
ar
X

iv
:1

70
7.

09
19

0v
1 

 [
ph

ys
ic

s.
pl

as
m

-p
h]

  2
8 

Ju
l 2

01
7

Interplay between Alfvén and magnetosonic waves in compressible

magnetohydrodynamics turbulence

N. Andrés1, P. Clark di Leoni2,3, P. D. Mininni2,3, P. Dmitruk2,3, F. Sahraoui1, and W. H. Matthaeus4

1 LPP, CNRS, Ecole Polytechnique, UPMC Univ. Paris 06,

Univ. Paris-Sud, Observatoire de Paris, Université Paris-Saclay,

Sorbonne Universités, PSL Research University, F-91128 Palaiseau, France
2 Departamento de F́ısica, Facultad de Ciencias Exactas y Naturales,

Universidad de Buenos Aires, Ciudad Universitaria, 1428, Buenos Aires, Argentina.
3 Instituto de F́ısica de Buenos Aires, CONICET-UBA,

Ciudad Universitaria, 1428, Buenos Aires, Argentina.
4 Bartol Research Institute and Department of Physics and Astronomy,

University of Delaware, Newark, Delaware, USA.

(Dated: July 31, 2017)

Using spatio-temporal spectra we show direct evidence of excitation of magnetosonic and Alfvén

waves in three-dimensional compressible magnetohydrodynamic turbulence at small Mach numbers.

For the plasma pressure dominated regime, or high β regime (with β the ratio between fluid and

magnetic pressure), and for the magnetic pressure dominated regime, or low β regime, we study

magnetic field fluctuations parallel and perpendicular to a guide magnetic field B0. In the low β

case we find excitation of compressible and incompressible fluctuations, with a transfer of energy

towards Alfvénic modes and to a lesser extent towards magnetosonic modes. In particular, we find

signatures of the presence of fast magnetosonic waves in a scenario compatible with that of weak

turbulence. In the high β case, fast and slow magnetosonic waves are present, with no clear trace

of Alfvén waves, and a significant part of the energy is carried by two-dimensional turbulent eddies.

I. INTRODUCTION

Incompressible magnetohydrodynamics (IMHD) has a

wide range of applications as a way to describe the large-

scale behavior of different types of plasmas, including

those of relevance for planetary science, astrophysics, and

nuclear fusion science [1–3]. However, this model is in-

adequate in those media where density fluctuations can-

not be neglected. Examples of these environments are

the ionized interstellar medium, some regions of the in-

coming solar wind, and planetary magnetosheaths [4–6].

For instance, recent in situ observations have shown that

compressibility plays a significant role in the turbulent

dynamics of the fast and slow solar wind, in particular

by supplying the energy dissipation needed to account

for the local heating and particle acceleration of the so-

lar wind [7–11]. Thus, a study of compressible MHD

(CMHD) turbulence is essential for a deep understand-

ing of the turbulent dynamics of the solar wind at scales

larger than the ion inertial length.

In presence of a uniform magnetic guide field B0, the

IMHD model has Alfvén waves as exact non-linear solu-

tions. These transverse and incompressible waves propa-

gate along theB0 direction. When a turbulent regime de-

velops in the presence of waves and eddies, two different

regimes can be identified depending on the strength of the

non-linear coupling, the so-called weak and strong tur-

bulent regimes. In IMHD, the strength of the nonlinear

effects is related to the parameter χ = (k⊥δB)/(k‖B0),

i.e. the ratio between the nonlinear eddy turnover time

τnl = k⊥δv⊥ and the linear Alfvén time τA = k‖uA. In

the limit χ << 1, the dynamics is controlled by weakly

coupled waves, and perturbation theory can be used to

obtain a prediction for the scaling of the energy spectrum

[12–15]. When χ & 1, waves and eddies coexist with

strong coupling, and phenomenological models are often

used to study the nonlinear dynamics of turbulent plas-

mas [16–19]. Note however that even in this case, some

exact laws, e.g. the so-called 4/5 law of homogeneous

turbulence, can be derived for different fluid approxima-

tions of magnetized plasmas [20–28]. It is important to

recognize that, in general, the nonlinearity parameter χ

may take on greatly differing values in different regions

of k-space.

