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We investigate theoretically how the spin-orbit Dresselhaus and Rashba effects influence the electronic
structure of quasi-one-dimensional semiconductor quantum dots, similar to those that can be formed inside
semiconductor nanorods. We calculate electronic energy levels, eigenfunctions, and effectiveg-factors for
coupled, double dots made out of different materials, especially GaAs and InSb. We show that by choosing the
form of the lateral confinement, the contributions of the Dresselhaus and Rashba terms can be tuned and
suppressed, and we consider several possible cases of interest. We also study how, by varying the parameters
of the double-well confinement in the longitudinal direction, the effectiveg-factor can be controlled to a large
extent.
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I. INTRODUCTION

In recent years, much of the research in semiconductor
physics has been shifting towardsspintronics,1,2 the novel
branch of electronics in which the information is carried, at
least in part, by the spin of the electrons. The electron spin
might be used in the future to build quantum computing
devices combining logic and storage based on spin-
dependent effects in semiconductors. In order to achieve this
goal, much study has been devoted recently to magnetic and
optical3 properties of semiconductors quantum dots4,5 and
quantum wells.6 One of the most popular spin-based devices
was proposed by Datta and Das.7 Improvements to the origi-
nal design have been proposed recently by Egueset al.8,9 The
Datta-Das device makes use of the Rashba spin-orbit
coupling10,11 in order to perform controlled rotations of the
spins of electrons passing through the channel of a field-
effect transistorsFETd, thus creating a spin-FET. The Rashba
term is the manifestation of the spin-orbit interaction in
quasi-one-dimensionalsquasi-1Dd semiconductor nanostruc-
tures lackingstructural inversion symmetry. Additionally,
the lack of bulk inversion symmetry enables another spin-
orbit term in the electronic Hamiltonian, the Dresselhaus
term,12 which is also taken into account in the spin-FET
design introduced in Ref. 9.

The influence of the Rashba and Dresselhaus Hamilto-
nians in quantum dotssQDd has recently been treated in a
number of theoretical works. The most-often studied geom-
etry is that of quasi-two-dimensional dots with parabolic
confinement in the plane.13–15 On the other hand, there is a
growing interest and experimental progress in another type
of quantum dots defined inside quasi-1D structures called
nanorods or nanowhiskers.16 In these structures, additional
confinement in the longitudinal direction can be introduced
with great precision, thereby allowing the formation of
quasi-1D heterostructures, such as multiple quantum dots17,18

and dot superlattices.19 Nanorods can be grown out of nu-
merous semiconductor materials. Their lateral widths can be
controlled by selecting the size of the gold nanoparticles
which are used to catalyze their growth and can be made as

small as 3 nm.20 Recently, the transport properties of these
nanorod dots have been measured and the gated control of
the number of electrons in them has been demonstrated.18

Motivated by this experimental progress, we study theo-
retically the electronic structure of quasi-1D coupled double
dots including spin-orbit effects. This type of dot systems has
also attracted interest in the field of quantum control of or-
bital wave functions due to their simplicity and
tunability.21–24As we will see here they are also well-suited
for applications involving control of the spin degrees of free-
dom since they allow a great deal of control over the Rashba
and Dresselhaus Hamiltonians. In this paper we study the
influence of the Rashba and Dresselhaus spin-orbit Hamilto-
nians on the electronic structure of quasi-1D QDs, akin to
those formed in semiconductor nanorods. Our emphasis on
the spin-orbit interaction is obviously motivated by the cur-
rent widespread interest in developing spintronic applica-
tions, which require a detailed understanding of the dynam-
ics of the spin degree of freedom in semiconductor
nanostructures.

