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Abstract

Ultrasensitive response motifs, capable of converting graded stimuli into binary responses,

are well-conserved in signal transduction networks. Although it has been shown that a cas-

cade arrangement of multiple ultrasensitive modules can enhance the system’s ultrasensi-

tivity, how a given combination of layers affects a cascade’s ultrasensitivity remains an open

question for the general case. Here, we introduce a methodology that allows us to determine

the presence of sequestration effects and to quantify the relative contribution of each mod-

ule to the overall cascade’s ultrasensitivity. The proposed analysis framework provides a

natural link between global and local ultrasensitivity descriptors and it is particularly well-

suited to characterize and understand mathematical models used to study real biological

systems. As a case study, we have considered three mathematical models introduced by

O’Shaughnessy et al. to study a tunable synthetic MAPK cascade, and we show how our

methodology can help modelers better understand alternative models.

Introduction

Sigmoidal input-output response modules are well-conserved in cell signaling networks. They

might be used to implement binary responses, a key element in cellular decision-making pro-

cesses. Additionally, sigmoidal modules might be part of more complex structures, where they

can provide the nonlinearities which are needed in a broad spectrum of biological processes

[1, 2], such as multistability [3, 4], adaptation [5], and oscillations [6]. There are several molec-

ular mechanisms that are able to produce sigmoidal responses, such as inhibition by titration

[7, 8], zero-order ultrasensitivity in covalent cycles [9, 10], and multistep activation processes

such as multisite phosphorylation [11–15] or ligand binding to multimeric receptors [16].
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Sigmoidal curves are characterized by a sharp transition from low to high output following

a slight change in the input. The steepness of this transition is called ultrasensitivity [10]. In

general, the following operational definition of the Hill coefficient may be used to calculate the

overall ultrasensitivity of sigmoidal modules:

nH ¼
log ð81Þ

log ðEC90=EC10Þ
ð1Þ

where EC10 and EC90 are the signal values needed to produce an output of 10% and 90% of

the maximal response, respectively. These two values delimit the input dynamic range. The

Hill coefficient nH quantifies the steepness of a transfer function relative to the hyperbolic

response function which is defined as not ultrasensitive and has nH = 1. An nH = 1 means that

an 81-fold increase in the input signal is required to change the output level from 10% to 90%

of its maximal value. Response functions with nH> 1 need a smaller input fold increase to pro-

duce such output change, and are called ultrasensitive functions.

Global sensitivity measures, such as the one described by Eq 1 do not fully characterize sig-

moidal curves, y(x), because they average out local characteristics of the analyzed response

functions. Instead, these local features are well captured by the logarithmic gain or response
coefficient [17] defined as:

RðxÞ ¼
x
y
dy
dx
¼

d log ðyÞ
d log ðxÞ

ð2Þ

Eq 2 provides local ultrasensitivity estimates given by the local polynomial order of the

response function.

Mitogen activated protein kinase (MAPK) cascades

MAPK cascades are well-conserved. They can be found in a broad variety of cell fate decision

systems involving processes such as proliferation, differentiation, survival, development, stress

response and apoptosis [18]. They are composed of a chain of three kinases which sequentially

activate one another, through single or multiple phosphorylation events. An experimental and

mathematical study of this kind of systems was performed by Ferrell and collaborators, who

analyzed the steady-state response of a MAPK cascade that operates during the maturation of

oocytes in Xenopus laevis [19]. They developed a biochemical model to study the ultrasensitiv-

ity at each of the cascade’s layers and reported that the combination of ultrasensitive layers

into a multilayer structure enhanced the overall system’s ultrasensitivity [19]. Similary, Brown

et al. [20] showed that if the dose-response curve of a cascade, F(x), could be described as the

mathematical composition of functions, fis, each of which describes the behavior of each layer

in isolation (i.e, FðxÞ ¼ f isMKðf
is
MKKðf

is
MKKKðxÞÞÞ, then the local ultrasensitivity of the different lay-

ers combines multiplicatively:

RðxÞ ¼ RMKðf isMKKðf
is
MKKKðxÞÞ:RMKKðf isMKKKðxÞÞ:RMKKKðxÞ.

In connection with this result, Ferrell showed, for the special case of two Hill-type modules

of the form

y ¼ k
xnH

EC50nH þ xnH
ð3Þ

(where the parameter EC50 corresponds to the value of input that elicits half-maximal out-

put, and nH is the Hill coefficient), that the overall cascade global ultrasensitivity had to be less

than or equal to the product of the global ultrasensitivity estimators of each cascade’s layer, i.e

nH� nH,1 nH,2 [13].

Linking local and global ultrasensitivities in signaling cascades
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Hill functions of the form given by Eq 3 are normally used as phenomenological approxi-

mations of sigmoidal dose-response curves, even without any mechanistic basis [2]. However,

the composition of sigmoidal transfer functions, different from Hill-functions, may not satisfy

Ferrell’s inequality. In particular, a supra-multiplicative behavior (the ultrasensitivity of the

combination of layers is higher than the product of each of the layer’s ultrasensitivity) might

be observed for left-ultrasensitive response functions, i.e. functions that are steeper to the left

of the EC50 than to the right. In this case, the boost in the ultrasensitivity is caused by the

asymmetrical dose-response functional form (see [21] for details).

Since modules are usually embedded in larger networks, the actual input dynamic range of

the module could be constrained. We recently formalized this idea introducing the concept of

dynamic range constraint of a module’s dose-response function. It is a feature inherently linked

to cascading (coupling of modules in a multilayer architecture), and its consideration helps

explain the overall ultrasensitivity displayed by a given cascade [21]. Besides dynamic range

constraint effects, sequestration (i.e. the reduction in free active enzyme due to its accumula-

tion in complexes with its substrates) is another relevant process inherent to cascading. In this

case, sequestration leads to a reduction in the cascade’s ultrasensitivity [22–24]. Moreover,

sequestration may alter the qualitative features of any well-characterized module when inte-

grated with upstream and downstream components, thereby limiting the validity of module-

based descriptions [25–27].