The existence in IMHD of multiple time scales (the

eddy turnover time, the Alfvén time, and the Alfvénic

http://arxiv.org/abs/1707.09190v1
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crossover time) gives rise to multiple phenomenological

models of IMHD turbulence. In the so-called Iroshnikov-

Kraichnan (IK) phenomenology [16, 17], the interaction

between waves and eddies results in a quenching of the

energy transfer towards small scales, which are assumed

to be isotropic. This results in a modification of the Kol-

mogorov energy spectrum from E(k) ∼ k−5/3 [26, 27, 29–

31] to E(k) ∼ k−3/2 [32–36]. The anisotropy of IMHD

turbulence has been extensively studied in the literature

[37–46]. This has resulted in several phenomenological

theories that drop the assumption of isotropy but in

which the interactions between waves, and of waves with

eddies, still play a central role [see, e.g., 18, 19].

Recently, the deep relation between waves and tur-

bulence has been the subject of intensive research [47–

52]. To identify the nature of waves in numerical simu-

lations or experiments the spatio-temporal spectra have

been widely used [51–54]. Using direct numerical sim-

ulations of the IMHD equations with a uniform mag-

netic field, Dmitruk and Matthaeus [48] focused on the

properties of fluctuations in the frequency domain. The

authors found the presence of peaks at the correspond-

ing Alfvén wave frequencies in fully developed turbulent

regimes, and nonlinear transfer of energy at wave num-

bers perpendicular to the mean magnetic field. Meyrand

et al. [53] performed three dimensional (3D) numerical

simulations of incompressible weak MHD turbulence and

found evidence of accumulation of energy in Alfvén waves

and in intermittent structures, while Meyrand et al. [51]

investigated the transition of turbulence from weak to

strong regime. Lugones et al. [52] considered relatively

small, medium, and large values of the guide field B0 in

IMHD simulations, and found that time decorrelation of

Fourier modes is dominated by sweeping effects, and only

at large values of B0 and for wave vectors mainly aligned

with this field time decorrelations are controlled by the

Alfvénic time.

In comparison to IMHD turbulence, CMHD is more

intricate due to nonlinear coupling of the velocity, mag-

netic field, density and pressure fluctuations [see, e.g.,

55–57]. In the CMHD approximation this emerges as the

presence of two additional propagating wave modes that

are not present in the IMHD model, namely fast and

slow magnetosonic modes. These compressible modes

can deeply affect the nonlinear dynamics of turbulent

plasmas. Moreover, these modes or their counterparts in

kinetic theory were reported using in situ spacecraft mea-

surements in the solar wind [see, e.g. 58–60], planetary

magnetosheath [61–66] and foreshock regions [67–69].

Different theoretical and numerical efforts have been

done to understand the dynamics of compressible flows

[24, 25, 57, 70, 71]. Nearly incompressible (NI) MHD the-

ory is an intermediate model between compressible and

incompressible descriptions. Using a particular expan-

sion technique, Zank and Matthaeus [57] have derived

different NI MHD equations depending on the β plasma

parameter (ratio between fluid and magnetic pressure).

From this NI perspective, one would expect that at

high β and low Mach number the leading order descrip-

tion would be IMHD [72], with isotropic variances and

anisotropic spectra. However, this theoretical predictions

are subjected to initial conditions and forcing expres-

sions. In contrast, the low β NI MHD theory predicts

an anisotropy in both the variances in both the variances

and the spatial spectra, which has been observed in the

solar wind [73] and confirmed in numerous simulations

[see, e.g., 74]. Cho and Lazarian [70] presented a theo-

retical model for CMHD isothermal turbulence in the low

β regime, and numerically tested it for moderate spatial

resolution (2563 grid points). The authors separated the

different fluctuation modes and reported different theo-

retical scalings for each branch, namely an anisotropic

Kolmogorov spectrum for the Alfvén and slow modes

k
−5/3
⊥ and an isotropic one k−5/3 for the fast mode. Using

weak turbulence theory [75], Chandran [76] also consid-

ered the low β regime and derived a set of kinetic equa-

tions that provide an approximate description of nonlin-

ear processes in collisionless plasmas. Neglecting the slow

magnetosonic branch, Chandran [77] used this model to

conclude that three-wave interactions transfer energy to

high-frequency fast magnetosonic waves and to a lesser

extent to high-frequency Alfvén waves. The author also

predicted a ∼ k−7/2 power spectra for the fast magne-

tosonic branch for low β values. Direct evidence from

direct numerical simulations of CMHD turbulence of the

excitation of these waves is still lacking, and thus which

energy transfer mechanism is dominant is unclear.

