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Level structure and spin-orbit effects in quasi-one-dimensional semiconductor nanostructures
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We investigate theoretically how the spin-orbit Dresselhaus and Rashba effects influence the electronic
structure of quasi-one-dimensional semiconductor quantum dots, similar to those that can be formed inside
semiconductor nanorods. We calculate electronic energy levels, eigenfunctions, and efidetiters for
coupled, double dots made out of different materials, especially GaAs and InSh. We show that by choosing the
form of the lateral confinement, the contributions of the Dresselhaus and Rashba terms can be tuned and
suppressed, and we consider several possible cases of interest. We also study how, by varying the parameters
of the double-well confinement in the longitudinal direction, the effecgifactor can be controlled to a large
extent.
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[. INTRODUCTION small as 3 nnf® Recently, the transport properties of these
gpanorod dots have been measured and the gated control of
the number of electrons in them has been demonsttéted.
branch of electronics in which the information is carried, at _Motivated by this experimental progress, we study theo-
least in part, by the spin of the electrons. The electron SIOiﬁetlcally the electronic structure of quasi-1D coupled double

might be used in the future to build quantum computingd®ts including spin-orbit effects. This type of dot systems has
devices combining logic and storage based on Spinalso attracted interest in the field of quantum control of or-

dependent effects in semiconductors. In order to achieve thid8l _Wwave functions due to their simplicity and
goal, much study has been devoted recently to magnetic ari nability: As we will see here they are also well-suited

: . . or applications involving control of the spin degrees of free-
opticaf properties of semiconductors quahtum détandi dom since they allow a great deal of control over the Rashba
guantum well$. One of the most popular spin-based devices

> ““*Yand Dresselhaus Hamiltonians. In this paper we study the
was proposed by Datta and Dasnprovements to the origi- influence of the Rashba and Dresselhaus spin-orbit Hamilto-

nal design have. been proposed recently by Egmai;&gThe nians on the electronic structure of quasi-1D QDs, akin to
Datta-Das device makes use of the Rashba spin-orbijose formed in semiconductor nanorods. Our emphasis on
coupling®in order to perform controlled rotations of the the spin-orbit interaction is obviously motivated by the cur-
spins of electrons passing through the channel of a fieldrent widespread interest in developing spintronic applica-
effect transistofFET), thus creating a spin-FET. The Rashbations, which require a detailed understanding of the dynam-
term is the manifestation of the spin-orbit interaction injcs of the spin degree of freedom in semiconductor
guasi-one-dimensiondfuasi-1D semiconductor nanostruc- nanostructures.
tures lackingstructural inversion symmetry. Additionally, Let us denote by andy the two transversal and twthe
the lack ofbulk inversion symmetry enables another spin-longitudinal direction of a quasi-1D nanorod, and let us call
orbit term in the electronic Hamiltonian, the DresselhausV,(z) the confining potential that defines a pair of coupled
term}? which is also taken into account in the spin-FET QDs along the nanorod. The laterally-confining potentials
design introduced in Ref. 9. Vi(x) and Vy(y) are crucial in the determination of the
The influence of the Rashba and Dresselhaus HamiltoRashba and Dresselhaus Hamiltonians and we consider dif-
nians in quantum dotéQD) has recently been treated in a ferent combinations of these potentials which can arise in our
number of theoretical works. The most-often studied geomelongated geometry. We calculate the energy spectra and the
etry is that of quasi-two-dimensional dots with parabolicwave functions by exact numerical diagonalization of the
confinement in the plan®-1>On the other hand, there is a total Hamiltonian and analyze how the energy levels and the
growing interest and experimental progress in another typeffectiveg-factor change as the Rashba and Dresselhaus cou-
of quantum dots defined inside quasi-1D structures calleglings are modulated by varying the lateral confining poten-
nanorods or nanowhiske}s.In these structures, additional tials. Furthermore, we study the effect of varying the size of
confinement in the longitudinal direction can be introducedone of the dots and the width of the central barrier between
with great precision, thereby allowing the formation of them. Since the strength of the spin-orbit interaction varies
quasi-1D heterostructures, such as multiple quantunt@tts greatly among semiconductor compounds, we look at several
and dot superlattice$. Nanorods can be grown out of nu- materials such as GaAs, InSh, GaSb, and InAs. Finally, we
merous semiconductor materials. Their lateral widths can b#vestigate the effective spii$,) as a function of the strength
controlled by selecting the size of the gold nanoparticleof the Rashba-like term for all the eigenfunctions of InSb
which are used to catalyze their growth and can be made asith two different geometries.