All these considerations qualify the concept of modularity, which requires the isolation of a

particular processing units (or module), and highlight the importance of studying their behav-

ior when embedded in large networks. Although there has been significant progress in the

understanding of kinase cascades, how the combination of layers affects the cascade’s ultrasen-

sitivity remains an open question for the general case.

In the present work, we have developed a method to describe the overall ultrasensitivity of a

kinase cascade in terms of the effective contribution of each module. We used our approach to

analyze a recently presented synthetic MAPK cascade experimentally engineered by

O’Shaughnessy et al. [28].

O’Shaughnessy et al. [28] expressed a mammalian MAPK cascade (a Raf-MEK-ERK sys-

tem) in the yeast S. cerevisiae modified so as to be able to activate Raf with the hormone estra-

diol. In this setup, they measured input output dose responses and made use of a mechanistic

mathematical to help understand the results. Their model was very similar in spirit to the

Huang-Ferrell model [19] with two important differences: a) they did not include phospha-

tases, and b) they explicitly modeled synthesis and degradation of all species. Interestingly,

they reported that the multilayer structure of the analyzed cascades accumulated ultrasensitiv-

ity supramultiplicatively, and suggested that a cascading effect and not any other process (such

as multi-step phosphorylation, or zero-order ultrasensitivity) was responsible for the supra-

multiplicative behavior. They called this mechanism de-novo ultrasensitivity generation. We

found the proposed mechanism unexpected and thus we wanted to characterize it within our

analysis framework.

The paper is organized as follows. First, we present a formal connection between local and

global descriptors of a module’s ultrasensitivity for the case of a cascade composed of N units.

We then introduce the notion of Hill input’s working range in order to analyze how a module

embedded in a cascade contributes to the overall system’s ultrasensitivity. Next, we describe a

simple methodology to identify the presence of sequestration effects that might affect the sys-

tem ultrasensitive behavior. Finally, as a case study, we present the O’Shaughnessy cascade

analysis. We conclude by presenting a summarizing discussion and the conclusions of the

work.

Linking local and global ultrasensitivities in signaling cascades
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Results

Linking local and global ultrasensitivity estimations

The concept of ultrasensitivity describes a module’s ability to amplify small changes in input

values into larger changes in output values. It is customary to quantify and characterize the

extent of the amplification both globally, using the Hill coefficient nH defined in Eq 1, and

locally, using the response coefficient, R(I), as a function of the module’s input signal I (Eq 2),

We found a simple relationship between both descriptions considering the logarithmic ampli-

fication coefficient Af
a;b, defined as:

Af
a;b ¼

log ðf ðbÞÞ � log ðf ðaÞÞ
log ðbÞ � log ðaÞ

ð4Þ

Af
a;b describes the change (in a logarithmic scale) produced in the output when the input

varies from a to b. For instance, Af
a;b ¼ 0:5 for an hyperbolic function evaluated between the

inputs that result in 90% and 10% of the maximal output. In this case, the two inputs consid-

ered delimit the input range that is relevant for the estimation of the Hill coefficient nH. We

call this input interval the Hill working range (HWR) (see Fig 1A and 1B).

Taking into account Eq 4, the parameter nH can be rewritten as follows,

nH ¼
log ð81Þ

log ðEC90=EC10Þ
¼

2 log ð0:9=0:1Þ

log ðEC90=EC10Þ
¼ 2Af

EC10;EC90 ¼
Af

EC10;EC90

Ahyp
EC10;EC90

ð5Þ

Consequently, the Hill coefficient may be interpreted as the ratio of the logarithmic amplifi-

cation coefficients of the function of interest and an hyperbolic function, evaluated in the cor-

responding HWR.

It is worth noting that the logarithmic amplification coefficient that appears in Eq 5 equals

the slope of the line that passes through the points (EC10, f(EC10)) and (EC90, f(EC90)) in a

log-log scale. Thus, this quantity equals the average response coefficient calculated over the

Fig 1. Hill function dose-response. Schematic representation of Hill-type dose-response curves, in log-linear (A) and log-log scale

(B). The EC10 and EC90 are the inputs needed to produce an output of 10% and 90% of the maximal response (Omax), respectively.

The Hill working range, HWR, is the input range relevant for the calculation of the system’s nH. For isolated modules, the HWR =

[EC10, EC90]. Panel (C) displays the local ultrasensitivity (the response coefficient R) as a function of input. Note that for Hill

functions, inputs much smaller than the EC50 have Rs around the Hill coefficient.

https://doi.org/10.1371/journal.pone.0180083.g001
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interval of the HWR = [EC10, EC90], in logarithmic scale (see Fig 1C). If follows that

nH ¼ 2Af
EC10;EC90 ¼ 2

R log ðEC90Þ

log ðEC10Þ
Rf ðIÞdð log IÞ

log ðEC90Þ � log ðEC10Þ
¼ 2hRf iEC10;EC90 ¼

hRf iEC10;EC90

hRhypiEC10;EC90

ð6Þ

where hXia, b denotes the mean value of the variable x over the range [a, b].

This last equation explicitly links the local and global ultrasensitivity descriptions.

Ultrasensitivity in function composition

Next, we generalized the above result to express the overall global ultrasensitivity of a multi-

layer cascade in terms of logarithmic amplification coefficients. We first considered two cou-

pled ultrasensitive modules, disregarding effects of sequestration of molecular components

between layers. In this case, the expression for the system’s dose-response curve, F, results

from the mathematical composition of the functions, fi, each of which which describes the

input/output relationship of isolated modules i = 1, 2:

FðI1Þ ¼ f2ðf1ðI1ÞÞ ð7Þ

Using Eq 5:

nH ¼
log ð81Þ

log ðX901=X101Þ
¼ 2

log ð0:9=0:1Þ

log ðX902=X102Þ

zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{
n2

log ðX902=X102Þ

log ðX901=X101Þ

zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{
n1

¼ 2Af2
X102 ;X902

zfflfflfflfflffl}|fflfflfflfflffl{
n2

Af1
X101 ;X901

zfflfflfflfflffl}|fflfflfflfflffl{
n1

¼ 2 hR2iX102 ;X902

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{
n2

hR1iX101 ;X901

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{
n1

¼ 2 n2 n1 ð8Þ

where X10i and X90i are the boundaries of the HWR of the composite system, i.e. the input val-

ues for the i-layer that produce a 10% and 90% of the system’s maximal response, respectively

(see Fig 2).