The main objective of the present paper is to study the

interplay between the different wave modes in a CMHD

developed turbulent regime using the spatio-temporal

spectrum [78]. This technique allows for direct identi-

fication of all wave modes in a turbulent system, and

precise quantification of the amount of energy in each

mode as a function of the wavenumber. We keep in mind
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that in strong turbulence, much of the energy resides in

modes that are not linear eigenmodes, but rather might

be described as zero frequency turbulence. Both low and

high β regimes and small Mach numbers are considered,

situations that are relevant for the solar wind and plan-

etary magnetosheaths. The paper is organized as fol-

lows: in Section II we present the CMHD model, where

in sub-section IIA we show the set of equations and the

normal modes of the CMHD model, in sub-section II B

we describe the numerical setup used for the study and

in sub-section II C we briefly explain the spatio-temporal

spectrum technique. In Section III we present our re-

sults for both low and high β. Finally, in Section IV we

summarize our main findings.

II. EQUATIONS, NUMERICAL SIMULATIONS,

AND ANALYSIS

A. Compressible MHD equations

The 3D CMHD model is given by the mass continuity

equation, the momentum equation, the induction equa-

tion for the magnetic field, and an equation of state for

the plasma, which is assumed here to be polytropic,

∂ρ

∂t
+∇ · (uρ) = 0, (1)

∂u

∂t
+ u ·∇u = −∇p

ρ
+

J×B

4πρ
+ ν′

[

∇2
u+

1

3
∇(∇ · u)

]

,

(2)

∂B

∂t
= ∇× (u×B) + η′∇2

B, (3)

p

ργ
= constant, (4)

where u is the fluctuating velocity field, B = B0 + b is

the total magnetic field, and ρ is the density. In addition,

J = (4π/c)∇ × B is the electric current, p the scalar

pressure, γ = 5/3 the polytropic index, and ν′ and η′ are

the viscosity and magnetic diffusivity, respectively.

The set of equations (1)-(4) can be written in a di-

mensionless form in terms of a typical length scale L0 ,

a mean scalar density ρ0 and pressure p0, a typical mag-

netic field magnitude brms, and a typical velocity field

magnitude urms = brms/
√
4πρ0 (i.e., the r.m.s. Alfvén

velocity). The resulting dimensionless equations are

∂ρ

∂t
+∇ · (uρ) = 0, (5)

∂u

∂t
+ u ·∇u = −β

∇p

ρ
+

J×B

ρ
+ ν

[

∇2
u+

1

3
∇(∇ · u)

]

,

(6)

∂B

∂t
= ∇× (u×B) + η∇2

B, (7)

p

ργ
= constant. (8)

Here, ν and η are the dimensionless viscosity and mag-

netic diffusivity (i.e., the inverse of Reynolds and mag-

netic Reynolds numbers) respectively, and β ≡ (cs/uA)
2

is the plasma beta, i.e., the ratio of plasma pressure to

magnetic pressure, with cs =
√

γp0/ρ0 the sound speed

and uA = B0/
√
4πρ0 the Alfvén velocity. The β param-

eter separates two different limiting cases, the magnetic

pressure dominated regime (β ≪ 1) and the plasma pres-

sure dominated regime (β ≫ 1).

