in the neighborhood of

the sliding surface. A sliding control is included to guar-

antee that the discrete-time neural sliding mode control can

improve a stable closed-loop system for the trajectory

tracking control of the robot with dynamics variations. The

proposed technique simultaneously ensures the stability of

the adaptation of the neural networks and can be obtained a

suitable equivalent control when the parameters of the

robot dynamics are unknown in advance. This neural

adaptive system is applied to a SCARA robot manipulator

and shows to be able to ensure that the output tracking error

will converge to zero. Finally, experiments on a SCARA

robot have been developed to show the performance of the

proposed technique, including the comparison with a PID

controller.

Keywords MIMO system � Neural networks � Nonlinear

control � Adaptive control � SCARA robot

1 Introduction

The control of robot manipulators has been a research area

for years and has developed various control strategies [1–

3]. Due to the robot manipulators being composed of

several joints bonded together, the joints have highly

nonlinear dynamics with a strong link between them. This

complicates the control task, especially with model

uncertainties or external disturbances.

Some techniques have been proposed with control sys-

tems that take the model into account, as a computed tor-

que control [4, 5]. The work provides satisfactory results in

terms of tracking errors and robustness. The uncertainties

in the model due to bad estimates or model parameters are

difficult to design an efficient algorithm based on a precise

mathematical model.

The work of Jiang and Ishida [6] proposes a dynamic tra-

jectory tracking control of industrial robot manipulators using

a PD controller and a neural network controller. The neural

network is a three-layer feed-forward network. The learning

law of neural network weights was derived using a simplified

dynamic model of the robot and a back-propagation theory.

With this system, trajectory tracking control simulations and

experiments were carried out using an industrial manipulator

AdeptOne XL robot. The results of their work have shown the

effectiveness and usefulness of the proposed control method,

and it was shown that the learning effect of the neural network

affects the trajectory tracking accuracy.

In [7], the problem of designing robust variable structure

control and sliding mode planes was considered for the

robot manipulator SCARA RP41. The simulation results

show the robustness of the extension variable structure

control, a sliding mode opposite the transported load,

parametric variations, an imprecise model, and external

perturbation signals.
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On the other hand [8], an ANN-based robust adaptive

tracking control scheme for SCARA robot was imple-

mented. The ANNs are not directly used to adapt the sys-

tem uncertainties, but they are used to adjust the bounds of

dynamics variations in a compact set. The output signals of

the ANNs then adjust the gain of the sliding mode con-

troller so that the undesired effects of system variations can

be eliminated. And the output tracking error between the

robot output and the desired reference signal can asymp-

totically converge to zero. The system performance was

demonstrated in a simulation model.

The work of Benjanarasuth et al. [9] showed via simu-

lations that a DDR-type SCARA robot can be successfully

controlled by the two-degree-of-freedom simple adaptive

control. The control system structure is based on a linear

model, and its implementation is relatively simple. The

joint’s angle can track the reference path properly, and the

effect of constant input disturbance can be suppressed by

means of the disturbance rejection property being altered

independently by adjusting the integral gain.

In [10], a PID controller design based on Internal Model

Control (IMC) for a two-link SCARA robot is presented.

The suitable IMC low-pass filter is proposed so that the

PID controller can be derived by applying Maclaurin series

expansion to the IMC controller in a general feedback

control loop. The simulation results showed in this work

confirm that the PID controllers designed by the proposed

method can control the angular positions of the SCARA

robot precisely without steady-state error. And the study of

[11] shows a comprehensive modeling and identification of

an industrial SCARA robot developed to include servo

actuator dynamics. The kinematics model of the manipu-

lator was studied. The authors used Lagrangian mechanics

to derive equations of motion. Conventional PD controller

is compared to a neural network controller to achieve

precise control of position and motion characteristics. Each

joint is treated individually to reach optimal positioning of

the end effector. The neural network model is trained to

achieve accurate positioning and minimize joint displace-

ments. This work shows simulation results that verify the

proposed control method; however, it does not provide a

stability analysis.

The work of Thanok [12] presents two results derived

from experimentation. In the first scheme, the friction

model that contains the Coulomb and viscous effect is

static. However, the dynamics model is known, but the

value of its parameter is not; therefore, the initial is set to

zero. The scheme is identified online during trajectory

tracking control. The second scheme used a dynamic

friction LuGre model, which is a known dynamic model,

but has an unknown parameter and its initial set to zero.

The experiment results demonstrate that parameters in the

adaptive PD controller using dynamic friction can decrease

errors at a steadier state than parameters in a PD controller

using static friction.

In another work, Escobar et al. [13] describe the simu-

lation of movement control of a one-degree-of-freedom

articulated SCARA robot arm actuated by a pair of pneu-

matic actuators. The pneumatic actuator emulates the

behavior of biological muscles; due to its nonlinear

behavior, was needed to implement control strategies for

robot arms using this type of actuator. In this work, a PID

controller is used to the linear transfer function and gen-

erates the necessary information to train the multilayer

perceptron artificial neural network (RNAPM). The simu-

lation results show that the RNAPM has proved to out-

perform the PID control’s response time, minimize the

angular error, and avoid the oscillation problem due to its

continuous, constant behavior.