When composing two functions, there are two extreme scenarios. In the first, the

maximum output level of the first module may exceed by far the EC50 of the second module:

O1,max� EC502 (Fig 2A). In this case O2,max equals the maximum output level of module 2 in

isolation, X102 and X902 match the EC10 and EC90 levels of module 2 in isolation and the

HWR of module 1 is located in the input region below EC501 (Fig 2A). In the second scenario,

the maximum output of the first module may be lower than the EC50 of the second module:

O1,max< EC502 (Fig 2B). Here, the HWR [X102, X902] is shifted with respect to the input

range [EC10, EC90] that would have been considered for module 2, if analyzed in isolation. As

a result, module-1’s HWR is centered at values higher than the corresponding EC50 level.

It follows from Eq 8 that the system’s Hill coefficient nH depends on the product of two

factors, ν1 and ν2, which characterize local average sensitivities over the relevant input region

for each layer: [X10i, X90i], with i = 1, 2 (see Fig 2). We call coefficient νi the effective response
coefficient of layer-i.

For the more general case of a cascade of N modules we found that:

nH ¼ 2hRNiX10N ;X90N

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{
nN

hRN� 1iX10N� 1 ;X90N� 1

zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{
nN� 1

. . . :hR1iX101 ;X901

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{
n1

¼ 2 nN nN� 1 . . . n1

ð9Þ

This last equation shows a very general result: the overall nH of a cascade is a multiplicative

combination of the νi of each module. Therefore, the effective response coefficients allow us to

characterize the relative contribution of each layer to the overall system’s ultrasensitivity.

Linking local and global ultrasensitivities in signaling cascades
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It is worth noting that the factor two in Eq 9 arises from the average response coefficient of

a reference hyperbolic curve that appears in the original definition of the Hill coefficient (see

Eq 6). Hence, the ultrasensitivity character of the cascade remains a system level feature, as it

involves the product of the effective coefficient of all layers, in units of the logarithmic amplifi-

cation coefficient of a single reference hyperbolic curve.

The effect of the Hill’s working range in multi-tiered systems

According to Eq (9) the HWR of a module delimits the relevant region of inputs over which

local-ultrasensitivity features of module’s response functions are combined to build up the

overall system behavior. It is thus a significant parameter to get insight into the overall ultra-

sensitivity of multilayered structures. In this section we show, for different types of dose-

response curves, how the HWR depends on the way that cascade layers are actually coupled.

Composition of Hill functions. Let’s start by considering two coupled ultrasensitive

modules of the Hill type. As explained above, two different regimes can be identified depend-

ing on whether the upstream module’s maximum output is large enough to fully activate the

downstream unit or not (Fig 2A or 2B, respectively).

Downstream saturation regime. When O1,max� EC502 (Fig 2A), X102 and X902 are

equal to the respective EC102 and EC902 levels. This corresponds to what we call The down-
stream saturation regime. In this scenario, the HWR of module-2 does not differ from the one

corresponding to the isolated case, and thus n2 ¼ hR2iX102 ;X902
¼ nis

2
=2. In the last expression nis

2

refers to the Hill coefficient of module-2 when considered in isolation. On the other hand

the HWR of module-1 tends to be located at low input-values for increasing levels of the ratio

O1,max/EC502. In this region, the response coefficient of the Hill functions reaches its highest

values, R1 � nis
1

(see Fig 1C). Thus, when calculating the response coefficient, we obtained

Fig 2. Hill functions composition. Schematic response function diagrams for two different compositions of a pair of Hill-type

ultrasensitive modules. In each panel, the dose-response function of the first module is displayed in the lower semi-plane:

the downward vertical axis representing the first module’s input signal while its response function, which corresponds to

the second module’s input, is displayed along the horizontal axis. The dose-response curve for the second module is

displayed in the upper-plane. In (A) the maximum output of the first module is higher than the EC50 of the second module

(O1,max� EC502), while in (B), it is lower than that value (O1,max < EC502).

https://doi.org/10.1371/journal.pone.0180083.g002
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n1 ¼ hR1iX101 ;X901
¼ nis

1
. Finally, from Eq 9, it follows that

nH ¼ 2:n1:n2 ¼ 2:nis
1
:nis

2
=2 ¼ nis

1
:nis

2
:

Therefore, the cascade behaves multiplicatively in this regime, which is consistent with Fer-

rell’s results [13]

Upstream saturation regime. When O1,max≲ EC502 (ie, when the upstream module’s

maximal output does not fully activate the downstream module), different behaviors could

arise depending on module-2 ultrasensitivity characteristics at low input values.

For instance, let’s consider that the dose-response of module-2 has an n2 = 1. This means

that the response is linear at low input values (see Fig 3). This linearity causes X10l
2

and X90l
2

(X102 and X902 of the linear curve) to match the %10 and %90 of O1,max. Therefore, X10l
1

and

X90l
1

equal EC101 and EC901, respectively, centering the HWR around the EC501. Further-

more, as a result of the linearity displayed by the response function of module-2 in this regime,

the system’s overall behavior relies exclusively on module-1’s ultrasensitivity and, given the lin-

earity of module-2, it shows a multiplicative behavior. Applying Eq 9

nH ¼ 2 hR2iX102 ;X902

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{
n2

hR1iX101 ;X901

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{
n1

¼ 2 1
z}|{

n2

n1=2
zffl}|ffl{

n1

¼ n1

On the other hand, when n2 > 1, the response of module-2 follows a power-law at low

input values (see Fig 3). This non-linearity produces a shift in the working range of module-2

towards higher values, which centers the HWR of module-1 [X101, X901] around input

values higher than EC501. Furthermore, given that R1 decreases with I1 (see Fig 1C), the shift

Fig 3. Schematic diagrams of the response function when composing a Hill function in module-1,

with a linear function (in green) or a power function (in blue) in module-2.

https://doi.org/10.1371/journal.pone.0180083.g003
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in module-1’s working range results in ν1 = hR1iX101, X901 < n1/2, and consequently,

nH ¼ 2 hR2iX102 ;X902

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{
n2

hR1iX101 ;X901

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{
n1

< 2 n2

z}|{
n2

n1=2
zffl}|ffl{

n1

¼ n2n1

Therefore, whenever n2 > 1, for the upstream saturation condition (O1,max< EC502), we

found that the system’s ultrasensitivity is submultiplicative, consistent with Ferrell’s results

[13].

