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Abstract
We study the spatial distribution of particles in two-component Bose–Einstein
condensates containing vortices. We show that the form in which the species
are arranged inside the condensate may be easily understood using simple
approximations. We obtain expressions for the location of particular points
which are useful for describing the density of particles in two limiting situations,
using either the Thomas–Fermi approximation or a low-dilution approximation.
A discussion about the shape of vortex cores is also included.

1. Introduction

In the past few years, much experimental and theoretical work on Bose–Einstein condensation
has dealt with vortices within systems comprising a mixture of two distinct species of atoms.
One mixture commonly used is that of atoms of 87Rb in two different hyperfine states
|F = 1,mf = −1〉 and |F = 2,mf = 1〉. Experimentally, these mixtures are under such
conditions that the two species may be considered as ‘effectively distinguishable’, and their
mutual repulsion has been observed to lead to partial separation of both species in space [1].

From an experimental point of view, vortices have first been created in a mixture of
these species of rubidium by Matthews et al [2]. The vortex was created in either of the
two components, through a coherent process involving the spatial and temporal control of
interconversion between the two components. Later, using the same techniques, Anderson
et al [3] created off-centred vortices and studied their preceding dynamics around a definite
axis. Also using these mixtures, vortex rings were obtained as a result of the decay of dark
solitons [4]. Recently, in a very nice experiment, Schweikhard et al [5] observed interlaced
square vortex lattices in a rotating system as a consequence of separation effects between
species.

On the other hand, from a theoretical point of view, much work has been devoted to
describe these systems. As the number of particles involved in experiments is large, almost
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all the theory has been based on the Thomas–Fermi (TF) approximation. In this sense, in a
pioneering paper, Ho and Shenoy [6] have constructed an elegant algorithm to determine the
TF density profiles of binary mixtures which may include vortices. In a previous work, we
have presented a simpler procedure [7] to obtain the wavefunctions in the same approximation.
An advantage of our method is that one can directly find analytic expressions for the densities
and hence extract much geometrical information related to the distribution of species in space,
without performing any numerical calculation. In particular, in [7] we showed that it is
possible to study the distribution of particles by classifying the interface between the species
in two families of surfaces, depending on which component carries the vorticity. The problem
of vortices in phase-separated two-component systems has also been addressed in the TF
approximation by Chui et al in [8–10]. In these papers, the authors assumed that the vortices
have cores with radii of the same order of magnitude as those of a vortex in a single-component
condensate. Recently, Park and Eberly [11] have studied a class of non-topological vortices
in two-component Bose–Einstein condensate assuming an SU(2) symmetry. They used this
symmetry to describe a system of rubidium atoms, based on the fact that both species have
very similar scattering lengths.

In the present paper, we focus on the study of the spatial structure of vortices in two-
component condensates. Our study also includes the analysis of the redistribution of particles
inside the trap when one of the species is loaded in a shifted confining potential. We derive
analytic expressions for the density profiles in two limiting situations using either the TF
approximation or a low-dilution approximation and compare these results with the solutions
of the exact Gross–Pitaevskii (GP) equations. Some of the properties we have encountered
are as follows. Firstly, for a mixture the vortex-core size may be much larger than the healing
length, as it has been observed experimentally [3]. Secondly, although the scattering lengths
are very similar for both species, we have observed qualitatively different features with respect
to interchanging the type of particles. And finally, for systems confined in slightly shifted
potentials, we show that in a small range of values of interparticle coupling the distribution
of species undergoes dramatic changes. A similar behaviour has also been encountered for
vortex-free systems in [12, 13].

The paper is organized as follows. Section 2 describes in detail the physical system
under study. In section 3 we analyse the spatial distribution of species in two limiting cases,
(i) when the number of particles of both species is large enough to rely on the Thomas–Fermi
approximation, and (ii) when the number of particles of one species is much smaller than
the other. The numerical solutions of the full Gross–Pitaevskii (GP) equations are presented
in section 4. In order to clarify some ideas, in this section we also give some results for
two-dimensional systems. Finally, section 5 contains the summary and main conclusions of
our work.

