
Eur. Phys. J. B 45, 9–17 (2005)
DOI: 10.1140/epjb/e2005-00159-6 THE EUROPEAN

PHYSICAL JOURNAL B

Spontaneous spin polarization in doped semiconductor quantum
wells

L.O. Juria and P.I. Tamborenea
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Abstract. We calculate the critical density of the zero-temperature, first-order ferromagnetic phase transi-
tion in n-doped GaAs/AlGaAs quantum wells. We predict that this transition could be observed in narrow
quantum wells at electron densities somewhat lower than the ones that have been considered experimen-
tally thus far, and that there exists an upper limit for the well width beyond which there would be no
transition as long as only one subband is populated. Our calculations are done within a screened Hartree-
Fock approximation with a polarization-dependent effective mass, which is adjusted to match the critical
density predicted by Monte Carlo calculations for the strictly two-dimensional electron gas.

PACS. 73.21.Fg Quantum wells – 71.10.Ca Electron gas, Fermi gas – 71.45.Gm Exchange, correlation,
dielectric and magnetic response functions, plasmons

1 Introduction

The interacting electron gas is one of the fundamental
systems of physics. In spite of a long tradition of study,
however, the subject still has many open basic questions.
Notably, the issue of the existence of a ferromagnetic tran-
sition at low density has not been settled [1]. Coulomb
correlations play a central role in the low-density regime,
and taking them into account theoretically (i.e. going be-
yond Hartree-Fock) is unfortunately notoriously difficult.
This problem has been most reliably tackled with numer-
ically intensive Monte Carlo (MC) techniques [2–5]. For
the two-dimensional jellium-model electron gas (2DEG),
MC calculations indicate that, at T = 0, a first-order
phase transition takes place at a certain critical value rsc

of the dimensionless average separation between electrons
rs ≡ 1/

√
πNsa

∗
B, where Ns is the surface density and

a∗
B is the effective Bohr radius in the embedding medium

(a∗
B = 98.7 Å for GaAs).
The most widely used methods in MC calculations [6]

are the variational Monte Carlo (VMC), which pre-
dicts [2,3] a first-order phase transition at rsc = 13 ± 2
(Nsc = 1.9 × 109 cm−2), and fixed-node diffusion Monte
Carlo (FN-DMC) with which rsc = 25 (Nsc = 5.2 ×
108 cm−2) has been found [4]. The VMC method uses a
stochastic integration to evaluate the ground-state energy
for a given trial wave function. The other method, which
provides lower and more accurate ground-state energies,
uses a projection technique to enhance the ground-state
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component of a trial wave function. In addition, in the FN-
DMC method implemented in reference [4], backflow cor-
relations [7] are included in the Slater determinant of the
trial wave function, i.e. correlations are taken into account
at the starting point of the process, for each polarization.

The strictly two-dimensional electron gas studied with
MC techniques is an idealized theoretical model which has
been introduced in order to describe in a simplified fash-
ion experimentally available quasi-two-dimensional elec-
tron gases (quasi-2DEG), like the ones formed in nega-
tively doped semiconductor quantum wells (QWs) [8–12].
By quasi-two-dimensional we mean here that the elec-
tronic wavefunction or the electronic density depend on
the three usual coordinates, x, y, and z, but they are con-
fined in one of the dimensions, say, z, to distances of the
order of tens of nanometers, while in the other two dimen-
sions the system size is macroscopic. The confinement in
the z-direction gives rise to single-particle energy levels
grouped in subbands [8–12]. In the systems we study here
only one subband is populated due to the very low electron
densities considered, but we still call our systems quasi-
two-dimensional rather than strictly two dimensional be-
cause the electron slab has a finite width and its energy (as
well as other properties, e.g., density profile, dipole mo-
ment for intersubband transitions, etc.), depends on this
finite width, as well as on the particular form of the con-
fining potential. Let us emphasize, then, that the strictly
two-dimensional electron gas, which has zero width and
no subband structure, and an electron gas confined in a
quantum well with one-subband occupied are not identical
systems, and in this paper we explore the differences that
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arise between the two regarding the state of spin polariza-
tion of the ground state. As a first example of the differ-
ences between both types of systems, we mention here the
ground-state energies, equation (14) and equation (16),
given in Section 2.1.

To the best of our knowledge, no Monte Carlo studies
of the low-density phases of quasi-2DEGs comparable to
the MC ones for uniform electron gases (in 2D and 3D)
have been reported. This is due to the fact that the addi-
tion of the third spatial degree of freedom over which the
electron gas is inhomogeneous increases prohibitively the
computational cost of the calculations. We mention that
the ferromagnetic transition in QWs has been studied the-
oretically in the frame of the local-spin-density approxi-
mation [13]. However, the critical densities predicted with
that technique exceed by far the density interval given by
MC for the 2DEG which makes them unreliable.

On the experimental front, the spin susceptibility
has recently been measured in GaAs/AlGaAs superlat-
tices [14], with electron densities as low as 1.7×109 cm−2.
In spite of the fact that this value falls into the density
range predicted for a transition by the 2DEG-MC calcu-
lations, no transition was observed.