The study of [14] describes a position control

scheme for robots using high-dimensional neural networks

which learn inverse kinematics. A complex-valued neural

network and quaternion neural network using the simulta-

neous perturbation optimization method are used to control

the SCARA robot and the three-dimensional robot whose

characteristics are unknown. In the mentioned work,

experiment results demonstrate the effectiveness of the

proposed control method but do not provide a stability

analysis.

The work of Lin et al. [15] has proposed a discrete-time

robust adaptive fuzzy strategy to design the sliding mode

controller. This method could be used for nonlinear sys-

tems, but do not present applications on robotics systems.

Meanwhile, the study of [16] presented a neural adap-

tive-based sliding mode controller for nonlinear systems,

which was applied to trajectory tracking for mobile robots.

The results shown are based on experiments and use a

neural method to adapt the dynamic model to be controlled.

In addition, the complete control system is designed in the

continuous domain.

In this paper, the design of an adaptive trajectory

tracking controller based on a nominal robot dynamics and

neural controller is developed on a SCARA robot Bosch

SR-800. The control system is designed with a neural

sliding mode dynamic control in the discrete-time domain.

The dynamic neuro-controller is designed based on the

‘‘discrete-time sliding mode neuro-adaptive control’’

(DTSMNAC), where an online adaptation law is used to

adjust the weights of the radial basis functions (RBF). Such

law is conditioned by the sliding surface which has been

specified. The dynamic neuro-controller uses a neural

network based on the RBF functions, which is the main

controller in charge of the inverse dynamics of the SCARA

robot, where the compensation by sliding surface is

designed to delete the approximation error introduced by

the neuronal controller. Furthermore, the adaptation laws
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of the control system are obtained from the Lyapunov

stability criterion. Therefore, the control system stability

can be ensured, which results as an asymptotic stability

property. The proposal of a ‘‘discrete-time sliding mode

neuro-adaptive control’’-based controller has the following

advantages:

1. This control technique can be applied to a nonlinear

MIMO system, which is the case of the SCARA robot

manipulator and other nonlinear dynamics.

2. The complete analysis was done in discrete time using

the Lyapunov’s discrete method.

3. It can control most of the robot manipulator systems

without knowing their exact mathematical models.

4. The main advantage of this DTSMNAC technique over

the model-based ones is that it does not require

previous knowledge of the robot dynamics; moreover,

it can be tuned online adjusting the weights.

5. The proposed control scheme adjusts the main part of

the robot dynamics effects, being a robust system.

Besides, the controller integrates the PI control with

the DTSMNAC. With this control technique, the

‘‘chattering’’ effect can be reduced to small values.

This work is organized as in the following way: Sec-

tion II presents an overview of the system and shows the

mathematical representation of the SCARA robot dynam-

ics. The neural adaptive RBF compensator and its stability

analysis are studied in Sects. 3, 4, and 5. Experimental

results are shown in Sect. 6, showing the efficiency of the

controllers. Finally, the conclusions are shown in Sect. 7.

2 SCARA robot model

2.1 Review of the robot manipulator system

Taking into account that DTSMNAC controller will com-

mand the robot on the horizontal motion plane, the

dynamic model for the first two joints of the robot (Fig. 1)

is considered.

The dynamic model in the joint space for a robot

manipulator with n degrees of freedom was showed in [17].

In this case, n = 2:

MðqÞ€qþ Cðq; _qÞ _qþ fð _qÞ ¼ s ð1Þ

where q is the vector (2 9 1) of generalized coordinates

(joint positions), q = [q1, q2]T, M qð Þ is a (2 9 2) matrix,

usually referred to as manipulator mass matrix containing

the kinetic energy functions of the manipulator. C q; _qð Þ:
(2 9 2) matrix represents torques arising from centrifugal

and Coriolis forces. f _qð Þ: (2 9 1) represents viscosity

friction effects when the manipulator is moving in its work

space. s: Vector of joint actuator torques (2 9 1).

The parameter of the robot manipulator Bosch SR-800 is

as follows:

M̂ qð Þ¼
1:7277þ0:1908cos q2ð Þ 0:0918þ0:0954cos q2ð Þ
0:3340þ0:3418cos q2ð Þ 0:9184

" #

Ĉ q; _qð Þ¼
31:8192�0:0954sin q2ð Þ _q2ð Þ �0:0954sin q2ð Þ _q1þ _q2ð Þ

0:3418sin q2ð Þ _q1ð Þ 12:5783

" #

f̂ _qð Þ¼
1:0256sign _q1ð Þ
1:7842sign _q2ð Þ

" #

ð2Þ

The nonlinear dynamic model of a manipulator (1) is

used to compute the control torque inputs,

M̂ðqÞ€qþ Ĉðq; _qÞ _qþ f̂ð _qÞ ¼ sþ DðqÞ ð3Þ

where the quantities M̂ qð Þ; Ĉ q; _qð Þ; f̂ _qð Þ are estimates of

the true parameters and D qð Þ is the unknown time-depen-

dent uncertainties. From (2), M(q) is a positive definite

matrix, perhaps it can be demonstrated that det(M(q)) = 0,

also is an invertible matrix.