2. The system

We consider a dilute mixture of two hyperfine species of the same bosonic atoms confined in
axially symmetric harmonic traps. The confinement of one species, arbitrarily chosen to be
the species 2, is displaced in the z-direction in a value −d. The confining potentials can then
be written as

V1(r) = 1
2M

(
ω2

r r
2 + ω2

zz
2
)

(1)

and

V2(r) = 1
2M

(
ω2

r r
2 + ω2

z (z + d)2
)
, (2)

where M is the mass of the atoms, and ωr and ωz denote the angular trapping frequencies.



Vortices in two-component Bose–Einstein condensates 4391

In order to describe the ground state of the mixture at zero temperature, we resort to the
coupled Gross–Pitaevskii equations for the wavefunctions ψi [14] of each species i,(

−h̄2∇2

2M
+ Vi(r) +

∑
k=1,2

NkGik|ψk|2
)

ψi = µiψi, (3)

where Ni denotes the number of atoms of species i, µi is the chemical potential and we have
the normalization condition

∫ |ψi |2 dr = 1. The coupling strengths can be written in terms of
the s-wave scattering lengths akl between species k and l as Gkl = 4πaklh̄

2/M .
For simplicity, we fix the most repulsive component in the state ψ1 and factorize the

coupling strengths as Gkl = uklU , with U = 4πh̄2a11/M , and thus u11 = 1 (> u22). In
the numerical calculations, we will consider a mixture of 87Rb atoms with relative scattering
lengths u12 = 0.97 and u22 = 0.94 [15] and restrict ourselves to spherical traps with angular
frequency ωr = ωz = 2πνtrap, where νtrap = 7.8 Hz.

3. Limiting cases

3.1. Thomas–Fermi regime

When both components have a considerable number of particles, the well-known TF
approximation provides reliable results for the density profiles. For vortex-free structures,
this approach ignores all the kinetic energy contained in the ∇2ψi terms in (3). However, if
the species j possesses a vortex its wavefunction reads ψj(r) = ψj(r, z) eimj φ , where φ is
the polar angle and mj its vorticity. In this case, the TF approximation amounts to retaining
only the centrifugal term derived from the angular derivatives of the Laplacian giving rise to
an effective potential V eff

i (r).
Hereafter, we shall use the oscillator length dho = √

h̄/Mωz as a unit of length and h̄ωz/2
as a unit of energy. In these units, the effective potentials read

V eff
1 (r) = λ2r2 + z2 +

κ1

r2
(4)

and

V eff
2 (r) = λ2r2 + (z + d)2 +

κ2

r2
, (5)

where κi = m2
i

/
4 is the rescaled vorticity and λ = ωr/ωz is the aspect ratio of the trap.

The sign of � ≡ u11u22 − u2
12 defines two different ways in which the distribution of

particles may occur. When � > 0 the two components coexist in some region of space. As u12

increases this region decreases until at � = 0 a spatial phase separation takes place, reducing
the coexistence region to an interface. We shall consider these two cases separately.

Coexistence � > 0. The solution of (3) in the TF approximation can be easily obtained
and has the following expressions depending on whether there exists any overlap between the
species:

(a) In the regions where only one wavefunction is non-vanishing (|ψi |2 �= 0 and |ψk|2 = 0,
for i �= k). The TF equations are decoupled and the solutions read

|ψ1|2 =
[
µ1 − λ2r2 − z2 − κ1

r2

] /
(G11N1)

(6)
|ψ2|2 =

[
µ2 − λ2r2 − (z + d)2 − κ2

r2

] /
(G22N2).