In this work, we study theoretically the possibility of a
first-order transition at T = 0 for the quasi-2DEG con-
fined in GaAs/AlGaAs QWs as a function of the well
width. Our goal is to make predictions for realistic semi-
conductor quantum wells that are at least consistent, as
the zero-width limit is approached, with the benchmark
predictions made with MC techniques for the uniform 2D
jellium model electron gas. Our main finding is that the
width and the depth of the well play a crucial role in the
location (value of the critical density Nsc) and even the
existence of the transition. In particular, we predict that
there is an upper limit for the well width beyond which the
ferromagnetic transition does not occur (always within the
regime of only one subband occupied). We find that the
transition could be observed at electron densities some-
what lower than those attained experimentally so far [14],
for an optimum value of the well width, which we provide
below. For our calculations we use a screened Hartree-
Fock approximation scheme that includes a polarization-
dependent effective mass which is introduced in order to
take into account more accurately the effects of Coulomb
correlation inside the well. This approach allows us to ex-
tend the results of the existing numerical Monte Carlo
studies for the 2DEG to quasi-2DEG systems. Our for-
malism is explained in detail in this article, and our avail-
able evidence of its reliability when confronted with MC
results is provided in Section 3.2 (see Fig. 3 and related
text).

The paper is organized as follows. In Section 2.1 we
introduce the basic scheme of the screened Hartree-Fock
approximation and obtain the equations for the ground-
state energies for the 2DEG and the quasi-2DEG. In Sec-
tion 2.2 we present the results of this approximation and
in Section 2.3 we analyze further those results and show
that, according to our theory, an upper limit to the well
width appears beyond which there is no transition. In Sec-

tion 3 we describe the polarization-dependent effective-
mass approximation and present and discuss the results
obtained with it in combination with the available 2DEG
Monte Carlo data. In Section 4 we discuss the experimen-
tal implications of our results and provide our recommen-
dations for the observation of the ferromagnetic transition.
We end in Section 5 with a summary of our conclusions.

2 Screened-Hartree-Fock theory
with polarization-independent effective mass

2.1 Formalism

In a quasi-2DEG, the HF equation may be written as [15]

[
E(ζ)

n (k) − �
2k2

2m∗
b

]
Φ

(ζ)
nk (z) =

[
− �

2

2m∗
b

d2

dz2
+ Vext(z) + V (ζ)

sc (z)
]

Φ
(ζ)
nk (z)

− 2πe2

ε

1
A

∫
dz′

∑
n′occup.

∑
|k′|<k

(ζ)
F n′

e−|k−k′||z−z′|

|k − k′|

× Φ
(ζ)∗
n′k′(z′)Φ

(ζ)
nk (z′)Φ(ζ)

n′k′ (z), (1)

where Φ
(ζ)
nk (z) are the nth subband eigenstates and E

(ζ)
n (k)

the corresponding eigenenergies, m∗
b = 0.067me is the ef-

fective mass (me being the electron rest mass), ε = 12.5
is the dielectric constant, e is the electron charge, A is the
crystal area, and k is the in-plane wave vector. In all our
calculations we take the z-axis as the growth direction of
the heterostructure. The self-consistent potential V

(ζ)
sc (z)

is obtained by integration of the Poisson equation and is
expressed as

V (ζ)
sc (z) = −4πe2

ε

(∫ z

0

dz′(z − z′)n(ζ)(z′) − Ns

2
z

)
, (2)

where the ζ-dependent electron density is

n(ζ)(z) =
2 − ζ

2π

∑
n occup.

∫ k
(ζ)
F n

0

kdk|Φ(ζ)
n (z, k)|2. (3)

Here, Ns is the doping sheet density and the external
potential Vext(z) is the sum of the confinement poten-
tial of the heterostructure plus the electrostatic poten-
tial generated by the ionized donors (located symmet-
rically). The Fermi level k

(ζ)
Fn for each subband satisfies

2π(1 + ζ)Ns =
∑

n k
(ζ)2
Fn . We assume that the spin polar-

ization index ζ only takes the values ζ = 0 and ζ = 1 since,
at T = 0, no stable partially-polarized phases have been
found in 2DEG [4,16]. In contrast, recent calculations in
3DEG show that the transition is not of first order, but
rather a continuous one involving partial spin-polarization
states [5]. Here we make the hypothesis that the quasi-
2DEG behaves like the 2DEG provided that the well width
remains sufficiently small.



L.O. Juri and P.I. Tamborenea: Spontaneous spin polarization in doped semiconductor quantum wells 11

We solve equation (1) following a method similar to
that developed in reference [15]. We expand the eigen-
functions Φ

(ζ)
nk (z) in the single-electron QW-basis func-

tions {φn(z), εn}, i.e.