Assumption 1 The uncertainty function vector D qð Þ is

bounded by a constant D qð Þk k�DMax.

A direct discretization with _qi ¼ qiðkÞ�qiðk�1Þ
To

and €qi ¼
qiðkþ1Þ�2qiðkÞþqiðk�1Þ

T2
o

to obtain a discrete-time dynamic

model was used, where T0 = 1 ms is the sampling time

and k is the discrete-time index.

Fig. 1 SCARA robot manipulator
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q kð Þ
q k þ 1ð Þ

� �
¼

0

w kð Þ

� �
f̂ q kð Þð Þ

þ
0 I

�a kð Þ �b kð Þ

� �
q k � 1ð Þ
q kð Þ

� �

þ
0

w kð Þ

� �
s kð Þ þ

0

w kð Þ

� �
D kð Þ

ð4Þ

where the matrix parameters are defined as:

b q kð Þ; q k � 1ð Þð Þ ¼ �2Iþ M̂
�1

q kð Þð ÞĈ q kð Þ; q k � 1ð Þð ÞT0

a q kð Þ; q k � 1ð Þð Þ ¼ I� M̂
�1

q kð Þð ÞĈ q kð Þ; q k � 1ð Þð ÞT0

w q kð Þð Þ ¼ M̂
�1

q kð Þð ÞT2
0

d kð Þ ¼ w q kð Þð ÞD kð Þ
ð5Þ

Rearranging (4), it does obtain:

q k þ 1ð Þ ¼ F q kð Þð Þ þG q kð Þð Þs kð Þ þ d kð Þ ð6Þ

where:

F q kð Þð Þ ¼ w kð Þf̂ q kð Þð Þ � a kð Þq k � 1ð Þ � b kð Þq kð Þ ð7Þ
G q kð Þð Þ ¼ w kð Þ ð8Þ

3 Dynamic controller

The dynamic controller receives the difference between

desired references and angular output positions (q1 and q2),

which are sent to the robot servos, as it is shown in Fig. 2. Now,

this error vector of output angular positions is defined in (12)

The robot dynamics system (6) can be written in the

following form

q k þ 1ð Þ ¼ F qðkÞð Þ þG qðkÞð ÞsðkÞ þ dðkÞ

¼
F1 qðkÞð Þ
F2 qðkÞð Þ

� �
þ

G1 qðkÞð Þ
G2 qðkÞð Þ

� �
sðkÞ þ

d1ðkÞ
d2ðkÞ

� �
ð9Þ

In order for (6) to be controllable, it is required that

g = 0, and without the loss of generality, it is assumed that

the robot dynamics represent a bounded input bounded

output (BIBO) system; G(k) is a positive definite positive

matrix (M(q)T0
-2), and d(k) is the unknown time-dependent

uncertainties vector, with dMax being its upper bound,

dMax ¼ sup
t2<þ

dðkÞj j ð10Þ

also,

qðkÞ ¼ q1ðkÞ q2ðkÞð ÞT

sðkÞ ¼ s1ðkÞ s2ðkÞð ÞT

dðkÞ ¼ d1ðkÞ d2ðkÞð ÞT
ð11Þ

are the state variables’ output vector, input vector, and

uncertainty parameter vectors, respectively, and the state

tracking error is defined as:

eðkÞ ¼ qðkÞ � qref ðkÞ ¼
�
q1ðkÞ � q1ref ðkÞ; q2 � q2ref ðkÞ

�T
ð12Þ

4 Discrete-time sliding mode control

The main objective was to implement an adaptive neural

controller which guarantees the boundedness of all vari-

ables for the closed-loop system and tracking of a given

bounded reference signal qref(k).

Fig. 2 Control system structure including the DTSMNAC and the kinematic controllers
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The neural feedback linearization method which is

based on NN-RBF model can solve this kind of control

problem [12, 13].

The state tracking error is defined as

e(k) = q(k) - qref(k). In this work, the control objective

was to find a control action such that the state q of the

closed-loop system will follow the desired state qref; in

other words, the tracking error should converge to zero.

The goal of the control law obtained by sliding mode

technique was to track the trajectory of the system to a

defined surface (calculated by the designer) in the state

space and maintain it on the entire surface for all subse-

quent time.

A sliding surface for MIMO system can be defined in

the error state S(k) from (14).

S kð Þ ¼ td þ k1z
�1ð Þ 0

0 td þ k2z
�1ð Þ

� �

Xk
i¼1

e ið ÞT0 ¼
e1 kð Þ þ k1

Pk�1

i¼1

e1 ið ÞT0

e2 kð Þ þ k2

Pk�1

i¼1

e2 ið ÞT0

0
BBB@

1
CCCA

ð13Þ

where T0 is the sampling time and td = (1 - z-1)/T0.