The boundary of each condensate is obtained by equating the expressions inside the square
brackets to zero. For species 1 the boundary surface is centred at (x, y, z) = (0, 0, 0), while
for species 2 it is centred at (x, y, z) = (0, 0,−d).
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(b) In the region where both wavefunctions are non-vanishing the solution can be written
after some algebra as

|ψ1|2 =
[
C2

1 − λ2r2 −
(

z − β1d

1 − β1

)2

+
κ2β1 − κ1

(1 − β1)r2

]
B1u22

(7)

|ψ2|2 =
[
C2

2 − λ2r2 −
(

z +
d

1 − β2

)2

+
κ1β2 − κ2

(1 − β2)r2

]
B2u11,

where

C2
i = µi − βiµj

(1 − βi)
+

βid
2

(1 − βi)2
for i, j = 1, 2 and j �= i, (8)

β1 = u12/u22, β2 = u12/u11, and Bi = (1 − βi)/(UNi�).
The coexistence region is delimited by two surfaces, S1 and S2, defined by equating to

zero the expression inside the square brackets in |ψ1|2 and |ψ2|2 of (7). These surfaces may
be classified as done in [7], with the only difference that in the present case they are shifted
in the z-direction. In addition, they are axially symmetric around the z-axis and possess
an inversion symmetry with respect to the point (x, y, z) = (0, 0, di) with i = 1, 2, and
di given by d1 = β1d/(1 − β1) and d2 = −d/(1 − β2), respectively. The factor 1 − βi

in the denominator makes these displacements diverge when βi is close to unity, and one
can guess that, depending on the relative magnitude between the interaction strengths, some
dramatic effects in the redistribution of particles should take place. In a previous work [12] we
have already discussed this effect and showed that it is consistent with the experimental data
of [15].

It is worthwhile mentioning that although much information can be read directly from
the form of (6) and (7), to obtain the full wavefunctions one needs the values of Ci and hence
the chemical potentials. This has to be done numerically using the fact that the wavefunctions
have to be normalized to one.

Phase separation � � 0. When the intercomponent repulsion overcomes the repulsion
inside each species, the two species demix, i.e, segregate into two non-overlapping regions
in space. As we have already mentioned, in the TF approximation this transition occurs at
� = 0. The limiting surface (Ss) between these non-overlapping regions can be obtained by
imposing its mechanical equilibrium. This is achieved by equating the pressure [14]

Pi = Gii

2
ρ2

i = Gii

2
N2

i |ψi |4 (9)

on both sides of the interface, which yields the condition

N1|ψ1|2 =
√

G22

G11
N2|ψ2|2. (10)

Assuming that the wavefunctions on each side are given by (6) and defining a =√
G22/G11, (10) can be rewritten as

C2
s − λ2r2 −

(
z +

d

1 − a

)2

+
κ1a − κ2

(1 − a)r2
= 0 (11)

where

C2
s = µ2 − aµ1

(1 − a)
+

ad2

(1 − a)2
. (12)
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The interface is thus displaced in the z-direction in a value ds = −d/(1 − a). Note that for
the 87Rb species of [15], the values of the interaction strengths give a small and negative �

value, � � −9 × 10−4, and an a close to unity, a = 0.969. As a consequence, the absolute
value of ds is increased with respect to the initial displacement of the potentials by a factor of
32.8. For example, if we have a distance between the trap centres d = 0.2 µm, ds turns out to
be ds = −6.56 µm.

Another interesting point to discuss is the size of the vortex cores. The last term in (11)
is responsible for their enlargement. Once more we see that the ratio between the scattering
lengths has an important role. We shall come back to this discussion in section 4 where the
analysis will not be restricted to this approximation.