Let us denote byx andy the two transversal and byz the
longitudinal direction of a quasi-1D nanorod, and let us call
Vzszd the confining potential that defines a pair of coupled
QDs along the nanorod. The laterally-confining potentials
Vxsxd and Vysyd are crucial in the determination of the
Rashba and Dresselhaus Hamiltonians and we consider dif-
ferent combinations of these potentials which can arise in our
elongated geometry. We calculate the energy spectra and the
wave functions by exact numerical diagonalization of the
total Hamiltonian and analyze how the energy levels and the
effectiveg-factor change as the Rashba and Dresselhaus cou-
plings are modulated by varying the lateral confining poten-
tials. Furthermore, we study the effect of varying the size of
one of the dots and the width of the central barrier between
them. Since the strength of the spin-orbit interaction varies
greatly among semiconductor compounds, we look at several
materials such as GaAs, InSb, GaSb, and InAs. Finally, we
investigate the effective spinkSzl as a function of the strength
of the Rashba-like term for all the eigenfunctions of InSb
with two different geometries.
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The quantization along different directions results in pe-
culiar spin-momentum dependence. This in turn results in
SO effects that depend strongly on the symmetries of the
lateral confinement potentials. As such, the observation of
SO spin splittings, as we will see, is directly attributable to
asymmetry of the confinement and provides an interesting
probe of built-in strain fields and/or unbalanced composition
gradients.

We organize the paper as follows. In Sec. II we introduce
the effective one-dimensional Hamiltonian and list the sim-
plified forms it takes depending on the choice of confinement
potentials. In Sec. III we present the results for the energy
levels including either the Dresselhaus or the Rashba term.
In Sec. IV we study the effectiveg-factor and the expectation
value of thez-component of the spin as a function of the
strength of the Rashba term for different semiconductors and
eigenstates. In Sec. V we provide a discussion and conclu-
sion.

II. THE ONE-DIMENSIONAL HAMILTONIAN

We start with the complete Hamiltonian for a three-
dimensional semiconductor structure in the absence of mag-
netic field,

H =
p2

2m* + Vsr d + HD + HR, s1d

where m* is the conduction-band effective mass,p is the
momentum,Vsr d is the confinement potential, andHD and
HR are the general Dresselhaus and Rashba Hamiltonians.25

Here we follow the current practice of calling Rashba terms
those spin-orbit contributions to the Hamiltonian that arise
due to the structural inversion asymmetry of the nanostruc-
ture, as opposed to the Dresselhaus terms which come from
the bulk inversion asymmetry of the III-V semiconductors.
Integrating out thex andy variables, we obtain the following
effective one-dimensional Hamiltonian:

H1d =
pz

2

2m* + Vzszd + H1dD + H1dR, s2d

H1dD =
gD

"3 hsxkpxlskpy
2l − pz

2d

− sykpylskpx
2l − pz

2d + szpzskpx
2l − kpy

2ldj, s3d

H1dR=
gR

"
hsxSK ] Vy

] y
Lpz −

] Vz

] z
kpylD

− sySK ] Vx

] x
Lpz −

] Vz

] z
kpxlD

+ szSK ] Vx

] x
Lkpyl −K ] Vy

] y
LkpxlDj, s4d

wheresi, i =x,y,z, are the Pauli matrices,H1dD is the one-
dimensional Dresselhaus term, andH1dR is the Rashba-like
term enabled by the inversion asymmetry of the laterally
confining potentialsVx andVy. gR andgD are parameters that

depend on the materials. The averagesk¯l are taken over
the lowest-energy wave functions of the laterally confining
potentials as we assume small nanorod widths. In Table I we
present the parameters used in our calculations for different
semiconductor materials. An example of the confining poten-
tial in the longitudinal direction,Vzszd, is shown in Fig. 1,
along with a schematic drawing of the nanorod QDs.

We now list four different possibilities for the confining
potentialsVxsxd andVysyd, based on the degree of symmetry
of the structure. The Dresselhaus and Rashba Hamiltonians
simplify considerably due to the fact that, in the absence of a
magnetic field, the eigenstates can be chosen real, and there-
fore, expectation values of the momentum are zero.26 The
four cases are as followsfsee Figs. 1sad–1scd for schematic
drawings of the potentials in the first three casesg.