Linearizing equations (5)-(8) around a static equilib-

rium (i.e., u0 = 0) with a homogeneous magnetic field

B0 = B0 ẑ, a constant density ρ0, and a constant pres-

sure p0, we obtain the dispersion relation ω(k) of small

amplitude waves propagating in the plasma. As usual,

the dispersion relation relates the angular frequency ω of

the waves with its wave vector k. It is straightforward

[e.g. 79] to show that there are three independent prop-

agating modes (or waves) for a CMHD plasma, which

correspond to the so-called Alfvén waves (A), fast (F)

and slow (S) magnetosonic waves,

ω2
A(k) = k2‖u

2
A (9)

ω2
F,S(k) = k2u2

A





(1 + β)

2
±

√

(1 + β)2

4
− β

(

k‖

k

)2



 ,

(10)

where k‖ is the wavenumber component along the exter-

nal magnetic field, and k = |k| =
√

k2‖ + k2⊥. Alfvén

waves are incompressible fluctuations transverse to the

magnetic guide field. In the dispersion relation of mag-

netosonic waves ωF,S(k), the plus sign on the r.h.s. of

the equation (10) corresponds to fast waves, and the mi-

nus sign to slow waves. Both fast and slow magnetosonic

modes carry density fluctuations, and their magnetic field

perturbations have longitudinal and transverse compo-

nents. Note that for the perpendicular propagation (i.e.,

k‖ = 0 and k⊥ 6= 0) the Alfvén and slow modes become
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non-propagating modes (i.e., ωA,S = 0) and are degen-

erate, but they can be distinguished using their different

polarization, since δB‖,A = 0 and δB‖,S 6= 0 (where δB‖

is the magnetic fluctuations parallel to the guide field).

To these non-propagating solutions one must add the en-

tropy mode ωE = 0 characterized by density and entropy

fluctuations only. These three non-propagating solutions

have their nonlinear counterparts in MHD equilibrium

solutions [see, e.g. 80], which are likely to develop in tur-

bulent plasmas. As the main goal of the present paper

is to identify the various possible waves and structures

in the simulations we adopt the assumption that energy

that is concentrated closely to the linear dispersion re-

lation can be explained by linear and weak turbulence

theories, while any spread round, or away from, those

linear curves is a sign of strong turbulence that requires

fully nonlinear theories to be understood.

B. Numerical setup

The 3D CMHD equations (5)-(8) were numerically

solved using the Fourier pseudospectral code GHOST

[81, 82] with a new module for compressible flows based

on previously developed codes [83, 84]. The scheme used

ensures exact energy conservation for the continuous time

spatially discrete equation [82] (as well as conservation

of all other quadratic invariants in the system). The

discrete time integration used is a second-order Runge-

Kutta method. Since computation of the spatio-temporal

spectra described below requires a significant amount of

data storage, we used moderate linear spatial resolutions

N = 512 in a 3D periodic box. For simplicity, we used

identical dimensionless viscosity and magnetic diffusiv-

ity, ν = η = 1× 10−3 (i.e., the magnetic Prandtl number

is Pm = 1).

The initial state of our simulations corresponds to den-

sity, velocity and magnetic fields amplitude fluctuations

equal to zero. For all times t > 0, the velocity field and

the magnetic vector potential are forced by a mechanical

forcing F and electromotive forcing ǫ, respectively. The

mechanical and electromotive forcings are uncorrelated

and they inject neither kinetic nor magnetic helicity. At

t = 0, for each forcing function, a random 3D isotropic

field fk is generated in Fourier space, by filling the com-

ponents of all modes in a spherical shell with 1 ≤ k ≤ 2

with amplitude f0 and a random phase φk for each wave

vector k. Here k = 1 is refers to the longest wavelength

in the periodic box. Then, the Fourier coefficients of a

forcing with zero divergence are obtained as,

Fk =
k× fk

k
. (11)

The same process is repeated to generate ǫk (note that

this satisfies the Coulomb gauge used by the code when

evolving the vector potential). An amplitude f0 = 0.15 is

used for the mechanical and electromotive forcings, and

the set of random phases of the two forces are indepen-

dent. Random phases were also slowly evolving in time,

to avoid introducing long-term correlations, but also to

prevent introducing very fast time scales. To this end a

new set of random phases φk is generated for each forcing

function every 1/2 turnover time. Finally, the forcings F

and ǫ are linearly interpolated from their previous states

to the new random states on 1/2 turnover time, and the

process is then repeated.

