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1. Introduction

The concept of partial group actions and representations was introduced in [7] and 
[12], motivated by the desire to study algebras generated by partial isometries on a 
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Hilbert space H. More specifically, the initial motivation for introducing partial group 
actions in [7] was to study a certain Z-graded algebra as a smash product with respect 
to a weaker form of Z-action. This construction led to the concept of partial G-action on 
an algebra A, which consists of a family of ideals {Dg}g∈G of A and a family of algebra 
isomorphisms αg : Dg−1 → Dg satisfying some compatibilities. The associated partial 
skew group algebra A ×αG is the k-vector space ⊕g∈GDg endowed with a multiplication 
that resembles the one that defines a skew group algebra, and coincides with it when 
Dg = A for every g in G. Partial representations of G appear naturally as an ingredient 
in the study of the representations of the partial skew group algebra A ×α G, see [4].

In [5] the authors expand the concept of partial smash product to that of a partial 
crossed product, with cocycles taking values in multiplier algebras, and this approach 
culminated in a characterization of the G-graded algebras which are isomorphic to a 
partial crossed product. On the other hand, recently it was proved that a large class of 
Z-graded algebras, the Leavitt path algebras of graphs [1], can be expressed as partial 
smash products [9] over the free group generated by the arrows of the underlying quiver. 
Among other developments, we may cite also the development of a Galois theory for 
partial actions [6,2,10,11].

Given an action of G on an algebra B, every unital ideal of B carries a partial action: 
if A is such an ideal, with unit 1A, then a partial G-action on A is obtained by defining 
Dg as the ideal A ∩g(A) and αg to be the restriction of the map b ∈ B &→ g(b) ∈ B to the 
ideal Dg−1 . If a partial action arises in this manner, one says that this partial action is 
globalizable, and its globalization is the subalgebra Ã = ⊕g∈Gg(A). It is well-known that 
if Ã is a (unital) globalization for A then the partial smash product A ×αG and the skew 
group algebra Ã[G] are Morita equivalent [4]. Therefore, since Hochschild cohomology 
is a Morita invariant, in principle one could substitute Ã[G] for A ×α G in order to 
calculate the cohomology of the former. However there is a downside to this approach: 
the globalization Ã may not be a unital algebra, and the way that Ã is usually obtained, 
as the subalgebra generated by vector subspaces of an algebra of functions, makes it hard 
to describe it explicitly (e.g., by generators and relations). Therefore one needs tools to 
calculate the Hochschild cohomology of A ×α G that do not involve the globalization Ã, 
and here lies the main contribution of this work.

In Section 2 we recall, to the benefit of the reader, some definitions and fundamental 
known results regarding partial actions and partial representations of a group. Here 
we recall the definition of partial representation, and show that the category of partial 
representations ParRep G is equivalent to the category of representations of the partial 
group algebra Kpar G, see [4]. We also recall the definition of partial action of G on 
an algebra A, we recall the construction of the partial smash product A ×α G and 
we show that the category of representations of the partial smash product A ×α G is 
equivalent to the category of covariant pairs CovPair(A, G) whose objects are pairs in 
Rep A × ParRep G with some compatibility property. Finally we show that the partial 
group algebra Kpar G is in fact a partial smash algebra B ×β G, see [4, Thm 6.9].
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In Section 3 we define the partial group cohomology as the right derived functor of the 
functor of partial invariants. As a first step we show that the functor of partial invariants 
is representable, that is, (−)Gpar ( HomKpar G(B, −). Later we relate this cohomology 
with partial derivations and with the partial augmentation ideal.

In Section 4 we show that there exists a Grothendieck spectral sequence relating 
cohomology of partial smash products with partial group cohomology and algebra coho-
mology.

2. Basic definitions

In this section we introduce all the necessary definitions and results that will be used 
throughout this article. We refer to [4] for more details.

Let G be a group and K be any field. We denote by e the identity of G.

Definition 1. A partial representation of G on the K-vector space V is a map π : G →
EndK(V ) such that, for all s, t ∈ G, we have:

(a) π(s)π(t)π(t−1) = π(st)π(t−1);
(b) π(s−1)π(s)π(t) = π(s−1)π(st);
(c) π(e) = 1,

where 1 = idV is the identity map on V .

In other words, π is a partial representation of G if the equality π(s)π(t) = π(st) holds 
when the two sides are multiplied either by π(s−1) on the left or by π(t−1) on the right.

Example 1. Every representation of G is a partial representation; moreover, if H is any 
subgroup of G and π : H → EndK(V ) is a partial representation of H, then the map 
π̃ : G → EndK(V ) given by

π̃(g) =
{
π(g) if g ∈ H,

0 otherwise

defines a partial representation of G.