Golbeter-Koshland functions composition. The exact functional form of the response

curve of an ultrasensitive module could affect the overall system’s ultrasensitivity in cascade

architectures. In particular, we found that a system composed of two modules characterized by

Golbeter-Koshland, GK, rather than Hill response functions [9] shows a qualitatively different

behavior.

GK functions appear in the mathematical characterization of enzymatic covalent modifica-

tion cycles (such as phosphorylation-dephosphorylation) when the enzymes are saturated

(see S1 Text). The detailed functional form of the transfer function depends on the operating

regimes of the phosphorylation and dephosphorylation processes [29]. For cases where the

phosphatases, but not the kinases, work in saturation, we observed that GK functions present

input regions with response coefficients higher than their overall nH [21] (see Fig 4A–4C).

Hence, whenever their HWR is located in the region of largest local ultrasensitivity, these func-

tions are able to contribute with more effective ultrasensitivity than what is expected from

their global ultrasensitivity descriptors. As a result, cascades involving GK functions may

exhibit supra-multiplicative behavior.

For a two tier arrangement of this kind of modules, in downstream saturation regime, mod-

ule-1’s HWR is set in its linear response regime (i.e. R1 = 1), and thus the GK function does

not contribute to the overall system’s ultrasensitivity (Fig 5A). However, we found that there is

a particular O1,max/EC502 ratio value for which module-1’s HWR spans the most ultrasensitive

region of the module’s transfer function, producing an effective response coefficient, ν2, that is

larger even than the overall ultrasensitivity of the second GK curve in isolation (i.e. ν2� n2). In

this case, the system exhibits a supra-multiplicative behavior: nH ¼ 2:n1:n2 > nis
1
:nis

2
(Fig 5B).

Comparing the Hill and GK cases, our analysis highlights the impact of the detailed func-

tional form of a module’s response curve on the overall system’s ultrasensitivity. Thus, local

ultrasensitivity features of the involved transfer functions are of utmost importance in

cascades.

Fig 4. Schematic representations of Goldbeter-Koshland dose-response curves with K1 ≳ 1 and K2� 1 (see equation in S1 Text) shown in

log-linear scale (A) and in log-log scale (B). The corresponding response coefficient (C) shows no local ultrasensitivity for low input values

(i.e. R * 1), but displays high local ultrasensitivity, even larger than the module’s Hill coefficient nH, for intermediate input regions.

https://doi.org/10.1371/journal.pone.0180083.g004
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Disentangling the contribution to the observed ultrasensitivity of HWR

and sequestration effects

As we have shown in the preceding sections, the shift of HWRs as a consequence of module

coupling could be at the core of the system’s ultrasensitivity. In addition, sequestration effects,

affecting free active enzyme concentrations due to the formation of intermediary complexes,

could also play an important role in this respect [22–24]. Sequestration and dynamic range

constraints not only contribute with their individual complexity, but also usually occur

together, thus making it more difficult to identify their individual effective contribution to the

system’s overall ultrasensitivity.

In order to determine the impact of these two factors, we simultaneously considered two

approximations of the system under study (see S1 Fig). For a given model, we first considered

the mathematical composition of each module’s response function (e.g. for a MAPK cascade

Fnon� seq
MAPK ðxÞ ¼ f isMAPKðf

is
MAPKKðf

is
MAPKKKðxÞÞÞ, see S1B Fig). We called this expression Fnon—seq, since

sequestration effects were completely neglected in this transfer function. In addition, we also

estimated the response function Fseq, obtained by numerical integration of the the correspond-

ing mechanistic model of the cascade S1C Fig). Fseq includes, if present, sequestration effects.

In this way, the first estimation, Fnon—seq, allowed us to analyze to what extent the existence

of HWRs impinges on ultrasensitivity features of the cascade arrangement. Fseq not only incor-

porates HWR resetting effects, but also helps assessing the impact of potential sequestration

effects in the system (see S1 Fig).

Ultrasensitivity in O’Shaughnessy et al. models

In this section, we revisited three different mathematical models proposed by O’Shaughnessy

et al. (Fig 6) to disentangle the origin of the ultrasensitive behavior they observed in a

Fig 5. Schematic response function diagrams for two different compositions of two GK ultrasensitive modules are shown in

panels (A) and (B). Axes were arranged as explained in Fig 2’s caption. In panel (A) O1,max� EC502, and module-1’s HWR covers the

input region below EC501, a region in which the curve shows no local ultrasensitivity (R1 = 1). In panel (B) we show a special scenario

where the O2,max/EC502 ratio was tuned in order to set module-1’s HWR in its most ultrasensitive region.

https://doi.org/10.1371/journal.pone.0180083.g005
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mammalian MAPK cascade expressed in yeast [28]. In particular, we show how we used the

methodology and concepts introduced so far to better understand mathematical descriptions

of real cascades.

The three analyzed mathematical models were a three-tier dual-step phosphorylation cas-

cade, a phenomenological scheme that lumps together the Raf and MEK layers, and finally a

three-layer single-step phosphorylation cascade (Fig 6(A), 6(B) and 6(C), respectively, for

model details see S2 Text).

Ultrasensitivity in the dual-step phosphorylation model. A sketch of this model is

shown in Fig 6A. We defined the output of a module and the input to the next as the total

active form of a species, including complexes with the next layer’s substrates. However, we

excluded complexes formed by same-layer components (such as a complex between the phos-

phorylated kinase and its phosphatase), since these species are ‘internal’ to each module. By

doing this, we were able to consistently identify layers with modules (the same input/output

definition was used by Ventura et al [25]).