We performed two numerical simulations, both with a

weak compressible sonic Mach number Ms = urms/cs =

0.25, but with different values of B0, and thus different

values of β. In one simulation we used a strong guide

magnetic field B0 = 8, which corresponds to β = 0.25.

In the other simulation we used a moderated guide field

B0 = 2, which corresponds to β = 4. This allowed us to

investigate two different regimes, i.e., the magnetic and

plasma pressure dominated regimes. Note however that

modifying the guide field magnitude results as well in

the modification of the nonlinearity parameter χ (defined

above for IMHD turbulence). The simulation with β = 4

corresponds to a nonlinearity parameter (at the driving

scale) that is four times higher than the case at β = 0.25.

We will return to this point in the discussion Section.

C. Spatio-temporal spectrum

The spatio-temporal spectrum allows identification of

waves in turbulent flow. The technique consists of cal-

culating the complete spectrum in wavenumber and fre-

quency for all available Fourier modes in a numerical sim-

ulation or an experiment [78, 85]. As a result, it can sep-

arate between modes that satisfy a given dispersion rela-

tion (and are thus associated with waves) from those as-

sociated to nonlinear structures or turbulent eddies, and

quantify the amount of energy carried by each of them.

The method we use does not require the pre-existence
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of wave modes or eddies. Quantifying the relative im-

portance of each of them and understanding the physics

that controls it is the main outcome expected from the

present analysis. In the following, the spatio-temporal

magnetic energy spectral density tensor is defined as

Eij(k, ω) =
1

2
B̂∗

i (k, ω)B̂j(k, ω), (12)

where B̂i(k, ω) is the Fourier transform in space and

time of the i-component of the magnetic field B(x, t) and

where the asterisk implies the complex conjugate. The

magnetic energy is associated with the trace of Eij(k, ω).

As the external magnetic field B0 in the simulations

points in ẑ, in practice we will consider either i = j = y

or i = j = z, to identify different waves based on their

polarization (either transverse or longitudinal with re-

spect to the guide field). It is worth mentioning that

spatio-temporal spectra have been used before in numer-

ical simulations and experiments of rotating turbulence

[86], stratified turbulence [87], quantum turbulence [88],

and IMHD turbulence simulations [51, 53, 89] and in

spacecraft observations [85, 90]. In the present paper we

use the technique to investigate the interplay between

Alfvén and magnetosonic waves in CMHD turbulence.

In all cases, the temporal extent of the data used to

calculate the spatio-temporal spectra was longer than at

least one period of the slowest wave in the system, and

the temporal data cadence was at least twice as fast as

the fastest wave. The emergence of fluctuations occurring

on very long time scales, corresponding to 1/f noise in

the power frequency spectrum, have been observed in

systems such as IMHD with a background magnetic field

or in rotating fluid turbulence [64, 91–95]. However, in

the present paper we emphasize the wave modes at higher

frequencies and not the dominance by 1/f noise at long

time scales.

III. NUMERICAL RESULTS AND DISCUSSION

A. Low β regime

Reduced spatial spectra are obtained from the general

spatio-temporal spectra by integration over all frequen-

cies and over all wave vectors in spherical shells of radius

k. As an example, for the magnetic energy the spatial
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Figure 1. Spatial spectrum Sk of the total magnetic and ki-

netic energy (in solid gray and black lines, respectively). The

dotted and dashed lines correspond to the kinetic energy spec-

tra of the incompressible and compressible components of the

flow, respectively. Two scaling laws, ∼ k−5/3 and ∼ k−7/2

are shown as references.
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Figure 2. (Color online) Spatio-temporal spectrum

Eyy(kx, ky = 0, k‖ = 0, ω) for the magnetic field fluctuations

parallel perpendicular to B0, for β = 0.25. The dashed, solid,

and dash-dotted lines correspond to the linear dispersion re-

lationd of Alfvén waves ωA, of fast magnetosonic waves ωF ,

and of slow magnetosonic waves ωS, respectively.

isotropic (omnidirectional) spectrum satisfies,

Sk(k) =
∑

ω

∑

k≤|k|<k+1

[Exx(k, ω) + Eyy(k, ω) + Ezz(k, ω)] .