Example 2. Partial representations underlie important algebras generated by partial 
isometries. Among the most interesting cases are the Cuntz–Krieger algebras [3], that is, 
universal C∗-algebras generated by a finite set of partial isometries {S1, . . . , Sn} subject 
to some conditions. In this case there exists a partial representation of the free group 
Fn sending the i-th canonical generator to Si. This idea was generalized in [8] to treat 
the case of infinite matrices and was used to give the first definition of Cuntz–Krieger 
algebras for transition matrices on infinitely many states.

Let π : G → EndK(V ) and π′ : G → EndK(W ) be two partial representations 
of G. A morphism of partial representations is a linear map f : V → W such that 
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f ◦ π(g) = π′(g) ◦ f for any g ∈ G. The category of partial representations of G, denoted 
as ParRep G is the category whose objects are pairs (V, π), where V is a K-vector space 
and π : G → EndK(V ) is a partial representation of G on V , and whose morphisms are 
morphisms of partial representations.

Let B, C be algebras and π1 : G → EndK B, π2 : G → EndK C partial representations. 
Then we can define a partial representation of Cop, πop

2 : G → EndK Cop given by 
πop

2 (g) = π2(g−1) and so a partial representation of B⊗Cop given by π(g) = π1(g) ⊗
πop

2 (g).
In order to study the representations of G one can consider the group algebra KG

which is an associative algebra with the same representation theory of the group G; in 
a similar fashion, we can define the partial group algebra Kpar G, whose representations 
are in one-to-one correspondence with the partial representations of G as follows.

Definition 2. Given a group G and a field K, the partial group algebra Kpar G is the 
universal K-algebra with unit 1 generated by the set of symbols {[g] : g ∈ G}, with 
relations:

(1) [e] = 1;
(2) [s−1][s][t] = [s−1][st];
(3) [s][t][t−1] = [st][t−1]; for all s, t ∈ G.

Clearly the map G → Kpar G given by g &→ [g] is a partial representation of the group 
G on the algebra Kpar G.

Theorem 2.1. The category ParRep G is equivalent to the category Rep Kpar G.

Proof. It is straightforward to check that, if V is any K-vector space and πV : G →
EndK(V ) is a partial representation of G in V , then πV extends uniquely by linearity to 
a representation φV : Kpar G → EndK(V ) such that φV ([g]) = πV (g), that is,

G

πV

g %→[g]
Kpar G

φV

EndK(V )

Conversely, if φV : Kpar G → EndK(V ) is a representation, then πV (g) = φV ([g]) gives 
a partial representation of G in V . !

To see how partial representations of groups are closely related to the concept of 
partial actions of groups, let us briefly remember some facts about partial group actions.
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Definition 3. Let G be a group and A an algebra, a partial action α of G on A is given 
by a collection {Dg}g∈G of ideals of A and a collection {αg : Dg−1 → Dg}g∈G of (not 
necessarily unital) algebra isomorphisms, satisfying the following conditions:

(1) De = A, and αe = idA;
(2) αh(Dh−1 ∩ D(gh)−1) = Dh ∩ Dg−1 ;
(3) If x ∈ Dh−1 ∩ D(gh)−1 , then αgαh(x) = αgh(x).

It can be easily seen that condition (2) can be replaced by the “weaker” condition: 
αh(D(gh)−1) ⊇ Dh ∩ Dg−1 .

Example 3. An action of G on an algebra A is clearly a partial action, defining Dg = A

for all g ∈ G and αg the map a ∈ A &→ g(a) ∈ A. Moreover, every unital ideal of A
carries a partial action: if B is such an ideal, with unit 1B, then a partial G-action β on 
B is obtained by defining Dg = B ∩ g(B) and βg to be the restriction of αg to the ideal 
Dg−1 . Note that each ideal Dg of B is also unital, with unit ug = 1Bg(1B).

Consider two partial actions (A, {Dg}g∈G, {αg}g∈G) and (B, {Eg}g∈G, {βg}g∈G). 
A morphism of partial actions

ϕ : (A, {Dg}g∈G, {αg}g∈G) → (B, {Eg}g∈G, {βg}g∈G)

is an algebra morphism ϕ : A → B such that ϕ(Dg) ⊂ Eg and

Dg−1
αg

ϕ

Dg

ϕ

Eg−1
βg

Eg

for all g ∈ G. Partial actions and the morphisms between them form a category that we 
denote as ParAct G.

Remark 1.

a) Since the domain of αgαh is α−1
h (Dh ∩ Dg−1), conditions (2) and (3) in the previous 

definition say that αgh is only an extension of αgαh. However, the partial relations 
hold, that is, αgαhαg−1 = αghαg−1 and αh−1αgαh = αh−1αgh. In fact these partial 
relations can be used to rephrase the definition of partial action, see [7, Proposi-
tion 4.1].

b) If A =
∑

g∈G Ag is a G-graded algebra, by definition the product AgAh is contained 
in Agh, but in general they do not coincide. However, if AgAg−1Ag = Ag for any 
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g ∈ G, the partial relations between ideals hold, that is, AgAhAg−1 = AghAg−1 and 
Ah−1AgAh = Ah−1Agh, see [7, Proposition 5.3].