The analysis of Fnon—seq, i.e. the mathematical composition of the response functions of the

isolated modules, allowed us to assess the effects of coupling modules (the cascading effect). We

observed that module coupling resulted in HWRs so that the overall system ultrasensitivity

was nnon� seq
H ¼ 3:91. This value was lower than the product of each module’s Hill coefficient

(nis
1
nis

2
nis

3
¼ 5:02), and thus the cascade behaved sub-multiplicatively.

Notably, sequestration did not affect the ultrasensitivity of this system: for both implemen-

tations of the system, Fnon—seq and Fseq, we obtained nSeq
H ¼ nNon� Seq

H ¼ 3:91. To understand why

this is the case, we refer to Fig 7, which shows the estradiol-act:Raf, act:Raf-act:MEK, and act:

MEK-act:ERK response functions for the dual-step phosphorylation model. The effect of

sequestration was negligible for the MAPKK and MAPK layers, given the overlap observed for

the corresponding Fnon—seq and Fseq response functions (Fig 7B and 7C). Only for the

MAPKKK layer, sequestration produced a shift between these curves (Fig 7A). However, this

shift did not result in changes in the ultrasensitivity of the system because, unexpectedly, the

Fig 6. O’Shaughnessy et al. cascades scheme. The three models of the mammalian MAPK cascade expressed in yeast. Represented with

a dual-step phosphorylation (A), with the Raf and MEK layers replaced by a Hill Function (B) whose parameters were obtained by fitting the

function to the active MEK dose-response, and a MAPK cascade with a single-step phosphorylation (C). In each case, estradiol is the input

and dually phosphorylated ERK is the output.

https://doi.org/10.1371/journal.pone.0180083.g006
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corresponding HWRs changed in a manner that compensated the sequestration effect, so that

the effective ultrasensitive coefficients remained unchanged (i.e. n
Seq
Estradiol� Raf :act ¼ n

Non� Seq
Estradiol� Raf :act).

Hence, we conclude that in this particular mathematical model, even though sequestration

effects existed, the overall sub-multiplicative behavior was only due to a shift in the position of

the HWR for the first and second layers of the cascade.

We obtained similar conclusions from our analysis of the single step phosphorylation cas-

cade (data not shown).

The Raf-MEK lumped model. In order to support the hypothesis that a cascading effect

contributed to the system ultrasensitivity, O’Shaughnessy et al. [28] analyzed the MAPK cas-

cade with the Raf-MEK levels replaced by one Hill function (Fig 6 panels A-B). They observed

that such a reduced two-layer cascade had a lower ultrasensitivity than the original with three

layers, and proposed that the presence of intermediate species (MEKpp complexes in the sec-

ond layer, omitted after the replacement) were the origin of this ultrasensitivity.

Fig 7. Dose-response analysis for the dual step phosphorylation model. Transfer functions for each of the three layers of the MAPK cascade (A-C),

obtained considering for each layer i) the isolated module (Is, dotted blue), ii) a mechanistic implementation of the model (Seq, dashed-turquoise) and iii)

the mathematical composition of isolated response functions (Non-Seq, continous red). The corresponding response coefficient curves are shown in

panels (D-F). Turquoise dashed vertical lines show the X10i and X90i values of each layer (i.e. mechanistic scheme), while red solid vertical lines mark the

layer’s X10i and X90i associated to the composition of response curves of each module (i.e. Fnon—seq).

https://doi.org/10.1371/journal.pone.0180083.g007

Linking local and global ultrasensitivities in signaling cascades

PLOS ONE | https://doi.org/10.1371/journal.pone.0180083 June 29, 2017 11 / 18

https://doi.org/10.1371/journal.pone.0180083.g007
https://doi.org/10.1371/journal.pone.0180083


In order to understand the ultimate origin of this behavior, we compared the local and

global ultrasensitivity descriptors in both cascades. Like O’Shaughnessy et al. [28], we observed

a reduction of the cascade’s ultrasensitivity when the Raf and MEK levels were aggregated into

a Hill function, from nH = 3.91 to nfhill
H ¼ 2:7. As we explained above (Eq 9), Hill coefficients

can be written as a function of the effective response coefficients. For the original and the

reduced cascades:

nH ¼ 2 nRaf nMEK nERK ¼ 2 nRaf � MEK nERK ð10Þ

nfhill
H ¼ 2 n

fhill
Raf � MEK n

fhill
ERK ð11Þ

Given that the Hill function used to lump the two top layers fits rather well the Estradiol-

MEK curve (Fig 6A), the HWR of the ERK layer was the same in the lumped and original

three-layer cascade models. Therefore nERK ¼ n
fhill
ERK . Then, the fact that nH > nfhill

H meant neces-

sarily that nRaf � MEK > n
fhill
Raf � MEK .

Hence, the observed reduction in the overall ultrasensitivity of the reduced-layer model was

due to a reduction of the effective response coefficient of the Hill approximating function used

to aggregate the Raf-MEK layers, n
fhill
Raf � MEK , relative to the effective response coefficient of the

originial Estradiol-MEK response curve, νRaf—MEK (Fig 6B). We calculated the effective

response coefficient in each case, obtaining a νRaf—MEK = 1.58 and a νHill func = 1.09, consistent

with our expectations. The combined Raf-MEK layers have a Hill coefficient of

nRaf � MEK
H ¼ nfHill

H ¼ 1:14. This indicated that while the Raf-MEK system contributes to the orig-

inal cascade with an ultrasensitivity higher than its Hill coefficient, this was not the case for the

reduced-layer model.

The cause of this behavior becomes clear analyzing Fig 8. Even though the dose-response of

active MEK and the Hill approximating function appeared to be identical, there were strong

differences in their local ultrasensitivity behavior. This was particularly true in the low input

region, where the HWR happened to be located. In this region, the active MEK curve pre-

sented a local ultrasensitivity larger than the Hill function counterpart. Therefore, the replace-

ment by a Hill function produced a reduction in the corresponding Hill coefficient. In this

way, despite the high-quality of the fitting adjustment (Residual Standard Error = 2.6), the Hill

function approximation introduced significant alterations in the system’s ultrasensitivity. This

may be considered a technical defect.