(13)
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Figure 3. (Color online) Spatio-temporal spectrum Eyy(kx =

0, ky, k‖, ω) for the magnetic field fluctuations perpendicular

to B0, for β = 0.25. The spectrum is shown as a function

of ω and k‖ for fixed ky = 0 (a) and ky = 15 (b). The

dashed, solid, and dash-dotted lines correspond to the linear

dispersion relationd of Alfvén waves ωA, of fast magnetosonic

waves ωF , and of slow magnetosonic waves ωS, respectively.

For k⊥ = 0 the Aflvén and fast branches coincide.

Similarly, we computed the spatial isotropic spectrum

for the kinetic energy. Besides, we computed the com-

pressible and incompressible kinetic spectrum of the flow

using the usual Helmholtz decomposition [see, e.g. 96].

In Fig. 1 we show the spatial energy spectra Sk of the

kinetic and the magnetic energy for the simulation with

β = 0.25. We also show the power spectra of the com-

pressible and incompressible components of the velocity

field.

An inertial range compatible with a ∼ k−5/3 can be

observed in Fig. 1 for the total kinetic energy, the in-

compressible kinetic energy, and the magnetic energy.

The compressible kinetic energy spectrum is weaker and

steeper; the ∼ k−7/2 scaling predicted by Chandran [77]

is shown for reference. A detailed study of these scal-

ing laws would require larger spatial resolutions, which

are outside the scope of this work. Note also that while

the vast majority of the kinetic energy is located in its

incompressible component, it is known that the small

compressible component can still affect the flow dynam-

ics in this regime. For example, direct numerical simu-

lations performed with the same Mach and β numbers

show that proton acceleration is significantly enhanced

when compared to the incompressible case [8].

Spatial analysis alone cannot fully determine the pres-

ence of Alfvén or magnetosonic waves, much less deter-

mine which (if any) dominates the dynamics; to do this

we must turn to spatio-temporal analysis. Fig. 2 shows

the spatio-temporal spectrum of the perpendicular mag-

netic field fluctuations Eyy(kx, ky = 0, k‖ = 0, ω) for fixed

ky = k‖ = 0 for the same simulation as in Fig. 1 (since the

spatio-temporal spectrum is four dimensional, we fix two

components of k to plot the remaining component against

the frequency). The dispersion relations for Alfvén and

magnetosonic waves given by equations (9) and (10) are

shown in dashed, dash-dotted, and dotted lines, respec-

tively. The energy accumulates mainly for low ω/B0

(. 4) and k‖ = 0, i.e., in two-dimensional (2D) modes,

which correspond to turbulent eddies and which is to be

expected for IMHD turbulence with a guide field. Fig. 3

shows the spatio-temporal spectrum of the perpendicu-

lar magnetic field fluctuations Eyy(kx = 0, ky, k‖, ω), for

fixed values of ky = 0 (Fig. 3(a)) and ky = 15 (Fig. 3(b)).

In this case, energy accumulates mostly in modes with

low k‖ and low ω/B0, typically k‖ . 5 and ω/B0 . 20.

Fig. 2 and Fig. 3 are compatible with the NI MHD

theory for low β, where the leading order description is

two-dimensional with compressible corrections. Thus, as

in the case of IMHD turbulence [44, 46], the presence of

a strong guide field produces strong bidimensional com-

ponents even in the presence of weak compressibility.

For modes with k‖ & 5, energy in Fig. 3(a) then ac-

cumulates around the Alfvén wave branch ωA (note that

for k⊥ = 0, the Alfvén and fast branches overlap), while
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Figure 4. (Color online) Spatio-temporal spectra Ezz(kx =

0, ky, k‖ = 0, ω) for the magnetic field fluctuations parallel to

B0, for β = 0.25. The solid and dash-dotted lines correspond

to the linear dispersion relationd of of fast magnetosonic waves

ωF , and of slow magnetosonic waves ωS, respectively.