A partial action of a group G on a algebra A enables us to construct a new algebra, 
called the partial smash product (also referred to as the “partial skew group ring”), 
denoted by A ×α G. Basically

A ×α G =
∑

g∈G

Dg#g

as a K-module and with the product defined as

(ag#g)(bh#h) = αg(αg−1(ag)bh)#gh.

Note that αg−1(ag) ∈ Dg−1 , bh ∈ Dh and therefore

αg(αg−1(ag)bh) ∈ αg(Dg−1Dh) ⊂ αg(Dg−1 ∩ Dh) ⊂ Dg ∩ Dgh ⊂ Dgh.

Remark 2. It is well known that the definitions of skew group rings and of smash products 
coincide when the Hopf algebra considered is KG. Similarly, the definitions of partial 
skew group ring and of partial smash product coincide when the ideals Dg are of the 
form Aug.

Example 4. Let A be the commutative algebra A = k[x, y]/〈x2, y2〉, G = 〈g : g2 = 1〉 the 
cyclic group of order 2 and I = Ay the ideal generated by y (generated by y and xy as 
a vector space). Consider the partial action α of G on A given by Dg = I, αg(y) = xy, 
αg(xy) = y. Then the partial smash product A ×α G is not associative. More precisely, 
taking u = xδ1 + xyδg we have that (uu)u = 0 and u(uu) = xyδg, see [4, Example 3.5].

From now on we assume that the domains Dg are ideals of the form Aug where the 
generators ug are central idempotents of A for each g ∈ G. This condition naturally 
appears, for instance, in the description of a Leavitt path algebra as a partial smash 
product [9] and in the development of the Galois theory for partial actions [6,2,10]; it also 
determines whether the partial action can be obtained as a restriction as in Example 3
[4, Theorem 4.5]. In this case the partial smash product is automatically associative and 
the formula of the product in A ×α G simplifies to

(aug#g)(buh#h) = aαg(buhug−1)ugh#gh.

It is easy to verify that the map π0 : G → A ×α G, given by π0(g) = ug#g is a partial 
representation of the group G on the algebra A ×α G.

The partial smash product has an important universal property. Let A be an algebra 
on which the group G acts partially, consider the canonical inclusion φ0 : A → A ×α G
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defined by φ0(a) = aue#e which is easily seen to be an algebra monomorphism. Given 
a K-vector space V , a pair of maps (φV , πV ) is said to be a covariant pair if φV : A →
EndK(V ) is a representation and πV : G → EndK(V ) is a partial representation such 
that

φV (αg(aug−1)) = πV (g)φV (a)πV (g−1).

We denote CovPair(A, G) the category whose objects are covariant pairs (φV , πV ), and a 
morphism between covariant pairs f : (φV , πV ) → (φW , πW ) is a linear map f : V → W

such that f ◦ πV (g) = πW (g) ◦ f and f ◦ φV (g) = φW (g) ◦ f for any g ∈ G.
The universal property of A ×α G is given by the following result.

Theorem 2.2. Let A be an algebra on which the group G acts partially, V a K-vector 
space and (φV , πV ) a covariant pair related to these data. Then there exists a unique 
algebra morphism Φ : A ×α G → EndK(V ) such that

A ×α G

ΦA

φ0

φV

G

π0

πV

EndK(V )

is commutative.

Proof. It is clear that the map Φ : A ×α G → Endk(V ) defined by Φ(aug#g) =
φV (a)πV (g) gives the desired result. !

Corollary 2.3. Let A be an algebra on which the group G acts partially. Then the category 
Rep A ×α G is equivalent to the category of covariant pairs CovPair(A, G).

A very important result in the theory of partial representations of groups is that the 
partial group algebra Kpar G is always isomorphic to a partial smash product. First, it is 
important to note that the partial group algebra Kpar G has a natural G-grading. Indeed 
we can decompose, as a vector space, the whole partial group algebra as

Kpar G =
∑

g∈G

Bg,

where each subspace Bg is generated by elements of the form [h1][h2]...[hn] such that 
g = h1h2...hn, and it is easy to see that the product in Kpar G makes BgBh ⊂ Bgh. Now, 
for each g ∈ G define the element eg = [g][g−1] ∈ Kpar G. One can prove easily that these 
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eg are idempotents for each g ∈ G. These elements satisfy the following commutation 
relation:

[g]eh = egh[g].

Indeed,

[g]eh = [g][h][h−1] = [gh][h−1]

= [gh][(gh)−1][gh][h−1] = [gh][(gh)−1][g]

= egh[g].

From this, one can prove that all eg commute among themselves. Define the subalgebra 
B =< eg|g ∈ G >⊂ Kpar G. This is a commutative algebra generated by central idempo-
tents, and it is not difficult to prove that the subalgebra B corresponds to the uniform 
subalgebra Be coming from the natural G grading above presented. Then, we have the 
following two results.