This is a remarkable result as it means that a well approximating function from the standard

minimization procedure perspective, might have a non-trivial impact on the qualitative con-

clusions to be drawn from a system’s behavior.

The single-step phosphorylation model. In order to probe the origin of the ultrasensitiv-

ity observed in the original cascade (Fig 6A), O’Shaughnessy et al. constructed an auxiliary

model in which dual-step phosphorylation layers where replaced by single-step phosphoryla-

tion layers. This simplified cascade was still ultrasensitive. Because in this new setting the cas-

cade lacked multiple activation processes, competitive inhibition, and zero-order

ultrasensitivity (due to the absence of phosphatases), they claimed that there were no ultrasen-

sitivity sources other than the kinase-cascade architecture itself. Thus, they proposed that a cas-
cading effect generated ultrasensitivity de-novo.

When we re-analyzed this simplified model, despite their claim, we observed that the MEK

and ERK modules considered in isolation were ultrasensitive (nMEK = 1.54 and nERK = 1.76).

Synthesis and degradation were the key factors to understand the origin of their ultrasensitiv-

ity. We realized that these layers (Fig 9A) were in fact mathematically analogous to a covalent
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cycle (Fig 9B) because there was an implicit channel from the activated protein towards its

inactive form via the degradation of the active protein and the production of the inactive form.

Given that degradation is a linear reaction with respect to the amount of activated protein, its

mathematical description is equivalent to a dephosphorylation reaction operating in a first

order regime. Equivalently, it can be considered as a limit case where the complex formed by

the active protein and phosphatase instantly disassembles (i.e. K2!1)

0

100
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1e−01 1e+01 1e+03 1e+05

0.0

0.5

1.0

1.5

2.0

1e−01 1e+01 1e+03 1e+05

Fig 8. Fitting by a Hill function may obscure relevant behaviors. Dose-response curve of active MEK in

O’Shaughnessy model compared with its fit by a Hill function (A). Respective response coefficient (B). Even

though the dose-responses of active MEK and the Hill function appear to be similar (A), there are strong

differences in their local ultrasensitivity.

https://doi.org/10.1371/journal.pone.0180083.g008
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Therefore, the one-step system depicted in Fig 9 could in fact be described by a Goldbeter-

Koshland (G-K) [9] function with

K1 ¼
Kdeg þ b1 þ k1

XTa1

and K2 � 1 ð12Þ

We plotted in Fig 9C the steady state transfer function of the ERK module in isolation and

the corresponding centered G-K function (see S1 Text). There was a clear agreement between

both functions. In the light of these results, we concluded that the single-step cascade’s ultra-

sensitivity did not arise de novo from a cascading effect but from a hidden G-K ultrasensitivity

process in the MEK and ERK layers.

Discussion

The study of signal transmission and information processing inside the cell has been, and still

is, an active field of research. In particular, the analysis of signaling cascades has received a lot

of attention as they are well-conserved motifs that can be found in many cell fate decision sys-

tems. The aim of this paper was to propose a framework to characterize and better understand

mathematical models used to study real biological systems. For a given mathematical model,

the methodology we described, allowed us to disentangle the origin of the predicted ultrasensi-

tivity behavior in terms of HWR repositioning and/or sequestration effects acting on the mod-

ular cascade architecture of interest. In this respect, even though we have not addressed the

Fig 9. Equivalence between a single-step layer in O’Shaughnessy model and a covalent modification

cycle. O’Shaughnessy et al. single-step layer (A) and the equivalent covalent modification cycle (B). (C)

Steady state transfer functions of ERK layer in isolation of the O’Shaughnessy single-step cascade

(blue dashed line), compared to a centered Goldbeter-Function with equivalent parameters (red solid line)

(K1 = 0.04 and K2 = 1000, see S1 Text).

https://doi.org/10.1371/journal.pone.0180083.g009
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general and important problem of resolving the working principles acting on a given real cas-

cade, we did provide a useful tool for modelers to better understand and perform educated

choices between modeling alternatives.

It is also worth noting that dynamical features of signal transduction systems might play an

important role on the system-level displayed behavior. In order to analyze signaling cascades

whenever this happens, one should not only deal with the coupling of modular input-output

response functions but also with their characteristic time-scales. Despite of this, a steady state

analysis, such as the one presented here, still offers useful information and remains a sensible

approximation whenever there is no effective time-scale separation between modules.

In this work we have found a mathematical expression (Eq 6) that linked local and global

ultrasensitivity descriptors in a fairly simple way. Moreover, we have provided a general result

to handle the case of a linear arrangement of an arbitrary number of such modules (Eq 9). The

value of the resulting expression lies in that not only it captured previous results, like Ferrell’s

inequality, but also threw light on the mechanisms involved in ultrasensitivity generation. For

instance, the existence of supramultiplicative behaviors in signaling cascades have been

reported by several authors [23, 28] but in many cases the ultimate origin of supramultiplica-

tivity remained elusive. Our framework suggested in a simple way a general scenario where

supramultiplicative behavior arises. This could occur when, for a given module, the corre-

sponding HWR is located in an input region with a local ultrasensitivity higher than the global

ultrasensitivity of the respective dose-response curve.

Notably, within the proposed analytical framework, we were able to decompose the overall

global ultrasensitivity in terms of a product of single layer effective response coefficients. These

new parameters were calculated as local-sensitivity values averaged over meaningful working

ranges, the HWRs, which permitted the assessment of the effective contribution of each mod-

ule to the system’s overall ultrasensitivity. Of course, the reason why we could present an exact

general equation for a system-level feature in terms of individual modular information was

that in fact system-level information was implicitly used in the definition of the HWR that

entered Eq 9. The specific coupling between ultrasensitive curves sets the corresponding

HWRs, thus determining the effective contribution of each module to the cascade’s ultrasensi-

tivity. This process, which we called HWR setting, has already been noticed by several authors

[13, 20, 21, 23, 30–32], but this is the first time that a mathematical framework, like the one we

present here, has been proposed for it.