Φ
(ζ)
nk (z) =

∑
p

a(ζ)
pn (k)φp(z). (4)

This enables us to write the eigenvalue equation

Ĥ(ζ)(k)b(ζ)
n (k) = E(ζ)

n (k)b(ζ)
n (k), (5)

with b
(ζ)
n (k) = (a(ζ)

1n (k), ..., a(ζ)
pn (k), ...)T . The matrix ele-

ments of the Hamiltonian operator Ĥ(ζ)(k) are

H
(ζ)
tp (k) =

[
εp +

�
2k2

2m∗
b

]
δtp + 〈φt|V (ζ)

sc |φp〉

−V
(1)(ζ)
tp (k) − V

(2)(ζ)
tp (k), (6)

V
(1)(ζ)
tp (k) =

e2

ε

∑
n′

∫ k
(ζ)
F n′

0

k′dk′ ∑
qr

Gtr,qp(k, k′)

×a
(ζ)
qn′(k′)a(ζ)

rn′(k′), (7)

V
(2)(ζ)
tp (k) =

e2

ε

∑
n′

∫ k
(ζ)
F n′

0

k′dk′a(ζ)
pn′(k′)a(ζ)

tn′(k′)

× 2
π

∫ π/2

0

dϕ√
(k + k′)2 − 4kk′ sin2 ϕ + q

(ζ)
s

, (8)

Gtr,qp(k, k′) =
∫ ∫

dzdz′φ∗
t (z)φr(z)φ∗

q(z
′)φp(z′)

×
∫ 2π

0

dϕ

2π

e−|k−k’||z−z′| − 1
|k − k’| . (9)

We note that equations from reference [15] have a number
of misprints which are corrected here [17].

To introduce screening in the HF approximation we
note from equations (7) and (8) that V

(2)(ζ)
tp (k) is the

only term present in the pure 2D case and describes the
long-range in-plane Coulomb interaction. Thus, we have
dressed the interaction line of the exchange diagram [18]
by replacing the bare Coulomb potential V (q = |k−k’|) =
(2πe2/ε)(1/q) in equation (8) with the statically screened
Coulomb potential

V (ζ)
s (q) =

2πe2

ε

1

q + q
(ζ)
s

, (10)

where q
(ζ)
s = (2−ζ)/a∗

B is the ζ-dependent Thomas-Fermi
wave number for the 2DEG. Unfortunately, the Fourier
transform in 2D real space of equation (10) cannot be
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Fig. 1. Different Coulomb potentials. The solid line cor-
responds to the unscreened Coulomb potential V (r) = 1/r.
The dashed (dot-dashed) curve corresponds to the Thomas-
Fermi screened Coulomb potential for the polarized (unpolar-
ized) case. The dotted curve represents the potential V (r, dW ),
Fourier transform of equation (9) (with respect to q = |k−k’|)
for an infinite QW of dW = 100 Å, for t = r = q = p = 1.
Inset: the Fourier transform of equation (9) for an infinite QW
of dW = 100 Å for different values of t, r, q, p.

obtained analytically but its decay at large r is found to
be [9]

V (ζ)
s (r) =

e2

ε

1

q
2(ζ)
s r3

. (11)

On the other hand, V
(1)(ζ)
tp (k) (Eq. (7)), which arises

from the intrinsic inhomogeneity of charge distribution in
the z-direction in a quasi-2DEG, represents an interaction
of short range, and therefore is not affected significantly by
screening. To see this, we consider the Fourier transform
in 2D real space

V (r, |z − z′|) =
e2

ε

(
1√

r2 + |z − z′|2 − 1
r

)
, (12)

of the potential V (q, z − z′) = (2πe2/ε)(e−q|z−z′| − 1)/q
contained in equation (9). It can be shown that V (r, |z −
z′|) is of short range in the plane [10] and that at large r
it can be approximated as

V (r, dW ) = −0.032
e2

ε

d2
W

r3
, (13)

where we calculate the z and z′ integration of |z − z′|2
for an infinite QW of well width dW setting the sub-
band indexes equal to one. From equations (11) and (13)
we note that both potentials decay at the same rate at
large r and that V (r, dW ) ≈ 0.128V

(0)
s (r) and V (r, dW ) ≈

0.032V
(1)
s (r) for dW = a∗

B.
We show in Figure 1 that the potential defined by

equation (12), suitably integrated over z and z′ (dotted
line), has a range that is shorter than the range of the
Thomas-Fermi screened Coulomb potential for the polar-
ized (dashed line) and unpolarized (dot-dashed line) cases,
for t = r = q = p = 1. In the inset we show that this case
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dominates over all others (we only show a few relevant
examples). To summarize, we included static screening
in V

(2)(ζ)
tp (k), equation (8), but not in V

(1)(ζ)
tp (k), equa-

tions (7, 9), for the reasons explained above.
In what follows we assume that only the first subband

is occupied, and therefore the summations over the sub-
band index may be omitted.

In solving the eigenvalue equation by iteration, we
consider that self-consistency is achieved at the lth
step if |a(ζ)(l)

pn (k) − a
(ζ)(l−1)
pn (k)|/|a(ζ)(l−1)

pn (k)| < 10−4 for
all p, n and k. We obtain the set of eigenfunctions and
eigenenergies {Φ(ζ)

nk (z), E(ζ)
n (k)} for ζ = 0 and ζ = 1, which

allows us to write the ground-state energy per particle

E
(ζ)
HF =

2 − ζ

4πNs

∫ k
(ζ)
F

0

kdk

[
E

(ζ)
1 (k) + ε̃

(ζ)
1 (k) +

�
2k2

2m∗
b

]
,

(14)
with

ε̃
(ζ)
1 (k) =

∑
n

εn|a(ζ)
n1 (k)|2. (15)

In order to check our quasi-2DEG calculations in QWs
when dW tends to zero, we shall compare our results to
the 2DEG screened HF case [19]

E
(ζ)
HF2D =

e2

2a∗
Bε

{
1 + ζ

r2
s

− 4
πrs

[2ζ +
√

2(1 − ζ)]I(xζ)
}

,

(16)
where xζ = 1

4 [ζ + 2
√

2(1 − ζ)]rs is the polarization-
dependent Thomas-Fermi wave number divided by 2k

(ζ)
F

and

I(xζ) =
∫ 1

0

xdx

x + xζ

[
arccos(x) − x

√
1 − x2

]
. (17)

2.2 Results

In this section we present the results obtained with the
screened Hartree-Fock approximation with polarization-
independent effective masses introduced in the previous
Section.