3.2. Low-dilution regime

Let us next consider a condensate formed by a large number of particles N1. We make a
simplification by taking into account a few particles of species 2 immersed in the 1-species
condensate and confined in the shifted potential V2. If the component 2 has a vortex, the total
effective potential experienced by these particles can be written as

V e
2 (r) = λ2r2 +

κ2

r2
+ (z + d)2 + G12ρ1, (13)

where ρ1 is the uncoupled density of species 1. In the TF approximation, it reads

ρ1(r) = 1

G11
(µ1 − λ2r2 − z2)�(µ1 − λ2r2 − z2), (14)

where � is the Heaviside function.
Replacing ρ1 into (13) and defining p2 = 1 − β2, we find that V e

2 is approximately given
by

V e
2 � λ2p2r

2 +
κ2

r2
+ p2

(
z +

d

p2

)2

− d2

p2
+ d2 +

u12

u11
µ1, (15)

which is valid inside the condensate.
The minimum of V e

2 is attained over a circle with cylindrical coordinates

r ′ = [κ2/(p2λ
2)]1/4 and z′ = −d/p2. (16)

The N2 particles will be mainly distributed along this circle forming an annular vortex. This
ring is not centred at the minimum of the bare trap V2 potential, but it is displaced in a distance
|z′| which may be quite different from the original trap displacement. For example, using the
values of the scattering lengths of the rubidium mixture we obtain 1/p2 ∼ 33.3, and thus |z′|
is about 33 times larger than d. Regarding the shape of the density profile, in figure 1 we
plot the effective potential V e

2 (r) at z = 0 for d = 0 and N1 = 107 obtained using the GP
density profile for ρ1(r). In figure 1 we also show the density profile ρ2 for N2 = 103. From
top to bottom the curves correspond to the values z = 0, 5, 10, 15 and 20 µm. The vertical
dotted line locates the radius r ′ = 9.25 µm according to (16). This radius may be increased
by decreasing the radial frequency since r ′ turns out to be proportional to ω

−1/2
r .

Let us now consider the opposite dilute regime where few particles of the species 1 interact
with a large condensate of N2 particles. The new distribution of the species can be analysed
by interchanging the indexes 1 and 2 in the previous formulae. We then find p1 < 0 and hence
the effective potential V e

1 turns out to be a monotonously decreasing function of r as long as
ρ2 is non-vanishing. This implies that there is no circle analogous to that defined in (16). In
this case, the species 1 is located at the border of the condensate where ρ2 goes to zero and
the actual minimum of V e

1 is reached. In figure 2 we show V e
1 as a function of r for z = 0.
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Figure 1. Low-dilution regime of a mixture of 87Rb atoms with N1 = 107 and a vortex in the state
|2〉. Left panel: effective potential V e

2 (in arbitrary units) as a function of r (in µm) at z = 0. The
inset shows the confinement in a larger range. Right panel: density profile ρ2 (in arbitrary units)
as a function of r (in µm) at several values of z = 0, 5, 10, 15, and 20 µm from top to bottom
curves. The vertical dotted lines indicate r ′ (see the text).
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Figure 2. Effective potential V e
1 (in arbitrary units) as a function of r (in µm) for a mixture in the

dilute regime with N2 = 107 and m1 = 1.

Note that here the derivative at the border of the condensate is continuous because we have
calculated ρ2 by solving the GP equations, and thus the behaviour of the function around the
minimum is smoother than the one that is obtained using the TF approximation.

4. Full Gross–Pitaevskii solutions

In this section, we analyse the density profiles calculated by solving the exact GP equations
and compare to the TF results of the previous section. In particular, we remind the reader that
for this mixture the scattering lengths verify � � 0, i.e., we are in the phase-separated regime.

The numerical solution of the coupled (3) is carried out in the standard way, using a
steepest-descent method [16] to minimize the total GP energy functional for given numbers of
particles. In particular, we have discretized the wavefunctions on a grid of 100×200 points in
the rz plane and convergence of the self-consistent procedure was achieved with at least five
figures of accuracy in the chemical potentials.

In order to compare the GP results with the TF solutions, we introduce the surfaces
defined by

α1ρ1 − α2ρ2 = 0, (17)
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Figure 3. The density surfaces S>, S< and Se (dashed lines), together with the TF interface (solid
line) for the first (second) row correspond to vorticity in component |2〉 (|1〉). The left, middle and
right panels correspond to mixtures with N1 = N2 = 106, N1 = N2 = 107, and N1 = 1.6 × 107

and N2 = 4 × 106, respectively.

and consider three cases: (i) α1 = α2 = 0.5; (ii) α1 = 0.2 and α2 = 0.8; and (iii) α1 = 0.8
and α2 = 0.2. These values of αi define the surfaces Se, S> and S<, respectively.