In recent years, much of the research in semiconduct
physics has been shifting towardpintronics!? the novel
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The quantization along different directions results in pe- TABLE I. Parameters for semiconductdiRef. 25.
culiar spin-momentum dependence. This in turn results in
SO effects that depend strongly on the symmetries of the Parameter GaAs  GaSb InAs InSh

lateral confinement potentials. As such, the observation of

SO spin splittings, as we will see, is directly attributable to m'=m/my (Ref. 27 0.067 0041 00239 0013

asymmetry of the confinement and provides an interesting 7R (Ref. 28 (A?) 5.33 33 110 500
probe of built-in strain fields and/or unbalanced compositionyo (Ref. 27 (meV/A%) 24 187 130 220
gradients. do -0.44 7.8 —15 —51

We organize the paper as follows. In Sec. Il we introduce
the effective one-dimensional Hamiltonian and list the sim-
plified forms it takes depending on the choice of confinementlepend on the materials. The averages are taken over
potentials. In Sec. lll we present the results for the energyhe lowest-energy wave functions of the laterally confining
levels including either the Dresselhaus or the Rashba ternpotentials as we assume small nanorod widths. In Table | we
In Sec. IV we study the effectivg-factor and the expectation present the parameters used in our calculations for different
value of thez-component of the spin as a function of the semiconductor materials. An example of the confining poten-
strength of the Rashba term for different semiconductors antlal in the longitudinal directionV,(z), is shown in Fig. 1,
eigenstates. In Sec. V we provide a discussion and conclwalong with a schematic drawing of the nanorod QDs.
sion. We now list four different possibilities for the confining
potentialsV,(x) andV,(y), based on the degree of symmetry
of the structure. The Dresselhaus and Rashba Hamiltonians
simplify considerably due to the fact that, in the absence of a
We start with the complete Hamiltonian for a three- magnetic field, the eigenstates can be chosen real, and there-
dimensional semiconductor structure in the absence of magdore, expectation values of the momentum are Z&rbhe
netic field, four cases are as followsee Figs. (a)—1(c) for schematic
drawings of the potentials in the first three cdses

Il. THE ONE-DIMENSIONAL HAMILTONIAN

2

_bp (a) Circular: V,(x), V,(y) have inversion symmetry about
H=——=+V(r)+Hp+Hpg, 1 . A Y
2m (1) +Hp *+ Hr @ the origin and are equal/,(x)=V,(y):
where m’ is the conduction-band effective mags,is the Hso=Higp + Higr=0, (5)

momentum,V(r) is the confinement potential, ardy and

Hg are the general Dresselhaus and Rashba Hamiltoftan _ _

Here we follow the current practice of calling Rashba terms (P) Vx(X), V\(y) have no inversion symmetry but are
those spin-orbit contributions to the Hamiltonian that ariseBdual;Vx(X)=Vy(y):

due to the structural inversion asymmetry of the nanostruc- ya/ V.

ture, as opposed to the Dresselhaus terms which come from Hso=Higp + Higr= X ) p(oy — ay), (6)
the bulk inversion asymmetry of the IllI-V semiconductors. A\ ox

Integrating out thex andy variables, we obtain the following so that On|y Rashba terms are present.