In Figure 2, we plot the critical density for infinitely
deep QWs (in which there is no barrier penetration) in the
screened HF approximation as a function of well width dW

(solid squares). As expected, for densities lower than the
critical density the polarized state is energetically favor-
able while the opposite is true for densities above the crit-
ical density. The limiting point at dW = 0 (2DEG) was
calculated with equation (16) and the remaining points
with equation (14). The good match between these two
different equations reflects the correctness of our deriva-
tions and calculations [17]. We note here that the critical
density for the infinite QWs is a monotonically decreasing
function of dW . In the following section we will analyze in
detail this effect.

We now use the previous result to analyze the criti-
cal density for finite QWs, plotted in Figure 2 with solid
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Fig. 2. Well-width dependence of the critical density in the
screened HF approximation. Solid squares correspond to infi-
nite quantum wells and solid circles to finite QWs with well
height Vb=247 meV. Open squares correspond to infinite QWs
with polarization-dependent effective masses with a constant
ratio f ≡ m∗

1/m∗
0 = 0.65. The solid and dashed lines are ob-

tained with equations (24) and (27) (with f = 0.65), respec-
tively, for infinite QWs.

circles. We set the height of the QWs to Vb = 247 meV,
a typical experimental value [11]. This curve exhibits a
non-monotonic dependence on the well-width showing a
maximum for dW ≈ 35 Å. Also we observe a general reduc-
tion of the critical density with respect to the case of infi-
nite QWs. This can be simply understood in terms of the
previous result (monotonically decreasing critical density
for the infinite wells) and the penetration of the electron
wave function into the AlGaAs barriers; the latter causes
the wave function to spread beyond the nominal well
width, effectively “enlarging” the well. As a consequence,
for example, a finite QW of dW ≈ 60 Å has the same
critical density as that of an infinite QW of dW ≈ 100 Å.
In fact, the penetration depth dB = �/

√
2m∗

b(Vb − E1) in-
creases when E1 is raised as dW is lowered [10]. This effect
produces an inflection point at dW ≈ 75 Å and the men-
tioned maximum at dW ≈ 35 Å due to the competition
between dW and dB.

Let us go back to the curve for infinite QWs in Fig-
ure 2. The limiting (dW = 0) value Nsc = 17.5×109 cm−2

corresponds to rsc = 4.32, showing a sizable increase with
respect to the (unscreened) HF value rsc = 2.01 [20]. This
increase, however, is not sufficient if we consider the value
rsc = 13 obtained in reference [2] using VMC. This indi-
cates that a significant degree of Coulomb correlation is
being left out in the screened HF approximation. In Sec-
tion 3 we come back to this problem.

2.3 Analysis: upper limit for the well width

We noted in the previous section that the critical den-
sity for the infinite QWs is a monotonically decreasing
function of dW (Fig. 2). This result can be understood
within our screened HF scheme in terms of the interplay
between different components of the exchange interaction
in a quasi-2DEG. In this section we analyze in detail this
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issue. As an aid to the reader, we mention that the fol-
lowing analysis is somewhat technical, but we choose to
include it here since from it we also derive an important re-
sult of this paper, namely, that there exists an upper limit
for the well width beyond which the ferromagnetic transi-
tion does not take place (assuming that only one subband
is occupied). Therefore, the reader may skim through the
following paragraphs or go directly to the paragraph of
the interesting equation (25).

We found that the coefficients a
(ζ)
p1 (k) (Eq. (4)) change

very little with k and a
(ζ)
11 (k) ≈ 1 whereas a

(ζ)
p1 (k) � 1

for p > 1. This result is a direct consequence of the
small-density condition since, if this condition is met,
the ground-state wave function must retain the shape of
its one-electron counterpart in a QW. Thus, V

(2)(ζ)
11 (k)

(Eq. (8)) is positive and it is the leading matrix element,
yielding a negative (see Eq. (6)) and dW -independent con-
tribution to the exchange energy (pure 2D case). In con-
trast, the matrix elements V

(1)(ζ)
tp (k) are slowly varying

functions of k since we are studying small-width and low-
density heterostructures. If these conditions are fulfilled,
we can expand the exponential in equation (9) up to first
order since the exponent satisfies the following inequality:

|k − k’||z − z′| ≤ 2k
(ζ)
F dW = 2

√
2(1 + ζ)

1
rs

dW

a∗
B

≤ 0.3,

(18)
provided that rs ≥ 13 (lower MC limit for the transition)
and the well width dW ≤ a∗

B (= 98.7 Å). Then we per-
form the integration over z and z′ (infinite QWs) yield-
ing G11,11 = −0.207dW . Thus, V