The discrete difference in sliding surface S(k) is:

S k þ 1ð Þ � S kð Þ ¼
e1 k þ 1ð Þ þ k1

Pk
i¼1

e1 ið ÞT0

e2 k þ 1ð Þ þ k2

Pk
i¼1

e2 ið ÞT0

0
BBB@

1
CCCA

�
e1 kð Þ þ k1

Pk�1

i¼1

e1 ið ÞT0

e2 kð Þ þ k2

Pk�1

i¼1

e2 ið ÞT0

0
BBB@

1
CCCA

¼
e1 k þ 1ð Þ � e1 kð Þ þ k1e1 kð ÞT0

e2 k þ 1ð Þ � e2 kð Þ þ k2e2 kð ÞT0

� �

¼
e1 k þ 1ð Þ þ k1T0 � 1ð Þe1 kð Þ
e2 k þ 1ð Þ þ k2T0 � 1ð Þe2 kð Þ

� �
ð14Þ

where ki is a strictly positive constant. Let us define

q = diag(k1T0 - 1, k2T0 – 1).

In designing the sliding mode control system, first it is

defined as the ideal equivalent control law s*, which

determines the dynamic of the system on the sliding sur-

face. The ideal equivalent control law is derived by

recognizing

DS k þ 1ð Þ ¼ S k þ 1ð Þ � S kð Þjs kð Þ¼s� kð Þ¼ 0 ð15Þ

Substituting (14) into (15), is obtained

DS kþ 1ð Þ ¼
e1 kþ 1ð Þþq1e1 kð Þ
e2 kþ 1ð Þþq2e2 kð Þ

� �
¼ e kþ 1ð Þþqe kð Þ

¼ F q kð Þð ÞþG q kð Þð Þs� kð Þþ d kð Þ�qref kþ 1ð Þ
��

þqe kð Þ ¼ 0

ð16Þ

Now, let us consider the problem of controlling the

uncertain nonlinear system (6) as treated in [17]. Defining a

control law s* that guarantees the sliding condition of (16),

which is composed of an equivalent control,

s kð Þ ¼ G q kð Þð Þ�1 �F q kð Þð Þ � qe kð Þ� d kð Þþqref k þ 1ð Þ
�	

ð17Þ

A condition to ensure that the trajectory of the error

vector e(k) will evolve from the initial phase to the sliding

phase is to select the control strategy such that:

S k þ 1ð Þ � S kð Þð Þ ¼ �KdS kð ÞT0 � gT0sign S kð Þð Þ ð18Þ

where Kd = [Kd1 0; 0 Kd2]T, where Kd1 and Kd2 are small

positive real numbers, g = [g1 0; 0 g2]T, and the function

sign is defined by:

sign Si

� �
¼

1 for Si [ 0

0 for Si ¼ 0

�1 for Si\0

8<
: ð19Þ

From (16)

S k þ 1ð Þ � S kð Þ ¼ e k þ 1ð Þ þ qe kð Þ
¼ F q kð Þð Þ þG q kð Þð Þs� kð Þ
�
þd kð Þ � qref k þ 1ð Þ

�
þ qe kð Þ

¼ �KdS kð ÞT0 � gT0sign S kð Þð Þ ð20Þ

From (20), the ideal equivalent control law s*

s� kð Þ ¼ G q kð Þð Þ�1 �F q kð Þð Þ þ qref k þ 1ð Þ � qe kð Þ



�KdS kð ÞT0 � gT0sign S kð Þð Þ � d kð Þ�
ð21Þ

is obtained.

5 Neural system adjustment laws

In real systems, F(q(k)), G(q(k)), d(k), and g may be

unknown, and the function sign(S) is not continuous. Thus,

it is impossible to generate the control law (21). To over-

come these difficulties, it is used a neural system for esti-

mating F̂ q kð Þ; h�F
� �

, Ĝ q kð Þ; h�G
� �

and for d̂ S kð Þ; h�d
� �

to

approximate, respectively, F(q(k)), G(q(k)), d(k).
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The optimal parameter vectors are defined as:

h�F ¼ arg min
hF2Xh

sup
q2Xq

�����F q kð Þð Þ � F q kð ÞjhG
� �( )

h�G ¼ arg min
hG2Xh

sup
q2Xq

�����G q kð Þð Þ � G q kð ÞjhG
� �( )

h�d ¼ arg min
hd2Xh

sup
q2Xq

�����d kð Þ � d kjhd
� �( )

8>>>>>>>>>><
>>>>>>>>>>:

ð22Þ

defining Xh = {h/hkhfk B Mf ^ khgk B Mg ^ khd-

khfk B Mf ^ khgk B Mg ^ khdk B Md.khfk B Mf ^ khg-

khgk B Mg ^ khdk B Md.khfk B Mf ^ khgk B Mg ^ khd
k B Md} and Xq = {q/qq B Mq.q B Mq} where MF, MG,

Md, and Mq are positive constants, and Xh and Xq are

compact sets of suitable bounds on hFhG and hd and q,

respectively.