Theorem 2.4. Given a group G, there is a partial action of G on the commutative algebra 
B above defined, such that Kpar G = B ×β G.

Proof. In order to define a partial action of G on B, we have to give the domains Dg

and the isomorphisms βg : Dg−1 → Dg for each g ∈ G. As the elements eg are central 
idempotents in B, define the ideals Dg = egB. Clearly, these ideals are unital algebras 
with unit eg. Now, the partially defined isomorphisms between these ideals are

βg(eg−1eh1 · · · ehn) = [g]eg−1eh1 · · · ehn [g−1] = egegh1 · · · eghn .

It is easy to verify that these data indeed define a partial action of G on B. In order 
to prove the isomorphism, let us use both universal properties, of the partial smash 
product and of the partial group algebra. First, the map π0 : G → B ×β G given by 
π0(g) = eg#g is a partial representation of the group G on the partial smash product. 
Then, there is a unique algebra morphism π̂ : Kpar G → B ×β G, which factorizes this 
partial representation. This morphism can be written explicitly as

π̂([g1]...[gn]) = eg1eg1g2 · · · eg1···gn#g1 · · · gn.

On the other hand, the canonical inclusion of B into Kpar G and the canonical partial 
representation form a covariant pair relative to the algebra Kpar G then there is a unique 
algebra morphism ϕ : B ×β G → Kpar G explicitly given by

ϕ(egeh1 · · · ehn#g) = egeh1 · · · ehn [g].

Easily, one can verify that the morphisms π̂ and ϕ are mutually inverses, completing the 
proof. !
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Theorem 2.5. The K-vector space B admits a partial representation π : G → EndK(B)
defined by π(g)(x) = [g]x[g−1] for any g ∈ G, x ∈ B.

Proof. The map π(g)(x) = [g]x[g−1] defines a partial representation since π(e) = idV

because [e] = 1; π(s)π(t)π(t−1) = π(st)π(t−1) because

[s][t][t−1]x[t][t−1][s−1] = [st][t−1]x[t][(st)−1]

and analogously, π(s−1)π(s)π(t) = π(s−1)π(st). !

3. Partial group cohomology

In this section we define the partial group cohomology as the right derived functor 
of the functor of partial invariants. As a first step we show that the functor of partial 
invariants is representable, that is, (−)Gpar ( HomKpar G(B, −). Later we relate this 
cohomology with partial derivations and with the partial augmentation ideal.

If G is a group and φV : Kpar G → EndK(V ) is an object in Rep Kpar G, the set of 
partial G-invariants of V is defined as

V Gpar = {v ∈ V : φV ([g])(v) = φV (eg)(v) for all g ∈ G}.

It is clear that V Gpar is a K-vector space and if f : V → W is a morphism in Rep Kpar G

and v ∈ V Gpar , then

φW ([g])(f(v)) = f(φV ([g])(v)) = f(φV (eg)(v)) = φW (eg)(f(v)),

hence f induces a linear map fGpar : V Gpar → W Gpar .

Proposition 3.1. (−)Gpar : Rep Kpar G → Rep K is a left exact functor.

Proof. From the previous discussion, it is clear that (−)Gpar is a functor. To see that it 
is left exact it is enough to see that there is a natural isomorphism

(−)Gpar ( HomKpar G(B, −)

given by v &→ fv with fv(1) = v. Observe that f is uniquely defined by the element f(1)
since

eg1eg2 · · · egm = [h1][h2] · · · [hm]1[h−1
m ] · · · [h−1

1 ]

where h1 = g1 and hi = g−1
i−1gi for any i = 2, . . . , m. Finally observe that the fact that 

any f ∈ HomKpar G(B, V ) is a morphism in Rep Kpar G implies that
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φV ([g])(f(1)) = f(φB([g])(1)) = f([g]1[g−1])

= f([g][g−1][g][g−1])

= f(φB([g][g−1])(1))

= f(φB(eg)(1)) = φV (eg)(f(1))

and hence f(1) ∈ V Gpar . !

Definition 4. If G is a group and M is an object in Rep Kpar G, then the partial group 
cohomology groups of G with coefficients in M are defined as

Hn
par(G, M) = Extn

Kpar G(B, M),

that is, Hn(G, M) is the right derived functor of (−)Gpar ( HomKpar G(B, −).

In order to compute a Kpar G-projective resolution of B we start with the following 
exact sequence in Rep Kpar G given by

0 → IG → Kpar G
ε→ B → 0

where IG = Ker ε is the partial augmentation ideal and ε([g1] · · · [gn]) = eg1eg1g2 · · ·
eg1g2···gn .

Lemma 3.2. The morphism ε : Kpar G → B given by ε([g1] · · · [gn]) = eg1eg1g2 · · · eg1g2···gn

verifies the following properties:

(a) ε(xy)x = xε(y) for any x, y ∈ Kpar G;
(b) ε(xy) = ε(xy)ε(x) for any x, y ∈ Kpar G.