(1)(ζ)
11 is negative, pro-

portional to dW and k-independent. The matrix elements
V

(1)(ζ)
tp for indices with opposite parity are always zero

since due to the symmetry of the wave functions we have
Gt1,1p = 0. On the other hand, we have evaluated Gt1,1p

for indices with equal parity obtaining that these are con-
siderably smaller than G11,11 rendering V

(1)(ζ)
tp practically

diagonal. Also, 〈φt|V (ζ)
sc |φp〉 ≈ 0 (see Eq. (6)) for the non-

diagonal elements since, due to the low-density condition,
V

(ζ)
sc must be a very slowly varying function of z. Thus,

H
(ζ)
tp (k) is almost diagonal, being its first eigenenergy

E
(ζ)
1 (k) ≈ ε1 +

�
2k2

2m∗
b

+ 〈φ1|V (ζ)
sc |φ1〉 − V

(1)(ζ)
11 − V

(2)(ζ)
11 (k).

(19)
With this expression for E

(ζ)
1 (k) we can obtain an ap-

proximate equation for Nsc. We only need to make two
easily justified additional approximations. From the be-
havior of the coefficients a

(ζ)
p1 (k), i.e. a

(1)
11 (k) ≈ a

(0)
11 (k) ≈ 1

and a
(1)
p1 (k) ≈ a

(0)
p1 (k) ≈ 0 for p > 1 it can be seen

(from Eq. (15)) that ε̃
(ζ)
1 (k) ≈ ε1 and (from Eq. (4))

Φ
(ζ)
1k (z) ≈ φ1(z). Using the latter in equation (3) we get

n(ζ)(z) ≈ (2 − ζ)(1 + ζ)Nsφ
2
1(z)/2 = Nsφ

2
1(z), and there-

fore a ζ-independent 〈φ1|Vsc|φ1〉 (see Eq. (2)). By insert-
ing equation (19) in equation (14) we obtain, after some
algebra, the following equation for the energy shift be-

tween both phases

E
(1)
HF − E

(0)
HF ≈ πNse

2a∗
B

2ε

[
1 + 0.207

dW

a∗
B

− 4F (Ns)
]

,

(20)
where

F (Nsc) =
∫ 1

0

xdx

∫ 1

0

x′dx′

× 2
π

∫ π/2

0

dϕ[g1(Nsc, x, x′, ϕ)

− g0(Nsc, x, x′, ϕ)], (21)

with

g0(Nsc, x, x′, ϕ) =
[√

2πNsca
∗
B

×
√

(x + x′)2 − 4xx′ sin2 ϕ + 2
]−1

, (22)

and

g1(Nsc, x, x′, ϕ) =
[√

πNsca
∗
B

×
√

(x + x′)2 − 4xx′ sin2 ϕ + q(1)
s /q(0)

s

]−1

, (23)

where x ≡ k/k
(0)
F in g0 and x ≡ k/k

(1)
F in g1. The same

holds for x′ and k′.
Taking into account that the energy shift E

(1)
HF −E

(0)
HF

must be zero at the transition density, we may write the
following equation that relates dW and Nsc

1 + 0.207
dW

a∗
B

= 4F (Nsc). (24)

Finally, to demonstrate that the transition density is a
decreasing function of the well width, we need to prove
that F (Nsc) is also a decreasing function. To see this,
we note firstly that g1 > g0 for all values of its argu-
ments making the function F (Nsc) always positive allow-
ing equation (24) to be solvable. Secondly, both g0 and
g1 are decreasing functions of Nsc for all values of x, x′, ϕ
and it is straightforward to prove that g1 decreases more
rapidly than g0 making F (Nsc) a decreasing function.
Thus, an increase of dW must be accompanied with a de-
crease of Nsc proving that the monotonically decreasing
dependence of Nsc on dW is governed by the competing
action of the different components of the exchange interac-
tion: the in-plane component represented by F (Nsc) and
the out-of-plane term driven by dW . The behavior of g0,
g1 and F that we described can also be recognized in the
unscreened HF case indicating that the dependence of Nsc

on dW is purely due to exchange. The validity of our ap-
proximation can be verified in Figure 2 where the solutions
of equation (24) are depicted with the solid line. This curve
approaches very well the exact values (solid squares) in-
dicating that the approximations we made to derive it
are well justified. For low densities (high rs) and low well
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widths, the solid curve fits excellently the solid squares
since in these regimes the approximations we made be-
come exact. In the intermediate region (dW ≈ 100 Å) the
solid curve fits very well the solid squares.

A look at equation (24) also indicates that there exists
an upper limit for the well width beyond which there is no
transition. In fact, due to the decrease of F (Nsc) and since
F (0) is finite, it can be seen from equations (22) and (23)
that the following relation holds

0.207
dWL

a∗
B

=
q
(0)
s

q
(1)
s

− 3
2
. (25)

Thus, it must be dW < dWL = 2.42a∗
B ≈ 239 Å to allow

the confined electrons to reach the polarized phase. This
new result is entirely due to the Thomas-Fermi screening
and is not present in the unscreened HF approximation
since F (0) diverges in this case. Furthermore, the ratio of
the Thomas-Fermi wave numbers for both polarizations
must be q

(0)
s /q

(1)
s > 3/2 (in our case it is q

(0)
s /q

(1)
s = 2).