We used our methodology to revisit the different mathematical models considered by

O’Shaughnessy et al. to analyze their tunable synthetic MAPK system [28], and we were able to

bring a new perspective to the conclusions that could be drawn from such mathematical con-

structs. For instance, we proved that sequestration effects played no role in the observed sys-

tem ultrasensitivity for the dual-step and single-step phosphorylation models. We were also

able to analyze the auxiliary model in which the Raf and MEK layers were replaced by a Hill

function that was coupled to the ERK layer. In this case, even though the original Estradiol-

MEK input-output response curve could be relatively well fitted and global ultrasensitivity fea-

tures were well captured, the mere replacement by a Hill function produced a strong decrease

in the system’s ultrasensitivity. We found that the functional form of the Hill function failed to

reproduce the original local ultrasensitivity features that were in fact the ones that, due to the

particular HWR acting in this case, were responsible for the overall systems ultrasensitivity

behavior. The analyzed case was particularly relevant, since it highlighted potential technical

problems that could arise as a consequence of the inclusion of approximating functions in

mathematical models.
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Conclusions

In this article we provided a framework for characterizing mathematical models used to

describe real biological systems of ultrasensitive character. We presented a mathematical link

between global and local ultrasensitivity estimators for a sigmoidal unit and generalized these

results for a cascade of such units. Using the introduced concept of HWR, the overall system’s

ultrasensitivity could be defined in terms of effective contributions of each cascade layer.

Moreover, we were able to explain the origin of the ultrasensitivity in a given mathematical

model in terms of HWR repositioning and/or sequestration effects.

Our framework may help to understand the origin of ultrasensitivity in general multilayer

structures, and in this sense it could be useful in the design of synthetic systems [33–35]. For

instance, given that a specific HWR setting (targeting the region of maximal local ultrasensitiv-

ity of a given unit in a cascade) is a key factor in producing high overall ultrasensitivity, our

methodology can be used to guide the tuning of a single module’s features, as well as its cou-

pling with other units to form a cascade.
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S1 Fig. Modular and system representation of a MAP kinase cascade. Each layer in isolation

is composed of single or multiple covalent cycles. Each dose-response curve can be ultrasensi-

tive as a result of zero-order mechanisms and/or multi-activation processes (A). The cascade

transfer function, in a scenario in which sequestration is not taken into account (Fnon—seq),

may be obtain by the mathematical composition of each module’s transfer function considered

in isolation f isi (B). When the sequestration effect is taken into account, the layers embedded in

the MAP kinase cascade may have a different dose-response curve from the isolated case (C).

(EPS)

Acknowledgments

Work was supported by grants PICT2010-2248 and PICT2013-2210 from the Argentine

Agency of Research and Technology (ANPCyT), grant 1R01GM097479-01, subaward

0000713502 from NIGMS-NIH, and grant 20020130100582BA from University of Buenos

Aires. We want to thanks Andreas Constantinou for helpfull corrections in the manuscript.

Author Contributions

Conceptualization: Edgar Altszyler, Alejandro Colman-Lerner, Ariel Chernomoretz.

Formal analysis: Alejandro Colman-Lerner, Ariel Chernomoretz.

Funding acquisition: Alejandro Colman-Lerner, Ariel Chernomoretz.

Investigation: Edgar Altszyler, Ariel Chernomoretz.

Methodology: Edgar Altszyler, Alejandra C. Ventura, Ariel Chernomoretz.

Supervision: Ariel Chernomoretz.

Validation: Alejandra C. Ventura, Ariel Chernomoretz.

Linking local and global ultrasensitivities in signaling cascades

PLOS ONE | https://doi.org/10.1371/journal.pone.0180083 June 29, 2017 16 / 18

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0180083.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0180083.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0180083.s003
https://doi.org/10.1371/journal.pone.0180083


Writing – original draft: Edgar Altszyler, Ariel Chernomoretz.

Writing – review & editing: Alejandra C. Ventura, Alejandro Colman-Lerner, Ariel

Chernomoretz.

References

1. Ferrell JE, Ha SH. Ultrasensitivity part III: cascades, bistable switches, and oscillators. Trends in bio-

chemical sciences. 2014; 39(12):612–618. https://doi.org/10.1016/j.tibs.2014.10.002 PMID: 25456048

2. Zhang Q, Bhattacharya S, Andersen ME. Ultrasensitive response motifs: basic amplifiers in molecular

signalling networks. Open biology. 2013; 3(4):130031. https://doi.org/10.1098/rsob.130031 PMID:

23615029

3. Angeli D, Ferrell JE, Sontag ED. Detection of multistability, bifurcations, and hysteresis in a large class

of biological positive-feedback systems. Proceedings of the National Academy of Sciences. 2004;

101(7):1822–1827. https://doi.org/10.1073/pnas.0308265100

4. Ferrell JE Jr, Xiong W. Bistability in cell signaling: How to make continuous processes discontinuous,

and reversible processes irreversible. Chaos: An Interdisciplinary Journal of Nonlinear Science. 2001;

11(1):227–236. https://doi.org/10.1063/1.1349894

5. Srividhya J, Li Y, Pomerening JR. Open cascades as simple solutions to providing ultrasensitivity and

adaptation in cellular signaling. Physical biology. 2011; 8(4):046005. https://doi.org/10.1088/1478-

3975/8/4/046005 PMID: 21566270

6. Kholodenko BN. Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-acti-

vated protein kinase cascades. European Journal of Biochemistry. 2000; 267(6):1583–1588. https://

doi.org/10.1046/j.1432-1327.2000.01197.x PMID: 10712587

7. Buchler NE, Louis M. Molecular titration and ultrasensitivity in regulatory networks. Journal of molecular

biology. 2008; 384(5):1106–1119. https://doi.org/10.1016/j.jmb.2008.09.079 PMID: 18938177

8. Buchler NE, Cross FR. Protein sequestration generates a flexible ultrasensitive response in a genetic

network. Molecular systems biology. 2009; 5(1):272. https://doi.org/10.1038/msb.2009.30 PMID:

19455136

9. Goldbeter A, Koshland DE. An amplified sensitivity arising from covalent modification in biological sys-

tems. Proceedings of the National Academy of Sciences. 1981; 78(11):6840–6844. https://doi.org/10.