Proof. Take x = [g1] · · · [gr], y = [h1] · · · [hs]. Recall that B is commutative, eg is idem-
potent and [g]eh = egegh[g]. Then we have that

xε(y) = [g1] · · · [gr]eh1eh1h2 · · · eh1h2···hs

= eg1eg1g2 · · · eg1···grh1h2···hs [g1] · · · [gr]

= ε(xy)x

and

ε(xy)ε(x) = eg1eg1g2 · · · eg1···grh1h2···hseg1eg1g2 · · · eg1···gr

= ε(xy). !
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Now we define the vector space of partial derivations as follows:

Derpar(G, M) = {δ ∈ HomK(Kpar G, M) : δ(a.b) = aδ(b) + ε(b)δ(a)

for any a, b ∈ Kpar G}.

In particular, we say that δ ∈ Derpar(G, M) is inner if δ([g]) = [g]m − egm for some 
m ∈ M . We denote by Intpar(G, M) the space of inner partial derivations.

Proposition 3.3. There is a natural isomorphism

HomKpar G(IG, −) ( Derpar(G, −).

Proof. The map

HomKpar G(IG, M) → Derpar(G, M)

given by

f &→ f̂ , with f̂(x) = f(x − ε(x).1)

is a natural isomorphism of vector spaces. Using Lemma 3.2 we get that f̂ is a partial 
derivation:

f̂(xy) = f(xy − ε(xy).1) = f(xy − xε(y) + ε(xy)x − ε(xy)ε(x))

= xf(y − ε(y)) + ε(xy)f(x − ε(x))

= xf̂(y) + ε(xy)f̂(y). !

Theorem 3.4. Let G be a group and M an object in Kpar G. Then

H0
par(G, M) = MGpar = HomKpar G(B, M);

H1
par(G, M) = Derpar(G, M)/ Intpar(G, M);

Hn
par(G, M) = Extn−1

Kpar G(IG, M), n ≥ 2.

Proof. Associated to the short exact sequence

0 → IG → Kpar G
ε→ B → 0

there is a long exact sequence
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0 HomKpar G(B, M) HomKpar G(Kpar G, M) HomKpar G(IG, M)

Ext1
Kpar G(B, M) Ext1

Kpar G(Kpar G, M) Ext1
Kpar G(IG, M)

Ext2
Kpar G(B, M) Ext2

Kpar G(Kpar G, M) . . .

Since Kpar G is projective, we have that Extn
Kpar G(Kpar G, M) = 0 for any n ∈ N, so

Hn
par(G, B) = Extn−1

Kpar G(IG, M)

for any n ≥ 2. Finally H1
par(G, B) is the cokernel of the map

M ( HomKpar G(Kpar G, M) → HomKpar G(IG, M)

and hence the commutative diagram

HomKpar G(Kpar G, M)

∼=

HomKpar G(IG, M)

∼=

Ext1
Kpar G(B, M)

Intpar(G, M) Derpar(G, M) Derpar(G, M)/ Intpar(G, M)

yields the desired result. !

4. Spectral sequence

In this section we will show that there exists a Grothendieck spectral sequence relat-
ing cohomology of partial smash products with partial group cohomology and algebra 
cohomology:

Theorem 4.1. For any A ×α G-bimodule M there is a third quadrant cohomology spectral 
sequence starting with E2 and converging to H∗(A ×α G, M):

Ep,q
2 = Hq

par(G, Hp(A, M)) ⇒ Hp+q(A ×α G, M).

We start by studying the behavior of the functors that are considered in the mentioned 
spectral sequence. For any pair of objects

φX : Kpar G → EndK(X) ∈ Rep Kpar G

and
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ΦM : (A ×α G)e → EndK(M) ∈ Rep(A ×α G)e,

we consider the object

∆ : (A ×α G)e → EndK(X ⊗B M) ∈ Rep(A ×α G)e

given by

∆(aug#g ⊗ buh#h)(x ⊗ m) = φX([g])(x) ⊗ ΦM (aug#g ⊗ buh#h)(m)

which is well defined since

∆(aug#g ⊗ buh#h)(φX(es)(x) ⊗ m)

= φX([g])(φX(es)(x)) ⊗ ΦM (aug#g ⊗ buh#h)(m)

= φX([g]es)(x) ⊗ ΦM (aug#g ⊗ buh#h)(m)

= φX(egs[g])(x) ⊗ ΦM (aug#g ⊗ buh#h)(m)

= φX(egs)φX([g])(x) ⊗ ΦM (aug#g ⊗ buh#h)(m) (1)

= φX([g])(x) ⊗ ΦM (ugs#e ⊗ 1)ΦM (aug#g ⊗ buh#h)(m) (2)

= φX([g])(x) ⊗ ΦM ((ugs#e)(aug#g) ⊗ buh#h)(m) (3)

= φX([g])(x) ⊗ ΦM ((aug#g)(us#e) ⊗ buh#h)(m) (4)

= φX([g])(x) ⊗ ΦM (aug#g ⊗ buh#h)ΦM (us#e ⊗ 1)(m)

= ∆(aug#g ⊗ buh#h)(x ⊗ ΦM (us#e ⊗ 1)(m)).