Otherwise, no polarized state could be possible in a QW.
These key results indicate that the well width plays a cru-
cial role in the search for spontaneous spin polarization in
QWs [21].

The implications of the existence, according to our
calculations, of an upper limit for the well width must
be considered with some care. If one attempts to reach
a 3DEG system by increasing the well width one would
apparently fall into the paradox that no transition is pos-
sible in 3DEG. This conclusion is incorrect for two rea-
sons. First, we must take into account that the 3DEG-MC
results are obtained in the jellium model, in which the
positive background is taken to be a uniform neutralizing
static charge distribution, whereas in our quantum-well
calculations the positive charges of the ionized donors are
located far away from the electron gas, which results in
an important change in the direct Coulomb energy. In
other words, wide-enough quantum wells and 3DEG jel-
lium model must be considered as different systems. Sec-
ondly, our calculation assumes that only one subband is
occupied (a valid assumption in narrow quantum wells at
low density) whereas any extrapolation of our conclusions
to 3DEG systems would have to contemplate necessarily
occupation of many subbands. Thus, we reach the conclu-
sion that the most likely scenario is that there is a phase
transition in narrow quantum wells, which disappears for
intermediate well widths, and reenters at wider well widths
as expected when the 3DEG limit is approached.

3 Polarization-dependent effective masses

3.1 Motivation

In order to improve our treatment of Coulomb correla-
tion, we need an approximation scheme applicable to the
quasi-2DEG such that as dW tends to zero (strictly 2D
electron gas) the critical density approaches the values
predicted by MC calculations [2–4]. To achieve this, we

incorporate phenomenological polarization-dependent
effective masses m∗

0 (unpolarized) and m∗
1 (polarized) in

our formalism. Due to the lack of experimental data on
effective masses in GaAs/AlGaAs heterostructures for
both polarizations and to the fact that no calculations
on polarized effective masses exist in 2DEG, we resort
to calculations of unpolarized effective masses and
ground-state energies in pure 2DEG [2,22,23] to justify
this procedure. Let us summarize the conclusions of those
studies relevant in our context:
(a) Coulomb correlation increases the effective mass [23].
(b) The absolute value of the correlation energy of
the unpolarized 2DEG ground state is greater than its
polarized counterpart [2].
(c) The absolute value of the correlation energy is
greater in 2D than in 3D (both unpolarized), leading to
2D effective masses substantially larger than those of the
3D case at equal rs [22].
(d) The correlation-energy shift between both phases in
2D is greater than the unpolarized correlation energy
shift between 2D and 3D [2].

Making use of (a) and (b), with the supporting evi-
dence of (c) and (d), we conclude that m∗

0 must be sub-
stantially larger than m∗

1 at equal rs. Therefore, we will
introduce the ratio f = m∗

1/m∗
0 and use it as an adjustable

parameter. We will find that it needs to be assigned values
f < 1, as expected, in order to match the screened HF to
the MC calculations.

3.2 Two-dimensional case

By defining the ratio f = m∗
1/m∗

0 and rewriting xζ =
1
4 [fζ + 2

√
2(1− ζ)]rs we may generalize equation (16) for

the 2DEG:

E
(ζ)
HF2D =

e2m∗
0

2a∗
Bε

{
1 + ζ

[(f − 1)ζ + 1]r2
s

− 4
πrs

[2ζ +
√

2(1 − ζ)]I(xζ)
}

. (26)

We observe from reference [22] that m∗
0 ≈ 1.2 for

rs > 5 in the modified Hubbard approximation. That ap-
proximation is an attempt at including correlation effects
by means of the introduction of the Thomas-Fermi wave
number in the so-called local-field correction factor. Since
we have incorporated screening correlations and HF effects
within a similar scheme, we take m∗

0 = 1 in equation (26)
to avoid an overestimation of the effective mass in the
unpolarized phase.

Using equation (26), the lowest 2DEG-VMC value, i.e.
rsc = 13, is obtained with f = 0.65. With this value of f

we calculate Eshift = E
(1)
HF2D −E

(0)
HF2D and plot it versus

rs in Figure 3 (solid line). Here we have taken e2/2a∗
Bε =

1 Ry to compare our Eshift to MC results. The solid cir-
cles correspond to the results obtained in reference [2] and
the open squares are from reference [3]. We note the excel-
lent agreement between our curve and the MC points: by
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Fig. 3. Ground-state energy shift for the 2DEG Eshift =

E
(1)
HF2D −E

(0)
HF2D versus rs. Solid circles represent the reported

values in Table I of reference [2]. The error bars denote the
VMC standard errors. Open squares correspond to the values
tabulated in Tables I and II for the VMC method in refer-
ence [3]. No error bars are plotted for clarity. Open circles are
from reference [4]. The solid and dot-dashed lines represent
our calculations obtained with equation (26) for polarization-
dependent effective masses using f = 0.65 and f = 0.49 re-
spectively. The dashed curve corresponds to the same calcula-
tions but using the values of f that come from f(rs) showed
in the inset (dashed line). In the inset, solid and dashed lines
correspond to the values of f that fit the curves Eshift from
reference [2] and reference [4] respectively.

adjusting only one point our curve meets all the points
obtained in references [2,3]. In other words, our “screened
HF plus f < 1” scheme agrees with VMC [2,3] for a con-
stant (density independent) value of f . This agreement
indicates that, according to VMC, the ratio between both
effective masses would depend weakly on the density. This
conclusion is consistent with the fact that in the modified
Hubbard approximation the unpolarized effective mass is
a slowly varying function for rs > 5 [22]. If this were also
the behavior of the polarized effective mass, we could con-
clude that f would be a slowly varying function of rs.