The Gaussian function is used as the activation function

of each neuron in the hidden layer (23).

n̂i f kð Þð Þ ¼ exp � f kð Þ � ci
� �T

f kð Þ � ci
� �.

r2
i

� �
ð23Þ

where i is the ith neuron of the hidden layer, ci is the central

position of the ith neuron, and ri is the spread factor of the

Gaussian function, and the regressors of the Gaussian

function are f(k) = [q(k), q(k - 1),… q(k - n), s(k),

qref(k ? 1)]T and t(k) = [S(k),S(k - 1),…S(k - n), s(k),

qref(k ? 1)]T.

The structure of RBF-NN is shown in Fig. 3.

The control s(k) can be approximated by a RBF-NN

through online learning,

s� ¼ Ĝ
�1

q kð Þ; h�G
� �

½�F̂ q kð Þ; h�F
� �

�d̂ S kð Þ; h�d
� �

þ qref k þ 1ð Þ � qe kð Þ�KdS kð ÞT0 � gT0sign S kð Þð Þ�

ð24Þ

It was added a robust control action sD(k) to attenuate

the external disturbance, which may be defined as (D
sign(S)). The variables hFhG, and hd are neural weights of

the approximating adaptive system F̂ q kð Þ; ĥF
� �

,

Ĝ q kð Þ; ĥG
� �

, d̂ S kð Þ; ĥd
� �

, respectively, and can be

expressed by:

s� ¼ Ĝ
�1

q kð Þ; ĥG
� �h

�F̂ q kð Þ; ĥF
� �

�d̂ S kð Þ; ĥd
� �

þqref k þ 1ð Þ � qe kð Þ �KdS kð ÞT0 � gT0sign S kð Þð Þ þ sD
i

ð25Þ

It was added a robust control action sD(k) to attenuate

the external disturbance, which may be defined as (D
sign(S)). The variables hFhG, and hd are neural weights of

the approximating adaptive system F̂ q kð Þ; ĥF
� �

,

Ĝ q kð Þ; ĥG
� �

, d̂ S kð Þ; ĥd
� �

, respectively, and can be

expressed by:

F̂ q kð Þ; ĥF
� �

¼ ĥ
T

F n̂ f kð Þð Þ Þ

¼

Pm
i¼1

ĥTF1i exp � f kð Þ � cFi
� �T

f kð Þ � cFi
� �.

r2
Fi

� �
Pm
i¼1

ĥTF2i exp � f kð Þ � cFi
� �T

f kð Þ � cFi
� �.

r2
Fi

� �
0
BB@

1
CCA
ð26Þ

and

Ĝ q kð Þ; ĥG
� �

¼ ĥ
T

Gn̂ f kð Þð Þ

¼

Pm
i¼1

ĥTG1i exp � f kð Þ � cFi
� �T

f kð Þ � cGi
� �.

r2
Gi

� �
Pm
i¼1

ĥTG2i exp � f kð Þ � cGi
� �T

f kð Þ � cGi
� �.

r2
Gi

� �
0
BB@

1
CCA

ð27Þ

where ĥ
T

F1;2 (m = 5) and ĥ
T

G1;2 2 R1xm.

Another neural net control term is employed in order to

attenuate the external disturbances. The MIMO control

term is in the form of:

Fig. 3 Radial basis function network
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d̂ S kð Þ; ĥd
� �

¼ ĥ
T

dv t kð Þð Þ

¼

Pm
i¼1

ĥTd1 exp � t kð Þ � cdi
� �T

t kð Þ � cdi
� �.

r2
di

� �
Pm
i¼1

ĥTd2 exp � t kð Þ � cdi
� �T

t kð Þ � cdi
� �.

r2
di

� �
0
BB@

1
CCA

¼
ĥ
T

d1v t kð Þð Þ

ĥ
T

d2v t kð Þð Þ

 !
ð28Þ

where ĥ
T

d1 and ĥ
T

d2 are adjustable parameters, and the

function vector v t kð Þð Þ is a function of the sliding surface.

The global control law is given by (25), and it is defined

as the minimum approximation error as:

e kð Þ ¼ F qð Þ � F̂ q kð Þ; hF
� �

þ G q kð Þð Þ �G q kð Þ; hG
� �
 �

s

þ d kð Þ � d̂ S kð Þ; ĥ�d
� �

ð29Þ

Now, using (16) and considering the robot dynamic

model (6), it can be written as:

DS k þ 1ð Þ ¼ S k þ 1ð Þ � S kð Þ

¼ q k þ 1ð Þ � qref k þ 1ð Þ
h i

þ qe kð Þ

¼ qe kð Þ þ F q kð Þð Þ þG q kð Þð Þs kð Þþd kð Þ



�qref k þ 1ð Þ
i

ð30Þ

Replacing the proposed control action in (25) in (30)