1073/pnas.78.11.6840

10. Ferrell JE, Ha SH. Ultrasensitivity part I: Michaelian responses and zero-order ultrasensitivity. Trends in

biochemical sciences. 2014; 39(10):496–503. https://doi.org/10.1016/j.tibs.2014.08.003 PMID:

25240485

11. Ferrell JE, Ha SH, et al. Ultrasensitivity part II: multisite phosphorylation, stoichiometric inhibitors, and

positive feedback. Trends in biochemical sciences. 2014; 39(11):556–569. https://doi.org/10.1016/j.

tibs.2014.09.003 PMID: 25440716

12. Ferrell JE. Tripping the switch fantastic: how a protein kinase cascade can convert graded inputs into

switch-like outputs. Trends in biochemical sciences. 1996; 21(12):460–466. https://doi.org/10.1016/

S0968-0004(96)20026-X PMID: 9009826

13. Ferrell JE. How responses get more switch-like as you move down a protein kinase cascade. Trends in

biochemical sciences. 1997; 22(8):288–289. https://doi.org/10.1016/S0968-0004(97)82217-7 PMID:

9270299

14. Markevich NI, Hoek JB, Kholodenko BN. Signaling switches and bistability arising from multisite phos-

phorylation in protein kinase cascades. The Journal of cell biology. 2004; 164(3):353–359. https://doi.

org/10.1083/jcb.200308060 PMID: 14744999

15. Gunawardena J. Multisite protein phosphorylation makes a good threshold but can be a poor switch.

Proceedings of the National Academy of Sciences of the United States of America. 2005; 102(41):

14617–14622. https://doi.org/10.1073/pnas.0507322102 PMID: 16195377

16. Rippe K. Analysis of protein-DNA binding at equilibrium. BIF futura. 1997; 12:20–26.

17. Kholodenko BN, Hoek JB, Westerhoff HV, Brown GC. Quantification of information transfer via cellular

signal transduction pathways. FEBS letters. 1997; 414(2):430–434. https://doi.org/10.1016/S0014-

5793(97)01018-1 PMID: 9315734

18. Keshet Y, Seger R. The MAP kinase signaling cascades: a system of hundreds of components regu-

lates a diverse array of physiological functions. MAP Kinase Signaling Protocols: Second Edition. 2010;

p. 3–38. https://doi.org/10.1007/978-1-60761-795-2_1

Linking local and global ultrasensitivities in signaling cascades

PLOS ONE | https://doi.org/10.1371/journal.pone.0180083 June 29, 2017 17 / 18

https://doi.org/10.1016/j.tibs.2014.10.002
http://www.ncbi.nlm.nih.gov/pubmed/25456048
https://doi.org/10.1098/rsob.130031
http://www.ncbi.nlm.nih.gov/pubmed/23615029
https://doi.org/10.1073/pnas.0308265100
https://doi.org/10.1063/1.1349894
https://doi.org/10.1088/1478-3975/8/4/046005
https://doi.org/10.1088/1478-3975/8/4/046005
http://www.ncbi.nlm.nih.gov/pubmed/21566270
https://doi.org/10.1046/j.1432-1327.2000.01197.x
https://doi.org/10.1046/j.1432-1327.2000.01197.x
http://www.ncbi.nlm.nih.gov/pubmed/10712587
https://doi.org/10.1016/j.jmb.2008.09.079
http://www.ncbi.nlm.nih.gov/pubmed/18938177
https://doi.org/10.1038/msb.2009.30
http://www.ncbi.nlm.nih.gov/pubmed/19455136
https://doi.org/10.1073/pnas.78.11.6840
https://doi.org/10.1073/pnas.78.11.6840
https://doi.org/10.1016/j.tibs.2014.08.003
http://www.ncbi.nlm.nih.gov/pubmed/25240485
https://doi.org/10.1016/j.tibs.2014.09.003
https://doi.org/10.1016/j.tibs.2014.09.003
http://www.ncbi.nlm.nih.gov/pubmed/25440716
https://doi.org/10.1016/S0968-0004(96)20026-X
https://doi.org/10.1016/S0968-0004(96)20026-X
http://www.ncbi.nlm.nih.gov/pubmed/9009826
https://doi.org/10.1016/S0968-0004(97)82217-7
http://www.ncbi.nlm.nih.gov/pubmed/9270299
https://doi.org/10.1083/jcb.200308060
https://doi.org/10.1083/jcb.200308060
http://www.ncbi.nlm.nih.gov/pubmed/14744999
https://doi.org/10.1073/pnas.0507322102
http://www.ncbi.nlm.nih.gov/pubmed/16195377
https://doi.org/10.1016/S0014-5793(97)01018-1
https://doi.org/10.1016/S0014-5793(97)01018-1
http://www.ncbi.nlm.nih.gov/pubmed/9315734
https://doi.org/10.1007/978-1-60761-795-2_1
https://doi.org/10.1371/journal.pone.0180083


19. Huang CY, Ferrell JE. Ultrasensitivity in the mitogen-activated protein kinase cascade. Proceedings of

the National Academy of Sciences. 1996; 93(19):10078–10083. https://doi.org/10.1073/pnas.93.19.

10078

20. Brown GC, Hoek JB, Kholodenko BN. Why do protein kinase cascades have more than one level?

Trends in biochemical sciences. 1997; 22(8):288. https://doi.org/10.1016/S0968-0004(97)82216-5

PMID: 9270298

21. Altszyler E, Ventura A, Colman-Lerner A, Chernomoretz A. Impact of upstream and downstream con-

straints on a signaling module’s ultrasensitivity. Physical biology. 2014; 11(6):066003. https://doi.org/

10.1088/1478-3975/11/6/066003 PMID: 25313165

22. Blüthgen N, Bruggeman FJ, Legewie S, Herzel H, Westerhoff HV, Kholodenko BN. Effects of seques-

tration on signal transduction cascades. Febs Journal. 2006; 273(5):895–906. https://doi.org/10.1111/j.

1742-4658.2006.05105.x PMID: 16478465
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