From (1) to (2) we use that B is a commutative ring. From (3) to (4) we use the equality 
(ugs#e)(aug#g) = (aug#g)(us#e) which can be deduced as follows: (ugs#e)(aug#g) =
ugsaug#g and, on the other hand,

(aug#g)(us#e) = augαg(usug−1)ug#g

= augαg(usug−1)#g.

Now usug−1 ∈ DsDg−1 = Ds ∩ Dg−1
αg→ Dgs ∩ Dg = DgsDg. So, αg(usug−1) = ugsug and 

then augαg(usug−1)#g = augugs#g.
In particular, if we take M = A ×α G we have that X ⊗B (A ×α G) is an object in 

Rep(A ×α G)e.
On the other hand, it is clear that M can be viewed as an object in Rep Ae, where 

φM : Ae → EndK(M) is the composition

Ae φ0⊗φ0−→ (A ×α G)e ΦM−→ EndK(M)
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given by

a ⊗ b &→ aue#e ⊗ bue#e &→ ΦM (aue#e ⊗ bue#e)

and then we can consider the object

π : G → EndK(HomAe(A, M)) ∈ Rep Kpar G

given by

π(g)(f)(x) = ΦM (ug#g ⊗ ug−1#g−1)f(αg−1(ugx)).

It is clear that π(g)(f) ∈ HomAe(A, M) since

π(g)(f)(axb)

= ΦM (ug#g ⊗ ug−1#g−1)f(αg−1(ugaxb))

= ΦM (ug#g ⊗ ug−1#g−1)f(αg−1(uga)(αg−1(ugx)αg−1(ugb))

= ΦM (ug#g ⊗ ug−1#g−1)ΦM (αg−1(uga)ue#e ⊗ αg−1(ugb)ue#e)

f(αg−1(ugx))

= ΦM ((ug#g)(αg−1(uga)ue#e) ⊗ (αg−1(ugb)ue#e)(ug−1#g−1))

f(αg−1(ugx)) (5)

= ΦM ((aue#e)(ug#g) ⊗ (ug−1#g−1)(bue#e))f(αg−1(ugx)) (6)

= ΦM (aue#e ⊗ bue#e)ΦM (ug#g ⊗ ug−1#g−1)f(αg−1(ugx))

= ΦM (aue#e ⊗ bue#e)π(g)(f)(x).

From (5) to (6) we use that

(ug#g)(αg−1(uga)ue#e) = ugαg(αg−1(uga)ug−1)ug#g

= ugαg(αg−1(uga)ug−1)#g

= ugαg(αg−1(uga))#g

= uga#g = (aue#e)(ug#g)

and analogously,

(αg−1(ugb)ue#e)(ug−1#g−1) = αg−1(ugb)ug−1#g−1

= ug−1αg−1(bueug)ug−1#g−1

= (ug−1#g−1)(bue#e).
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This map π induces a partial action since:

π(e)(f)(x) = ΦM (ue#e ⊗ ue#e)f(αe−1(x)) = f(x)

and

π(g)π(h)π(h−1)(f)(x) = π(gh)π(h−1)(f)(x)

because

π(g)π(h)π(h−1)(f)(x)

= ΦM (ug#g ⊗ ug−1#g−1)(π(h)π(h−1)f)(αg−1(ugx))

= ΦM (ug#g ⊗ ug−1#g−1)ΦM (uh#h ⊗ uh−1#h−1)ΦM (uh−1#h−1 ⊗ uh#h)

. f(αh(uh−1(αh−1(uh(αg−1(ugx)))))) (7)

= ΦM (ughug#g ⊗ uhug−1#g−1)f(αh(αh−1(uh(αg−1(ugx))))) (8)

= ΦM (ughug#g ⊗ uhug−1#g−1)f(αh(αh−1(uhug−1(αg−1(ugx))))) (9)

= ΦM (ughug#g ⊗ uhug−1#g−1)f(αh(αh−1(αg−1(ughug)(αg−1(ugx))))) (10)

= ΦM (ughug#g ⊗ uhug−1#g−1)f(αh(αh−1(αg−1(ughugx)))) (11)

= ΦM (ughug#g ⊗ uhug−1#g−1)f(αh(α(gh)−1(ughugx)))) (12)

= ΦM (ughug#g ⊗ uhug−1#g−1)f(αh(α(gh)−1(ughug)α(gh)−1(ughx)))

= ΦM ((ugh#gh)(uh−1#h−1) ⊗ (uh#h)(u(gh)−1#(gh)−1)

. f(αh(u(gh)−1uh−1α(gh)−1(ughx))

= ΦM ((ugh#gh) ⊗ (u(gh)−1#(gh)−1)ΦM ((uh−1#h−1) ⊗ (uh#h))

. f(αh(uh−1α(gh)−1(ughx))

= π(gh)π(h−1)f(x).