(a) Circular: Vxsxd, Vysyd have inversion symmetry about
the origin and are equal,Vxsxd=Vysyd:

HSO= H1dD + H1dR= 0, s5d

yields no SO contributions.
(b) Vxsxd, Vysyd have no inversion symmetry but are

equal,Vxsxd=Vysyd:

HSO= H1dD + H1dR=
gR

"
K ] Vx

] x
Lpzssx − syd, s6d

so that only Rashba terms are present.
(c) Elliptical: Vxsxd, Vysyd are inversion symmetric func-

tions and different,VxsxdÞVysyd:

TABLE I. Parameters for semiconductorssRef. 25d.

Parameter GaAs GaSb InAs InSb

m* =m/m0 sRef. 27d 0.067 0.041 0.0239 0.013

gR sRef. 28d sA2d 5.33 33 110 500

gD sRef. 27d smeV/A3d 24 187 130 220

g0 20.44 27.8 215 251

FIG. 1. Potential-energy profile and schematic drawing of two
Al/InSb coupled nanorod quantum dots. For InSb-based systems we
take a well height of 100 meV, and for Al/GaAs, 220 meV. In this
example, the QD width is 300 Å and barrier width 30 Å, with
smoothly changing barriers over a width of a few angstroms. The
drawings sad–scd illustrate the lateral confinement geometries de-
scribed in the text.
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HSO= H1dD + H1dR=
gD

"3 szpzskpx
2l − kpy

2ld, s7d

results in only Dresselhaus terms.
sdd Vxsxd, Vysyd have no inversion symmetry and are dif-

ferent,VxsxdÞVysyd:

HSO= H1dD + H1dR=
gD

"3 szpzskpx
2l − kpy

2ld

+
gR

"
pzSsxK ] V

] y
L − syK ] V

] x
LD , s8d

represents the most general case and both Rashba and
Dresselhaus contributions are present.

For the calculation of the effectiveg-factor we introduce a
weak magnetic field along thez-direction. The field is chosen
small so that thex–y orbital wave functions are not perturbed
significantly. Thus, we only add a Zeeman term to the Hamil-
tonian,HZ=smB/2dg0 Bsz, wheremB is the Bohr magneton,
B is the magnetic field, andg0 is the electrong-factor as per
Table I. To calculate the energy levels and eigenfunctions,
we expand the total Hamiltonian on a basis set of 300 wave
functions of the quantum box of sizeL, i.e., fn,sszd
=Îs2/Ldsinsnpz/Ldxssd, wherexssd is the spin function, and
diagonalize it numerically without further approximations.
The sizeL of the box is such that the whole double-dot
structure is enclosed in the box, including the barriers on the
sides of the dots and as such is irrelevant in the final eigen-
states. We should notice that the geometry of the dots that we
study here includes widths of 2–5 nm, while the most com-
mon nanorod widths in experiments are of the order of tens
of nm. However, as we mentioned above, there are no ex-
perimental limitations to reducing the nanorod width to val-
ues we consider here. Smaller widths allow us to explore the
basic physics and control of electronic wave functions with
only one relevant lateral energy sublevel. Moreover, notice
that typical charge depletion induced by the free surfaces
further reduces the effective width of the nanorods, making
them more 1D-like. A final comment is that the incorporation
of additional transverse levels in the nanorod is straightfor-
ward, but results in systems of coupled differential equations.

III. ENERGY LEVELS

We present results for the energy levels in casessbd and
scd, i.e., with only Rashba and Dresselhaus terms present,
respectively. The general casesdd does not present qualita-
tively different features fromsbd or scd and therefore we
concentrate here on the simpler cases. For casesbd we fix the
strength of the Rashba term by giving the structural electric
field k]V/]xl. For casescd, we use as confining potentials in
the lateral directions two harmonic-oscillator potentials with
different frequencies:Vqsqd= 1/2m*vq

2q2, q=x,y. These po-
tentials have associated characteristic lengths,q=Î" /m*vq.