Fig. 3(b) some energy also present in the vicinity of the

fast magnetosonic branch ωF and along ω = 0. Both

Figures do not show energy spread along the slow mag-

netosonic branch ωS . In other words, energy in high fre-

quency modes (ω > 0 and with k‖ & 5) accumulates

near the dispersion relation of the fastest waves, in agree-

ment with predictions from weak turbulence [76, 77]. At

high parallel wavenumbers energy accumulation deviates

slightly from the linear dispersion relations, but is still

concentrated around specific modes, indicating possible

coupling of fast magnetosonic and Alfvén waves, or non-

linear corrections to the dispersion relations. In contrast

with what was previously suggested [70], fast magne-

tosonic waves are not suppressed by Alfvén waves, but

they do not dominate the dynamics either as predicted

using weak wave turbulence theory [76, 77].

Fast magnetosonic waves can be separated from

the Alfvén waves by looking at the spatio-temporal

spectrum of parallel magnetic field fluctuations

Ezz(kx = 0, ky, k‖ = 0, ω), shown in Fig. 4. The

Alfvén waves do not contribute to the parallel compo-

nent of the magnetic field energy since their magnetic

perturbations are perpendicular to the guide field. In

Fig. 4 energy accumulates in two regions: at high
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Figure 5. Spatial spectrum Sk of the total magnetic and ki-

netic energy (in solid gray and black lines, respectively). The

dotted and dashed lines correspond to the power spectra of

incompressible and compressible components of the flow, re-

spectively. A ∼ k−5/3 scaling is shown as reference.

frequency near the fast magnetosonic branch, and at

low frequency near ω = 0 modes. Note that the spread

around the linear dispersion relations curves is likely to

be caused by nonlinear effects. It is worth noticing that,

unlike in Fig. 3(a), energy in Fig. 4 does not show any

shift toward higher frequency than the linear dispersion

relation of the fast mode.

B. High β regime

In Fig. 5 we show the spatial energy spectra Sk of the

kinetic and the magnetic energy for the simulation with

β = 4; we also show the energy spectra of the compress-

ible and incompressible components of the velocity field.

An inertial range roughly compatible with ∼ k−5/3 is

observed for the total kinetic energy, the incompressible

kinetic energy, and the magnetic energy. No discernible

scaling is present in the compressible kinetic energy spec-

trum. Once again, the vast majority of the kinetic energy

is in the incompressible component of the flow.

To determine the presence of waves in the higher fre-

quency part of the turbulent flow we turn once more

to the spatio-temporal spectrum. Fig. 6 and Fig. 7

show the spatio-temporal spectrum of the perpendicu-

lar magnetic field fluctuations Eyy(kx = 0, ky = 0, k‖, ω),

and the spectrum of parallel magnetic field fluctuations

Ezz(kx = 0, ky, k‖ = 0, ω), respectively. The dispersion

relations given by equations (9)-(10) are in dashed, dash-
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Figure 6. (Color online) Spatio-temporal spectrum Eyy(kx =

0, ky = 0, k‖, ω) of the magnetic field fluctuations perpen-

dicular to B0, for the run with β = 4. The dashed, solid,

and dash-dotted lines correspond to the linear dispersion re-

lation of Alfvén waves ωA, of fast magnetosonic waves ωF ,

and of slow magnetsonic waves ωS, respectively (in this case,

for k⊥ = 0 the dispersion relations of slow and Alfvén waves

coincide).
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Figure 7. (Color online) Spatio-temporal spectrum Ezz(kx =

0, ky, k‖ = 0, ω) of the magnetic field fluctuations parallel to

B0, for β = 4. The solid and dash-dotted lines correspond to

the linear dispersion relation of fast magnetosonic waves ωF ,

and of slow magnetsonic waves ωS, respectively

dotted, and dotted lines. Fig. 6 shows that for frequencies

ω/B0 & 10 and k‖ & 5, the only wave modes that are now

excited are the fast magnetosonic ones, and no appar-

ent traces of Alfvén waves, which coincide with the slow

mode in this case. Fig. 6 shows also a smaller amount

of energy near the ω = 0 (and k‖ 6= 0) modes. Fig. 7

shows that most of the energy lies along the slow mode

ωS curve, and a smaller fraction of energy follow the fast

mode curve ωF . The spread around those curves is likely

to be due to stronger nonlinear interactions that can gen-

erate 2D structures that can coincide with the curve ωS

in Fig. 7.