From (7) to (8) we use that (ug#g)(uh#h)(uh−1#h−1) = (ugh#gh)(uh−1#h−1), from 
(9) to (10) we use that αg−1(ughug) = uhug−1 and from (11) to (12) we use that 
α(gh)−1(ughug) = αh−1(αg−1(ughug)).

Now we consider the natural transformations

HomKpar G(−, HomAe(A, M))
Γ

Hom(A×αG)e(− ⊗B (A ×α G), M)
Λ

defined as follows: given H ∈ HomKpar G(X, HomAe(A, M)), the map ΓX(H) is defined 
by
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ΓX(H)(x ⊗ aug#g) := ΦM (1 ⊗ aug#g)H(x)(1)

and given T ∈ Hom(A×αG)e(X ⊗B (A ×α G), M), the map ΛX(T ) is defined by

ΛX(T )(x)(a) := T (x ⊗ aue#e).

The map ΓX(H) is well defined since

ΓX(H)(eh.x ⊗ aug#g)

= ΦM (1 ⊗ aug#g)H(eh.x)(1)

= ΦM (1 ⊗ aug#g)(φ(eh))H(x)(1)

= ΦM (1 ⊗ aug#g)(π(h)π(h−1)H(x)(1)

= ΦM (1 ⊗ aug#g)ΦM (uh#h ⊗ uh−1#h−1)ΦM (uh−1#h−1 ⊗ uh#h)

H(x)(αh(uh−1αh−1(uh1)))

= ΦM (1 ⊗ aug#g)ΦM ((uh#h)(uh−1#h−1) ⊗ (uh#h)(uh−1#h−1))

H(x)(uh)

= ΦM (1 ⊗ aug#g)ΦM ((uh#e) ⊗ (uh#e))H(x)(uh)

= ΦM (uh#e ⊗ (uh#e)(aug#g))H(x)(uh1)

= ΦM (1 ⊗ (uh#e)(aug#g))H(x)(uh(uh1))

= ΦM (1 ⊗ (uh#e)(uh#e)(aug#g))H(x)(1))

= ΦM (1 ⊗ (uh#e)(aug#g))H(x)(1)

= ΓX(H)(x ⊗ (uh#e)(aug#g))

and

ΓX(H)(∆(cuh#h ⊗ dus#s)(x ⊗ aug#g)) =

= ΓX(H)(πX(h)(x) ⊗ (cuh#h)(aug#g)(dus#s))

= ΦM (1 ⊗ (cuh#h)(aug#g)(dus#s))H(πX(h)(x))(1)

= ΦM (1 ⊗ (cuh#h)(aug#g)(dus#s))ΦM (uh#h ⊗ uh−1#h−1)H(x)(1)

= ΦM (uh#h ⊗ (αh−1(cuh)#e)(aug#g)(dus#s))H(x)(1)

= ΦM (uh#h ⊗ (aug#g)(dus#s))H(x)(αh−1(cuh))

= ΦM (uh#h ⊗ (aug#g)(dus#s))Φ(αh−1(cuh)#e ⊗ (ue#e))H(x)(1)

= ΦM ((uh#h)(αh−1(cuh)#e) ⊗ (aug#g)(dus#s))H(x)(1)
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= ΦM ((uhαh(uh−1αh−1(cuh))#h) ⊗ (aug#g)(dus#s))H(x)(1)

= ΦM (cuh#h ⊗ (aug#g)(dus#s))H(x)(1)

= ΦM (cuh#h ⊗ dus#s)ΦM (1 ⊗ aug#g)H(x)(1)

= ΦM (cuh#h ⊗ (dus#s))ΓX(H)(x ⊗ aug#g)).

On the other hand, ΛX(T ) ∈ HomKpar G(X, HomAe(A, M)) because

ΛX(T )(x)(cad) = T (x ⊗ (cue#e)(aue#e)(due#e))

= ΦM (cue#e ⊗ due#e)T (x ⊗ aue#e)

= ΦM (cue#e ⊗ due#e)ΛX(T )(x)(a)

and

ΛX(T )(πX(g)(x))(a)

= T (πX(g)(x) ⊗ aue#e) = T ((πX(g)πX(g−1)πX(g))(x) ⊗ aue#e)

= T ((πX(eg)πX(g))(x) ⊗ aue#e)

= T (πX(g)(x) ⊗ (ug#e)(aue#e)) = T (πX(g)(x) ⊗ aug#e)

= T (πX(g)(x) ⊗ (ug#g)(αg−1(aug)#e)(ug−1#g−1))

= ΦM (ug#g ⊗ ug−1#g−1)T (x ⊗ αg−1(aug)#e)

= ΦM (ug#g ⊗ ug−1#g−1)ΛX(T )(x)(αg−1(aug)) = π(g)ΛX(T )(x)(a).