DS kþ 1ð Þ ¼ qe kð Þ þ F q kð Þð Þ � F̂ q kð Þ; ĥf
� �� �

þ qref kþ 1ð Þ þ G� Ĝ q kð Þ; ĥg
� �� �

s kð Þ

� qe kð Þ þ d kð Þ � d̂ S kð Þ; ĥd
� �h i

� qref kþ 1ð Þ

�KdS kð ÞT0 � gT0sign S kð Þð Þ þ sD

¼ F̂ q kð Þ; h�f
� �

� F̂ q kð Þ; ĥf
� �h i

þ Ĝ h�g
� �

� Ĝ ĥg
� �� �

s kð Þ

þ d̂ S kð Þ; ĥ�d
� �

� d̂ S kð Þ; ĥd
� �h i

þ e�KdS kð ÞT0 � gT0sign S kð Þð Þ þ sD

ð31Þ

Considering that

F̂ q kð Þ; h�F
� �

� F̂ q kð Þ; ĥF
� �

¼ h�TF n f kð Þð Þ � ĥ
T

Fn f kð Þð Þ

¼ ~h
T

Fn f kð Þð Þ ð32Þ

Ĝ q kð Þ; h�G
� �

� Ĝ q kð Þ; ĥG
� �

¼ h�TG n f kð Þð Þ � ĥ
T

Gn f kð Þð Þ

¼ ~h
T

Fn f kð Þð Þ ð33Þ

d̂ S kð Þ; h�d
� �

� d̂ S kð Þ; ĥd
� �

¼ h�Td � ĥ
T

d

� �
v t kð Þð Þ

¼ ~h
T

dv t kð Þð Þ ð34Þ

where ~hF , ~hG and ~hd are defined as

~h
T

F ¼ h�TF � ĥ
T

F ð35Þ

~h
T

G ¼ h�TG � ĥ
T

G ð36Þ

~h
T

d ¼ h�Td � ĥ
T

d ð37Þ

Being h�F , h�G, and h�d are optimal constant values, DS can

be approximated by

DS k þ 1ð Þ ¼ �KdT0S kð Þ þ ~h
T

Gn f kð Þð Þs þ ~h
T

Fn f kð Þð Þ
þ ~h

T

dv t kð Þð Þ þ e� gT0sign S kð Þð Þ þ sD
ð38Þ

Remark 1 The uncertain e is assumed to be bounded by

ek k� eMax.

Remark 2 The constant eMax is equal to gk k T0j j.

Theorem Consider the uncertain nonlinear system

defined by (6). Then, the controller proposed by (25) en-

sures the convergence of tracking error to zero, when using

the following parameters adaptation laws:

D~hFi ¼ �c1Sin f kð Þð Þ ð39Þ

D~hGi ¼ �c2Sin f kð Þð Þsi ð40Þ

D~hdi ¼ �c3Siv t kð Þð Þ ð41Þ

Proof Let a positive definite Lyapunov function candi-

date V(k) be defined as

V kð Þ ¼ 1

2

X2

i¼1

S2
i kð Þ þ c�1

1
~h
T

Fi k � 1ð Þ~hFi k � 1ð Þ
� �h

þ c�1
2

~h
T

Gi k � 1ð Þ~hGi k � 1ð Þ
� �

þc�1
3

~h
T

di k � 1ð Þ~hdi k � 1ð Þ
� �i :

ð42Þ

Now, doing the discrete difference in V(k)

DV kð Þ ¼
X2

i¼1

	
S2

i k þ 1ð Þ � S2
i kð Þ

� �
þ c�1

1

~h
T

Fi kð Þ~hFi kð Þ � ~h
T

Fi k � 1ð Þ~hFi k � 1ð Þ
� �
þ c�1

2
~h
T

Gi kð Þ~hGi kð Þ � ~h
T

Gi k � 1ð Þ~hGi k � 1ð Þ
� �

þc�1
3

~h
T

di kð Þ~hdi kð Þ � ~h
T

di k � 1ð Þ~hdi k � 1ð Þ
� ��

ð43Þ

Defining DhFi, DhGi, and Dhdi as:

DhFi ¼ c�1
1

~h
T

Fi kð Þ~hFi kð Þ � ~h
T

Fi k � 1ð Þ~hFi k � 1ð Þ
� �

DhGi ¼ c�1
2

~h
T

Gi kð Þ~hGi kð Þ � ~h
T

Gi k � 1ð Þ~hGi k � 1ð Þ
� �

Dhdi ¼ c�1
3

~h
T

di kð Þ~hdi kð Þ � ~h
T

di k � 1ð Þ~hdi k � 1ð Þ
� � ð44Þ
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and rearranging Eq. (43).