We now repeat the previous analysis but using the
FN-DMC data of Attaccalite et al. [4]. In that paper the
authors obtain rsc = 25 which, as we mentioned in the
introduction, is the highest value found in the literature
for spontaneous spin polarization in 2DEG at zero tem-
perature. We find that equation (26) reproduces the value
rsc = 25 when f = 0.49. In Figure 3 (dash-dotted line)
we plot the energy shift, Eshift = E

(1)
HF2D − E

(0)
HF2D , ver-

sus rs, for this value of f . This curve does not fit well
the data from reference [4] shown as open circles. Instead,
we find that equation (26) can reproduce (dashed line in
Fig. 3) the FN-DMC energy shifts [4] if f is considered
a function of rs (dashed line in the inset). Therefore, we
conclude that FN-DMC appears to support the idea of a
density-dependent ratio of the effective masses.

For completeness, we show in the inset (solid line) the
values of f as a function of rs that fit the parametrization
of Eshift obtained by Ceperley [2]. This curve exhibits a
weak dependence on rs for rs > 10, which explains the
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Fig. 4. Well-width dependence of the critical density in the
screened HF approximation with polarization-dependent ef-
fective masses. Open squares (circles) correspond to infinite
(finite) QWs with a constant ratio f ≡ m∗

1/m∗
0 = 0.65. Up

(down) triangles correspond to infinite (finite) QWs for a ra-
tio f which depends on rs (dashed line in the inset of Fig. 3).

good agreement with VMC we obtained with a constant
value f = 0.65, seen in Figure 3 (solid line and symbols).

3.3 Quasi-two-dimensional case

We now apply the polarization-dependent effective-mass
approximation to the quasi-2DEG by means of a slight
modification in equation (1). We note that the two ef-
fective masses m∗

b on both sides of equation (1) belong
to different situations [10]: the m∗

b on the l.h.s. repre-
sents the in-plane effective mass and therefore is being af-
fected by Coulomb correlations. In contrast, the m∗

b on the
r.h.s. reflects the out-of-plane effective mass of one elec-
tron moving in the z-direction governed mainly by Vext(z)
and V

(ζ)
sc (z), and thus not being affected by Coulomb cor-

relations, according to our discussion about screening in
Section 2.1. Then we solve the eigenvalue equation, equa-
tion (1), and use equation (14) for both polarizations in-
corporating the effective masses m∗

0 = m∗
b and m∗

1 = fm∗
b

(the last one only in the in-plane terms). We plot in Fig-
ure 2, with open squares, the results obtained for infi-
nite QWs for f = 0.65. We calculate the limiting point
at dW = 0 with equation (26) and the remaining points
with equation (14) with the above-mentioned replacement.
We obtain again a good match between both calcula-
tions, analogously to what happens with the solid squares
(f = 1 calculations). We show in Figure 4, in a logarith-
mic scale for the vertical axis, the results for finite QWs
(open circles) and infinite QWs (open squares) where we
have taken f = 0.65. Both curves exhibit the same gen-
eral characteristics as in Figure 2 (solid squares and solid
circles).

Now we obtain an equivalent of equation (24) by in-
corporating the ratio f that multiplies the band mass m∗

b
for the polarized phase, yielding

2
f
− 1 + 0.207

dW

a∗
B

= 4F (Nsc, f), (27)
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where F (Nsc, f) is the same as in equation (21), but g1

now reads

g1(Nsc, x, x′, ϕ) =
[√

πNsca
∗
B

×
√

(x + x′)2 − 4xx′ sin2 ϕ + fq(1)
s /q(0)

s

]−1

. (28)

The polarization-dependent effective-mass approxima-
tion does not change the previous result regarding the
monotonically decreasing dependence of Nsc on dW since
f < 1. We show that the solutions of the approximate (in
the sense that it contains some approximations beyond
our basic scheme, described in Sect. 2.3) equation (27)
(dashed curve) depicted in Figure 2 for f = 0.65, fit pre-
cisely the original values (open squares). We observe that
since F (0, f) = 1

4 ( 2
f − 1

2 ), dWL does not depend on f

(see Eq. (27)). Thus, dWL depends on correlations, in our
Thomas-Fermi model, via the ratio q

(0)
s /q

(1)
s and, conse-

quently, the relation dWL = 2.42a∗
B is universal in the

sense that it is valid for all materials (the material de-
termines the value of a∗

B). We note that this result does
not depend on the approximations made to derive equa-
tion (27) since those approximations become immaterial
as Ns tends to zero.