Moreover, Λ ◦ Γ = id because

ΛX(ΓX(H))(x)(a) = ΓX(H)(x ⊗ aue#e) = H(x)(a)

and Γ ◦ Λ = id because

ΓX(ΛX(T ))(x ⊗ aug#g) = ΦM (1 ⊗ aug#g)ΛX(T )(x)(1)

= ΦM (1 ⊗ aug#g)T (x ⊗ ue#e) = T (x ⊗ aug#g).

The previous facts lead us to the following two propositions.

Proposition 4.2. The functors

HomKpar G(−, HomAe(A, M)) and Hom(A×αG)e(− ⊗B (A ×α G), M)

are naturally isomorphic.
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Proof. The natural transformations ∆X and ΓX yield the desired bijections. !

Proposition 4.3. There exists a commutative diagram of functors

Rep(A ×α G)e

F1

F Rep K

Rep Kpar G

F2

where

F (M) = Hom(A×αG)e(A ×α G, M),
F1(M) = HomAe(A, M)

and

F2(X) = HomKpar G(B, X).

Proof. We can apply the previous proposition in the particular case of X = B, and use 
the fact that B ⊗B (A ×α G) ( A ×α G as A ×α G-bimodules because

(aug#g)(1 ⊗ x)(buh#h) = eg ⊗ (aug#g)x(buh#h) = 1 ⊗ (aug#g)x(buh#h). !

From [13, Theorem 10.47], in order to finish the proof of Theorem 4.1 we need the 
following proposition, whose proof will appear after some lemmas.

Proposition 4.4. The functor F2 is left exact and F1(M) is right F2-acyclic for every 
injective object M in Rep(A ×α G)e.

Lemma 4.5. Let S be a commutative semigroup where every element is an idempotent. 
Let K be a field, let KS be the semigroup algebra of S. If I is a finitely generated ideal 
of KS then I is principal and is generated by an idempotent of KS.

Proof. Let I be a finitely generated ideal of KS and let r1, . . . , rm be generators of 
this ideal. Choose idempotents u1, . . . , un of S such that each ri is a combination of 
these idempotents, and let T be the subsemigroup of S generated by u1, . . . , un. T is 
a commutative semigroup consisting only of idempotents, which is the same as a lower 
semilattice: the associated partial order is given by u ≤ v iff uv = vu = u, and the 
greatest lower bound of {u, v} is uv. Since T is finite, [14, Theorem 1] says that KT has 
a basis of orthogonal idempotents w1, . . . , wN (see also [15, Theorem 4.2]).

Each generator ri lies in KT and therefore we may write ri =
∑

j αi,jwj for i = 1, . . . , n
(with αi,j in K). Given that wjri = αi,jwj , the set
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W = {wj ;αi,j 2= 0 for some i}

is contained in I. On the other hand, every generator of I is a K-linear combination of 
these elements and therefore the ideal generated by W coincides with I.

Finally, the ideal generated by W is the ideal generated by the idempotent u =∑
wj∈W wj ∈ I which acts as an identity for the elements of I. Since the wj ’s are 

mutually orthogonal, uwj = wj for each j ∈ I. Hence, if y ∈ I then y =
∑

wj∈W bjwj , 
with bj ∈ KS, and therefore uy =

∑
wj∈W bj(uwj) =

∑
wj∈W bjwj = y. !

Lemma 4.6. Every B-module X is flat.

Proof. From [13, Proposition 3.58], it is enough to show that for any finitely generated 
left ideal I of B, the morphism I ⊗B X → B ⊗B X ∼= X is injective. By Lemma 4.5 and 
the fact that B = KS, where S is the commutative semigroup S = {eg1eg2 · · · egn ; gi ∈ G,

n ≥ 1}, we have that each such ideal is principal and is generated by an idempotent u.
Now assume that 

∑
i yi ⊗ xi ∈ I ⊗B X is such that 

∑
i yi · xi = 0 in X. Since yi ∈ I

for each i we have yi = uyi and therefore
∑

i

yi ⊗B xi =
∑

i

uyi ⊗B xi = u ⊗B (
∑

i

yi · xi) = 0,

and it follows that I ⊗B X → B ⊗B X is injective. !

Corollary 4.7. The functor − ⊗B (A ×α G) : Rep Kpar G → Rep(A ×α G)e is exact.

Proof of Proposition 4.4. It is clear that F2(−) = HomKpar G(B, −) is left exact. If M is 
an injective object in Rep(A ×α G)e, the isomorphism of functors

HomKpar G(−, HomAe(A, M)) ( Hom(A×αG)e(− ⊗B (A ×α G), M)

and Corollary 4.7 imply that HomKpar G(−, HomAe(A, M)) is an exact functor. Hence 
Extn

Kpar G(B, F1(M)) = 0 for any n > 0 and so F1(M) is F2-acyclic. !
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