DV ¼
X2

i¼1

S2
i k þ 1ð Þ � S2

i kð Þ
� �

þDhFi þ DhGi þ Dhdi�



¼
X2

i¼1

	
Si kð Þ þ DSi k þ 1ð Þð Þ2�S2

i kð Þ
� �

þDhFi þ DhGi þ Dhdi

�

¼
X2

i¼1

2Si kð ÞDSi k þ 1ð Þ þ DS2
i k þ 1ð Þ

� �

þDhFi þ DhGi þ Dhdi�

ð45Þ

Replacing (38) in (45)

DV ¼
X2

i¼1

2 �kdiT0S
2
i kð Þ þ Si kð Þ~hTGin f kð Þð Þsi

�h

þSi
~h
T

Fin f kð Þð Þ þ Si
~h
T

div t kð Þð Þ
þSiei � giT0Sisign Si kð Þð ÞÞþDS2

i k þ 1ð Þ

þDhFi þ DhGi þ Dhdi
T

Gi

i
ð46Þ

From (44), rearranging DhFi as:

DhFi ¼ c�1
1

~h
T

Fi kð Þ~hFi kð Þ� ~hFi kð Þ � D~hFi kð Þ

 �T�

� ~hFi kð Þ � D~hFi kð Þ

 ��

¼ 2c�1
1

~h
T

Fi kð ÞD~hFi kð Þ
� �

� D~h
T

Fi kð ÞD~hFi kð Þ
� �

ð47Þ

Making the same analysis for DhGi and Dhdi, these

variables can be expressed as:

DhGi ¼ 2c�1
2

~h
T

Gi kð ÞD~hGi kð Þ
� �

� D~h
T

Gi kð ÞD~hGi kð Þ
� �

ð48Þ

Dhdi ¼ 2c�1
3

~h
T

di kð ÞD~hdi kð Þ
� �

� D~h
T

di kð ÞD~hdi kð Þ
� �

ð49Þ

Replacing (39), (40), and (41) in (46) and rearranging

DV kð Þ ¼
X2

i¼1

�2kdiT0S
2
i kð Þ þ DS2

i k þ 1ð Þ þ 2Sie



þ2~h
T

Fi kð Þ Sin f kð Þð Þ þ 2c�1
1 D~hFi kð Þ

� �
�2c�1

1 D~h
T

Fi kð ÞD~hFi kð Þ
� �

þ2~h
T

Gi kð Þ Si kð Þn f kð Þð Þsi þ c�1
2 D~hGi kð Þ

� �
�2c�1

2 D~h
T

Gi kð ÞD~hGi kð Þ
� �

þ 2~h
T

di kð Þ Siv t kð Þð Þð

þc�1
3 D~hdi kð Þ

�
� 2c�1

3 D~h
T

di kð ÞD~hdi kð Þ
� �

�2giT0Sisign Si kð Þð Þ
�

ð50Þ

Replacing the adjustment laws (39), (40), and (41) in

D~hFi, D~hGi and D~hdi of (50).

DV kð Þ ¼
X2

i¼1

�2kdiT0S
2
i kð Þ þ DS2

i k þ 1ð Þ



þ2Siei � 2c�1
1 D~h

T

Fi kð ÞD~hFi kð Þ
� �

�2c�1
2 D~h

T

Gi kð ÞD~hGi kð Þ
� �

�2c�1
3 D~h

T

di kð ÞD~hdi kð Þ
� �

�2giT0 Si kð Þj j
�

ð51Þ

According to (38)

DSi k þ 1ð Þj j � KdiT0Si kð Þj j þ ~h
T

gi

  n f kð Þð Þk k sij j þ gk k T0j j

þ ~h
T

fi

  n f kð Þð Þk k þ ~h
T

di

  v t kð Þð Þk k þ eij j þ sDij j

ð52Þ

All terms in (52) are bounded, and considering a0 ¼
~h
T

Gi

  n f kð Þð Þk k sij j þ gk k T0j j þ ~h
T

Fi

  n f kð Þð Þk kþ ~h
T

di

  vk
t kð Þð Þk þ eij j, (52) can be expressed as:

DSi k þ 1ð Þj j � KdiT0Si kð Þj j þ a0j j þ sDij j ð53Þ

And taking square from both sides of (53),

DSi k þ 1ð Þj j2 � KdiT0Si kð Þj j þ a0j j þ uDij j
	 �2

DSi k þ 1ð Þj j2 � KdiT0Si kð Þj j2þ2 KdiT0Si kð Þj j a0j j þ :::

þ 2 KdiT0Si kð Þj j uDij j þ 2 a0j j uDij j þ a0j j2þ uDij j2

ð54Þ

Now adding and subtracting the same term 2 uDj j Si kð Þj j
and rewriting (54).

� KdiT0Si kð Þj j þ a0j j
	 �2

þ2 KdiT0Si kð Þj j sDij j

þ 2 a0j j sDij j þ 2 Si kð Þj j sDij j � 2 Si kð Þj j sDij j þ sDij j2 ð55Þ

Rewriting and rearranging (55)

DSi k þ 1ð Þj j2 � b2 kð Þþ b1 kð Þ sDij j þ sDij j2
� �

þ 2 sDij j Si kð Þj j ð56Þ

where

b2 ¼ ½ KdiT0Si kð Þj j þ a0j j�2

b1 ¼ 2 KdiT0Si kð Þj j þ 2 a0j j � 2 Si kð Þj j
ð57Þ

From (58), sDi is selected as

2uDiSi kð Þ ¼ 2Si kð ÞDisign Si kð Þð Þ

¼ � �b1 kð Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1 kð Þ � 4b2 kð Þ
q	 �

Si kð Þj j ð58Þ

with the last considerations, and it is easily demonstrated

that:
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DV k þ 1ð Þ ¼
X2

i¼1

�2kdiT0S
2
i kð Þ þ 2Siei



�2c�1

1 D~h
T

Fi kð ÞD~hFi kð Þ
� �

�2c�1
2 D~h

T

Gi kð ÞD~hGi kð Þ
� �

�2c�1
3 D~h

T

di kð ÞD~hdi kð Þ
� �

�2giT0 Si kð Þj j
�
\0

ð59Þ

This result produces a better control of the SCARA

robot since the error velocities of the dynamic controller

converge to zero

6 Experimental results

This section describes the industrial robot used for imple-

menting the control algorithms proposed in Sects 4 and 5.