In Fig. 2 we plot the two lowest energy levels for the InSb
QDs taking k]V/]xl=0.5 meV/Å for case sbd, and ,x

=50 Å, ,y=20 Å for casescd. The indices on the horizontal
axis denote the inclusion of different terms in the Hamil-

tonian. The figure shows how the energy levels ofH0 sindi-
ces 1 and 4d are changed by the inclusion of a Rashba con-
tribution H1dR fcase sbd, index 2g, and of a Dresselhaus
contributionH1dD fcasescd, index 5g, without magnetic field.
With a weak magnetic field we have total Hamiltonians
H0+H1dR+HZ sindex 3d and H0+H1dD+HZ sindex 6d. We
have carried out analogous calculations for the semiconduc-
tors quoted in Table I and the results were qualitatively simi-
lar to the ones shown here. The main general conclusion is
that the effect ofH1dR is always stronger than that ofH1dD
for the chosen parameters, which are representative of pos-
sible experimental situations. We note that the Rashba and
Dresselhaus terms do not remove the spin degeneracysas
expected from the Kramers degeneracy in the absence of
magnetic fieldd but that they simply shift the levels down-
wards, the strength of the shifts being controlled by the pa-
rametersk]V/]xl for Rashba and,x and,y for Dresselhaus.
For the parameters chosen here the Rashba shift is of the
order of 0.1 meV for InSb and 0.1mV for GaAs while the
Dresselhaus shift is of the order of 0.01 meV for InSb and
0.01mV for GaAs.

As can be seen in Fig. 3 the energy shift produced by the
H1dR varies quadratically with the structural electric field
k]V/]xl. In Fig. 4 we show how the energy levels vary in
casescd as a function of,x for the two lowest-energy states
for fixed ,y=50 Å. The functional dependence here is also
parabolic. This suggests that the spin-orbit corrections to the
energy levels could be calculated fairly accurately with
second-order perturbation theory. We performed the second-
order perturbative calculation in the case with Rashba
Hamiltonian, with a small magnetic field applieds0.1 Td in
order to work with nondegenerate perturbation theory. A
comparison between the exact and second-order energies
shows, for example, a difference of 17% fork]V/]xl
=1.5 meV/Å, and increasing differences for larger Rashba
fields, as expected. These results agree qualitatively with
those of Ref. 14 for quasi-2D circular dots, where differences
of up to 30% between the results of exact calculations and of
second-order perturbation theory have been found.

IV. EFFECTIVE g FACTOR

The small magnetic fieldB=0.1 Tz breaks the spin de-
generacy of the ground state and allows the calculation of the

FIG. 2. Ground-state and first-excited-state energy levels of the
InSb nanorod QDs shown in Fig. 1. We compare the eigenenergies
of s1,4d H0=Pz

2/2m* +Vzszd to those of s2d H0+H1dR, s5d H0

+H1dD, s3d H0+H1dR+HZ, ands6d H0+H1dD+HZ. B=0.2 T.
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effectiveg-factor sg*d as a function ofk]V/]xl fcasesbdg for
GaAs, InSb, InAs, and GaSb. In the figures we report nor-
malizedg-factors:

g*

g0
=

sE2 − E1d
mBBg0

2

, s9d

where E1 and E2 are the Zeeman-split ground-state levels.
Figure 5 shows the results for casesbd si.e., with only Rashba
contributionsd as a function ofk]V/]xl. The decreasing trend
of g* is qualitatively similar for all the materials but the
magnitude of this Rashba effect varies greatly among them.
The decrease of theg* is strongest for InSb and weakest for
GaAs.

We now examine what happens tog* when one modifies
the features of the longitudinal potentialVzszd, such as the

barrier widthw and the size of the QDssso far we have taken
LQD1=LQD2=300 Åd. In Fig. 6sad we show g* for w=30,
130, and 330 Å as a function ofk]V/]xl. We increase the
barrier width but reducing at the same time the sizes of the
two QDs so that the total size of the structure remains con-
stant at 630 Å. We note that increasingw leads gradually to
having two uncoupled QDs and to a stronger variation ofg* .
In Fig. 6sbd we setw=30 Å and change the QDs’ sizes. We
take LQD1=100 Å andLQD2=500 Å in one case, andLQD1
=LQD2=300 Å in the other. We observe here that thesym-
metric potential produces a stronger variation ofg* than the
asymmetricone.