The surface Se is expected to be located near to the TF interface given by (11), while the
size of the region which remains between S> and S< can be taken as a measure of the accuracy
of the TF approximation. The narrower this region is, the better the TF approximation works.

In the first (second) row of figure 3 we display these surfaces, together with the TF
interface for m1 = 0 and m2 = 1 (m1 = 1 and m2 = 0), and d = 0. We consider three
sets of numbers of particles: (i) N1 = N2 = 1 × 106, (ii) N1 = N2 = 1 × 107, and (iii)
N1 = 1.6 × 107 and N2 = 4 × 106. We observe that the TF interface gives a good estimate
of the Se surface, although the GP densities are smoother functions than the TF ones. For
Ni = 106 there exists a large overlapping region. It may be seen that the accuracy of the TF
approximation is improved for an increasing number of particles. In particular, the distance
between S> and S< is a monotonously decreasing function of Ni .

In figure 4 we display the same surfaces as those shown in figure 3 but with the V2 potential
displaced in a distance d = 0.2 µm. Although this displacement is about 0.2% of the total
size of the condensate, it may be seen that it sizably affects the distribution of particles, as it
has been already predicted in the TF approximation. In particular, the TF interface mentioned
in the previous section is centred at the z-value ds = −6.56 µm.

Let us now focus on the structure of the vortex cores. The density profile of one-component
condensate in the TF limit is given by [17]

ρ = ρ0

(
1 − ξ 2

r2
− r2

R2
c

− z2

Z2
c

)
�

(
1 − ξ 2

r2
− r2

R2
c

− z2

Z2
c

)
, (18)

where ξ is the so-called healing length [17], and Rc and Zc are the radii of the condensate
along r and z respectively. In this approximation the relation ξ 	 Rc is verified. From (18)
it is easy to prove that at z = 0 the TF density goes to zero when r ∼ ξ . Thus for vortices
in one-component systems the healing length is about the size of the vortex core. Chui et al
[9] have taken this result as valid also in two-component condensates while it may be seen
from the GPE results depicted in figures 3 and 4 that the cores are much larger. Moreover,
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Figure 4. The same as figure 3 with a nonzero displacement d = 0.2 µm. The crosses indicate
the symmetry point of the TF interfaces, with coordinates z = ds = −6.56 µm and r = 0.

when the vortex is in component 1, its core is not homogeneous along the z-axis and thus it is
hard to refer to a single vortex size, nevertheless for all z-values the size is visibly larger than
the healing length. In contrast, a vortex in component 2 has an almost uniform core and its
size, although smaller than that in the previous case, is still larger than the healing length, as
we shall see. Quantitatively, for N = N1 + N2 = 2 × 106 the healing length is ξ = 0.45 µm
while for N = 2 × 107, ξ = 0.28 µm. We have numerically calculated the radius at which
the TF density goes to zero at z = 0 for the first row of figure 3. We obtained r1 = 3.9 µm,
r2 = 2.5 µm, and r3 = 3.6 µm for the three cases. These values are about an order of
magnitude larger than the corresponding healing lengths. Note also that when decreasing the
ratio between the number of particles in the vortex with respect to the vortex-free component,
the actual size of the core increases, this should not be the case if we consider only the healing
length.

In order to analyse the effect of increasing the vorticity upon the size of the core we set
m2 = 2, and verified, for example, for the second set of parameters, that the radius increased
to r2 = 4.9 µm.

Two-dimensional model

For this mixture here we present a two-dimensional analysis and thus get rid of the variation of
the vortex-core size along the z-axis. The equations derived in section 3 can be easily modified
to describe this system by setting z = d = 0 and working with the number of particles per
unit length.