Up (down) triangles in Figure 4 correspond to infi-
nite (finite) QWs where we have taken the ratio f as the
dashed curve in the inset of Figure 3 (Attaccalite et al. [4]).
We note that the MC density interval for spontaneous spin
polarization mentioned in Section 1, appears notoriously
shrunk for the finite QWs studied here. In fact, from Fig-
ure 4 we obtain a new density interval for the transition
densities in finite QWs between Nsc = 3.2 × 107 cm−2

and Nsc = 6.1× 108 cm−2. We take these values from the
transition densities at the maximum of the curves related
to FN-DMC (down triangles) and VMC (open circles) re-
spectively.

4 Discussion

In reference [14], the spin susceptibility (= m∗g∗) has been
measured in a high quality 200-fold GaAs/AlGaAs su-
perlattice of 100 Å of GaAs wells and 30 Å barriers of
Al0.32Ga0.68As, with unprecedented low densities such as
Ns = 1.7×109 cm−2 (rs = 13.9) and no transition was ob-
served. According to what we have mentioned above, this
is not surprising. There are several possible reasons for
this negative result. We first note that the density used,
although low enough for a transition in the pure 2DEG,
is clearly too high considering the finite well width for
finite QWs: for dW = 100 Å (Fig. 4), the electron den-
sity achieved in reference [14] is 6.5 times higher than our
critical density (open circles) which uses the ratio f that
matches the 2DEG value from reference [2] and 50 times
higher than the critical density (down triangles) which
uses the rs-dependent ratio f that matches the 2DEG
energy shifts Eshift from reference [4]. Also, due to the
tunneling of the electrons into the AlGaAs barriers, the

superlattice acts like a single, extremely wide QW. Fur-
thermore, it is possible that if the QW were sufficiently
wide, the quasi-2DEG could lose its two-dimensional char-
acteristics, allowing for stable partially-polarized phases
like those possible in the 3DEG, turning more difficult
the detection of the transition. We note that the effects of
in-plane correlations combined with the finite well widths
and heights of QWs produce a drastic diminution of the
transition densities by a factor that ranges from 3 to 15 de-
pending on which method VMC or FN-DMC turns out to
be the best tool to estimate the transition density in pure
2DEG. For the best case, it should become necessary to
achieve electron densities lower that the ones studied ex-
perimentally thus far by a factor of 3 and by a factor of
53 in the worst case. Very different could be the quasi-two-
dimensional hole gas (quasi-2DHG) scenario since in that
system, high rs values such as rs ≈ 80 are already attain-
able [24]. However, our theoretical predictions about the
critical transition density in n-doped GaAs/AlGaAs QWs
cannot be straightforwardly translated to quasi-2DHG.
The adaptation of our formalism to the problem with holes
is currently in progress.

Based on the insight gained from our calculations, we
propose that the optimal conditions for observing a ferro-
magnetic transition in multiple QWs are:
(a) well widths between 30 Å and 50 Å
(b) wide AlGaAs barriers between wells to prevent tun-
neling, and
(c) well height Vb as large as possible to minimize barrier-
penetration effects.

In a recent experimental work, Gosh et al. [25] report a
possible spontaneous spin polarization in mesoscopic two-
dimensional systems that is at odds with our findings.
They have used 2DEGs in Si δ-doped GaAs/AlGaAs het-
erostructures with densities as low as Ns = 5 × 109 cm−2

(rs = 7.6) and the temperature was set at T = 40 mK or
equivalently T/TF ≈ 0.02 since TF = 2.3 K at rs = 7.6.
Somewhat surprisingly, according to their interpretation
of the data, these authors found partial spin polarization
with ζ = 0.2. The authors attribute this partial spin po-
larization to the finite T since no partial spin polarization
is possible in 2DEG at T = 0 [4,16]. However, in ref-
erence [16] the authors find partial spin polarization for
T/TF between 0.3 and 1.6, i.e. well above T/TF = 0.02
reported in reference [25]. On the other hand, rs = 7.6 is
considerably lower than the lowest value for spin polariza-
tion in 2DEG [2].

5 Summary

In summary, we have calculated the ferromagnetic critical
density at T = 0 of the quasi-two-dimensional electron
gas confined in semiconductor GaAs-based symmetrically-
doped quantum wells. We use the screened Hartree-Fock
approximation to which we add different effective masses
for both spin polarizations in order to take into account
Coulomb correlations beyond screening.

Once the value of the effective mass for the polarized
phase is adjusted so as to reproduce the transition density



L.O. Juri and P.I. Tamborenea: Spontaneous spin polarization in doped semiconductor quantum wells 17

for the pure 2D case calculated with the VMC method, our
theory gives ground-state energy shifts that agree with
those of VMC. On the other hand, a density-dependent
ratio between both effective masses is required to fit the
ground-state energy shifts calculated with the FN-DMC
method.

We predict that, for QWs with only one occupied sub-
band, there is a maximum well width beyond which the
polarized state would be energetically unfavorable at all
densities.

Based on our theory and the existing MC calculations
for the 2DEG, we predict that narrow quantum wells
(with well widths roughly in the range 30 Å ≤ dW ≤
50 Å) should exhibit a ferromagnetic transition at a den-
sity range between Nsc = 3.2 × 107 cm−2 (rs ≈ 100) and
Nsc = 6.1 × 108 cm−2 (rs ≈ 23). This range, which looks
far from the densities achievable nowadays in GaAs quasi-
2DEG, is, on the other hand, already within reach in GaAs
quasi-2DHG systems.
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