To this aim, the BOSCH SR-800 robot with 2 DOF

SCARA structure is considered. The proposed robot

manipulator has a CPU control Intel Dual Core on board,

running at a frequency of 2.6 GHz with 4 Gb of RAM

memory. The computer has an Operating System Linux

Debian with RTAI (Real-Time Application Interface). The

designed control scheme is applied to the robot manipu-

lator by the power unit control that introduces joints tor-

ques as the control actions. In order to perform experiments

by applying DTSMAC and static PID control algorithms on

this system, the same robot is used (Fig. 4).

For the experiment, the DTMSNAC controller was ini-

tiated with random weights and adjusted using different

trajectories. In the experiment shown in this paper, the

neural parameters are adjusted online by the learning

algorithm, evaluating its evolution as a function of time.

The reference trajectory (60) to test the two controllers

is the eight-shaped:

Xref ¼ 0:30 sin
2pkT0

10

� �
m½ �

Yref ¼ 0:55 þ 0:20 cos
2pkT0

10

� �
m½ �

8>><
>>: ð60Þ

In Fig. 5, the control actions of the DTMSNAC controller

are shown. Figure 6 shows the reference signals of joint

position and instantaneous SCARA robot joint position.

Figure 7 shows the trajectories followed by the SCARA

robot, using each one of the controllers. In Fig. 8, the square

norm of the control errors of both controllers is shown. The

highest error was obtained by the classical PID controller,

which does not have any online adaptation. In this case, the

effect of the uncertainties on the error is clearly observed.

But, the lowest error was obtained by the DTSMNAC pro-

posed in this work, which decreases the error caused by the

nonmodeled structure and external disturbance. In addition,

the evolutions of the tuning neural weights of the

DTMSNAC controller are shown in Figs. 9, 10, and 11.

The DTSMNAC controller was designed to be robust

with respect to modeling errors. It is also more effective in

rejecting disturbances and does not produce constant error

caused by any of the uncertainties of parameters and

external disturbances. Furthermore, the static PID con-

troller is vulnerable to changes in the dynamic model and

the uncertainties, due to the static PID control being

designed for a linearized model of the robot arm dynamics.

Fig. 4 SCARA robot and

power unit control
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The control law developed in this work for a nonlinear

system does not need to know the dynamic model of the

robot arm. However, it is known that the mathematical

representation of a dynamic model does not accurately

describe the actual behavior.

These nonlinearities and uncertainties of the model

along with variations in robot dynamics demonstrate the

robustness of the DTSMNAC controller. The stability of

the proposed control system was demonstrated analytically

via discrete Lyapunov’s stability theory (Sects. 4, 5).
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Fig. 5 Control actions, outputs

of the SCARA robot
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This proposal of intelligent control can be considered as

a general solution for the control of nonlinear systems and

in particular for the case of robotic systems or when the

dynamics is variable or has uncertainties in the model.

This field of research is wide open to the issues of

modeling, mathematical stability, convergence, and

robustness analysis of control systems which continue to

advance to design increasingly accurate controllers.
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Fig. 7 Trajectory followed by

the SCARA robot including a

DTSMNAC controller (solid

line) compared with the

trajectory made by the robot

including a conventional static

PID controller (dashed line)

Fig. 8 Instantaneous quadratic

error of the robot position.

Robot with DTSMNAC (solid

line) and robot with classical

PID (dashed line)
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Fig. 9 Evolution of the hF
weight parameters of the neural

DTSMNAC network during the

experiment
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7 Conclusion

An adaptive neural controller-based sliding mode control

has been proposed for the robust trajectory tracking of

SCARA robot manipulator with unknown nonlinear

dynamics. The core of this structure does not require

knowledge of the system dynamics and parameters to

compute the equivalent control, and an adaptive neural

system is developed to compensate further the system

uncertainty and knowledge incompleteness. This

scheme obtains robustness in the sense that the self-tuning

mechanism can automatically adjust the neural sliding

mode controller by using a learning algorithm. And the

global asymptotic stability of the algorithm is established

via the Lyapunov discrete stability conditions. When

matching with the predefined model occurs, the whole

control system becomes equivalent to a stable dynamic

system in the discrete-time domain.

The design can achieve the objective of discrete-time

adaptive sliding mode control and also ensure that the

output tracking error converges to zero.
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