It is worth mentioning that, for an IMHD run with a

guide field B0 = 2 (not show here) we obtain a similar re-

sult to Fig. 7, without the fast magnetosonic trace. This

supports the dominance of the 2D (incompressible) struc-

tures in Fig. 7 rather than the non-propagating (com-

pressible) mode ωS. Furthermore, the absence of Alfvén

waves might be due to the weak magnetic guide field used

(B0 = 2), as already was found in IMHD simulations

[52]. Therefore, in the high β regime, fast magnetosonic

modes dominate the dynamics (over the Alfvén waves)

at high frequencies and wavenumbers. However, as we

mentioned above, we emphasize that the system in its

entirety is dominated mainly by the contributions of 2D

modes related to turbulent eddies and non-propagating

slow (or entropy) modes (k‖ = 0 and ω = 0).

Despite the fact that fast magnetosonic waves concen-

trate most of the energy in the waves at high frequency,

their contribution to the total energy in the system is

bounded by the small fraction of energy in compressible

motion (see Fig. 5). This result is in agreement with re-

cent 3D Landau-fluid simulations [54]. The reason for

observing fast modes (rather than Alfvén modes) in the

high plasma β regime remains unclear. We speculate

that they might have been favored by the isotropic forc-

ing used in our simulations (the fast modes being the

only isotropic modes [70]). Future numerical simulations

with a different (anisotropic) forcing will be needed be

needed to unambiguously answer this question.

Another question is whether the different results ob-

tained in the low and high plasma β regimes are actually

due to the change in the plasma β or to that of the non-

linear parameter χ discussed above, as demonstrated in

recent Landau-fluid simulations [54, 97]. The fact that

the simulation in the low β case corresponds to a nonlin-

earity parameter that is four time smaller than that of
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the high β case may explain the observations of different

branches of the linear modes in the former case. It may

also explain the broad accumulation of energy around the

fast magnetosonic waves in the case of high β (Fig. 6) in

comparison to that around Alfvén waves in the low β

case (Fig. 4). However, more numerical simulations are

required to answer this question.

IV. CONCLUSIONS

We used spatio-temporal spectra of different magnetic

field components to study waves in compressible MHD

turbulence at low and high β regimes. In the magnetic

pressure dominated regime, we showed direct evidence

of the presence of fast magnetosonic and Alfvén waves.

In particular, we found wavenumber scaling for the spa-

tial spectra compatible with theoretical predictions. We

also found that the energy transfer is dominated by the

Alfvénic or the incompressible fluctuations, and to a

lesser extent by fast magnetosonic fluctuations (specially

in the perpendicular direction). Although the role of

magnetosonic waves is not as important as predicted by

some weak wave turbulence theories [76, 77], they are not

negligible. Moreover, the results confirm that the fastest

waves in the system concentrate a non-negligible fraction

of the energy at high frequency (even for moderate values

of the sonic Mach number), and can thus have a role in

the dynamics, with implications for particle acceleration

and other processes in the solar wind.

In the high β regime, at high frequency only fast

magnetosonic waves were present, with no clear trace

of Alfvén waves. At low frequency, 2D turbulent eddies

and non-propagating slow (or entropy) modes may

co-exist and seem to carry most of the turbulent energy.

This regime is thus similar to that of IMHD with a

weak magnetic guide field. The questions as to how the

dynamics changes when increasing the magnetic guide

field and the Mach number, or when fixing the same

plasma β and modifying the χ parameter at the driving

scale will be addressed in future studies.
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[61] F. Sahraoui, J. L. Pinçon, G. Belmont, L. Rezeau,

N. Cornilleau-Wehrlin, P. Robert, L. Mellul, J. M.

Bosqued, A. Balogh, P. Canu, and G. Chanteur, Jour-

nal of Geophysical Research: Space Physics 108 (2003),

1335.

[62] F. Sahraoui, G. Belmont, L. Rezeau, N. Cornilleau-
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