We look at these symmetric and asymmetric structures in
more detail, and calculate the expectation valuekSzl as a
function of k]V/]xl for InSb dots and for the four lowest
pairs of statessZeeman doubletsd. Again a magnetic fieldB
=0.1 T is included. As expected,kSzl= ± 1/2 in the absence
of k]V/]xl. Figure 7 shows the results for a symmetric struc-

FIG. 3. Contribution of the Rashba term to the energy levels of
InSb sad and GaAssbd QDs as a function ofk]V/]xl. GS: Ground
state; 1 and 2: first and second excited states, respectively. Notice
the effect is much smaller in GaAssenergy given inmeVd, as
anticipated.

FIG. 4. Contribution of the Dresselhaus term to the energy lev-
els of InSb as a function of,x for the ground statesGSd and the first
excited states1d for ,y=50 Å. Level splitting in GaAs is barely
visible on the same scale as in InSb.

FIG. 5. Effect of the Rashba Hamiltonian on the effectiveg
factor.g* /g0 for the ground state for different semiconductors as a
function of k]V/]xl.

FIG. 6. Normalized effectiveg factor for the ground state of
InSb structures with Rashba Hamiltonian.sad For different barrier
widths w=30, 130, and 330 Å.sbd For different sizes of the QDs.
Asymmetric case:LQD1=100 Å andLQD2=500 Å; symmetric case
LQD1=LQD2=300 Å.
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ture with LQD1=LQD2=300 Å and Fig. 8 for an asymmetric
one with LQD1=100 Å and LQD2=500 Å. The symmetric
case shows a crossing inkSzl fFig. 7sadg while the asymmet-
ric one does notfFig. 8sadg. Using this information we recal-
culate the effectiveg-factor for the first four pairs of eigen-
states for the symmetricfFig. 7sbdg and asymmetricfFig.
8sbdg structures. The effectiveg-factor, given here by the
difference inkSzl values for every Zeeman pair, vanishes at
the crossing ofkSzl. This vanishing ofg* is a potentially
useful effect in spintronics applications, as it can be achieved
as a function of the potentially adjustable Rashba parameter
k]V/]xl. It is interesting to note how different spatial asym-
metry, introduced by the confinement potential alongz si.e.,
different size dotsd, has a strong effect ong* , and results in a
finite value even at large Rashba fields.

V. CONCLUSIONS

We have studied how the spin-orbit Rashba and Dressel-
haus terms modify the electronic structure of nanorod quasi-
one-dimensional double quantum dots. We have solved the
problem by numerical diagonalization of the total Hamil-
tonian for varying confining potentials, in the lateral as well
as in the longitudinal directions. The main conclusions of our
work are the following.

s1d For our system, the Rashba and Dresselhaus Hamilto-
nians shift downwards the energy levels but do not break the

spin degeneracy of the electronic levels in the absence of an
external magnetic fieldsas prescribed by the Kramers degen-
eracyd.

s2d The Rashba effects are in general stronger than the
Dresselhaus effects, but the latter are not negligible in gen-
eral either.

s3d Changing the strength of the spin-orbit terms, which is
done by changing the lateral confinement length,x or ,y in
the case of Dresselhaus or the structural electric field
k]V/]xl in the case of Rashba, results in energy levels that
vary nearly quadratically with the control parameter. This
indicates that the SO corrections to the energy levels are
close to the second-order corrections in perturbation theory.
We verified this result by comparing the exact and the per-
turbatively calculated energies.

s4d By changing the strength of the Rashba term, the size
of the central barrier, and the size and symmetry of the two
QDs, it is possible to control the value of the effective
g-factor, which determines the Zeeman splitting. In particu-
lar, it is possible to make the effectiveg-factor equal to zero.
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