To perform the numerical calculations we have chosen a number of particles which yield
radii of the condensates similar to those obtained in the previous section. In figure 5 we show
the GP profiles for the vorticity values (m1,m2) = (0, 0), (1, 0), (0, 1) and (1, 1). The first
configuration is the ground state. For the second case, the presence of the vortex has no visible
effect in the distribution of particles with respect to the ground state since the vorticity is
placed in the outer species. In the third case, the vorticity of component 2 pushes the particles
away from the z-axis and thus the other component fills the vortex core. It is interesting to note
that although the 2-species particles do not verify N2 	 N1, the atoms distribute themselves
around the value r ′ = 9.25 µm, predicted in the low-dilution regime of section 3. Finally, in



Vortices in two-component Bose–Einstein condensates 4397

0 20 40 60
r [µm]

ρ i

 m
1
 = 0

 m
2
 = 0

0 20 40 60
r [µm]

ρ i

 m
1
 = 1

 m
2
 = 0

0 20 40 60
r [µm]

ρ i

 m
1
 = 0

 m
2
 = 1

0 20 40 60
r [µm]

ρ i

 m
1
 = 1

 m
2
 = 1

Figure 5. Density profiles (in arbitrary units) as a function of r (in units of µm) for a two-
dimensional system. Each panel corresponds to different vorticity configurations (as shown in the
plot). Solid and dashed lines correspond to species 1 and 2, respectively. The vertical dotted line
indicates the position of r ′ (see the text).
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Figure 6. Density profiles (in arbitrary units) as a function of r (in units of µm) for a two-
dimensional system with (m1, m2) = (0, 1). The frequency is set to νtrap = 1.95 Hz. Solid and
dashed lines correspond to species 1 and 2, respectively. The vertical dotted line indicates the
position of r ′ (see the text).

the last case, as both components have vorticity the distribution of components is similar to
the ground state except that in this case there exists a core of the order of the healing length
at the centre of the trap. For the case (m1,m2) = (0, 1), the size of the core may be changed
by varying ωr , as we noted in section 3. In figure 6 we show a graph of the density profiles
where we reduce ωr by a factor of 4 which gives r ′ = 18.5 µm. This value of r ′ locates rather
well the maximum of the density of species 2. In addition, it may be seen in the figure that
the core size is also enlarged.

5. Summary and concluding remarks

We have analysed the structure of vortices in a mixture of confined bosons and derived
simple approximated expressions that well describe the spatial distribution of particles in the
condensates.
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On the one hand, we have obtained analytic formulae for the density profiles in the
Thomas–Fermi approximation in terms of which we can easily describe the general geometrical
properties of the spatial distribution of species in the condensates. By solving the Gross–
Pitaevskii equations we have shown, as expected, that the TF approximation works better with
an increasing number of particles. However, while in a single-component condensate this
approximation is adequate for describing a system of 87Rb atoms with N � 105, for 2-species
condensates one may need a larger number of particles, around N � 107, to have a reasonable
agreement with the exact solution. Two interesting and immediate results come out from these
TF approximations. (i) The size of the vortex cores may be noticeably enlarged with respect
to the single condensates. As a general remark, we can say that when considering vorticity in
a definite component the species without vorticity fills the core, enlarging the core size sizably
with respect to the corresponding one for a one-component condensate. (ii) If the minimum of
the trapping potentials for each component is displaced by a distance that is small compared
to the size of the total condensate, the segregation of species can change dramatically respect
to the case without the displacement, effect that is also observed for the full Gross–Pitaevskii
solutions.

On the other hand, we have developed some formulae for low-dilution regimes. In
particular, we have obtained a simple expression for the minimum of the effective potential for
2-species particles with vorticity. Moreover, in the two-dimensional model, we have observed
that this expression is adequate to locate the maximum of the density although the relation
N2 	 N1 is not satisfied.

In summary, we have derived some helpful expressions to describe the distribution of
particles in two-component Bose–Einstein condensates.
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