S_yields no SO contributions.

effective one-dimensional Hamiltonian: (c) Elliptical: Vy(x), V(y) are inversion symmetric func-
pz tions and differentV,(x) # V,(y):
Hig= ﬁ +Vy(2) + Higp + Higrs (2)
0- I N
Huao = 22{o(po(0) - o2 e
1D~ 23 O\ Px py> p;) 204
>
® -40 (b)
- Uy<py>(<p§> - pg) + O-sz(<p§> - <p§>)}, (3) E @2
—_ _60.
N
Hio= ﬁ{a’ < IVy D, - ﬂVZ<p >) E -80+ (c)
WR™ 7 W\ gy /% 9z . @
(AN aV, 0 200 400 600 800 1000
Uy<< ax >pz az<px>> Z(R)
+ 9 Vy (p) - M () 4 FIG. 1. Potential-energy profile and schematic drawing of two
7z JX py> ay Po Jh ) Al/InSb coupled nanorod quantum dots. For InSb-based systems we

take a well height of 100 meV, and for Al/GaAs, 220 meV. In this
whereo;, i=X,y,z, are the Pauli matricesi qp is the one-  example, the QD width is 300 A and barrier width 30 A, with
dimensional Dresselhaus term, aHglr is the Rashba-like smoothly changing barriers over a width of a few angstroms. The
term enabled by the inversion asymmetry of the laterallydrawings(a)—(c) illustrate the lateral confinement geometries de-
confining potential&/, andVy. yg andyp are parameters that scribed in the text.
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o ) 5 -78.57  RAsHBA DRESSELHAUS
Hso=Hiap + Higr= ﬁ‘fzpz«px) =P, (7) . {
> -79.04
results in only Dresselhaus terms. £ ‘\_<:
(d) Vi(x), Vy(y) have no inversion symmetry and are dif- a ~79.5-
. ® x
ferent, Vy(x) # V,(y): 3 -88.51
o
Y >
Hso=Higp + Hiar= ﬁ—gfrzpz«pi) - <p§>) :‘ﬁ, -89.0- ‘\—<: {
1 2 3 4 5 B

+ %{pz( o'x<(;_\;> - Uy<f;_\)i>>' (8) -89.5 !

FIG. 2. Ground-state and first-excited-state energy levels of the
represents the most general case and both Rashba ap@y nanorod QDs shown in Fig. 1. We compare the eigenenergies

Dresselhaus contributions are present. _ of (14 Ho=P%/2m +V,(2) to those of (2) Ho+Hgr (5) Ho
For the calculation of the effectivgfactor we introduce a  +H, o (3) Ho+Hygr+Hy, and(6) Ho+Higp+Hy. B=0.2 T.

weak magnetic field along thedirection. The field is chosen

small so that the—y orbital wave functions are not perturbed tonian. The figure shows how the energy leveldHgf(indi-
significantly. Thus, we only add a Zeeman term to the Hamil-cés 1 and Jare changed by the inclusion of a Rashba con-
tonian, H,= (ug/ 2)go Bo,, Where ug is the Bohr magneton, tribution Hqr [case (b), index 2, and of a Dresselhaus

B is the magnetic field, ang, is the electrorg-factor as per contributionHq4p [case(c), index 5§, without magnetic field.

; ~With a weak magnetic field we have total Hamiltonians
Table I. To calculate the energy levels and eigenfunctions, _ ;
9y J ot HigrtHz (index 3 and Hy+H;qp+H; (index 6. We

we expand the total Hamiltonian on a basis set of 300 Wav%:;| _ - :
functions of the quantum box of size, ie., é,J(2) ave carried out analogous calculations for the semiconduc-

:Vﬁ(Z/L)sin(nwz/L)X(s), wherex(s) is the spin function, and tors quoted in Table | and the results were qualitatively simi-

. o : . oo lar to the ones shown here. The main general conclusion is
diagonalize it numerically without further approximations. that the effect oM. is alwavs stronger than that &f
The sizeL of the box is such that the whole double-dot 1dR Y g 1dD

structure is enclosed in the box, including the barriers on th(faor the chosen parameters, which are representative of pos-
! 9 Sible experimental situations. We note that the Rashba and

sides of the dots and as such is irrelevant in the final eigenDresselhaus terms do not remove the spin degendsy

states. We should notice that the geometry of the dots that we .
i ; . expected from the Kramers degeneracy in the absence of

study here includes widths of 2-5 nm, while the most com- - : .
: X . magnetic fieldl but that they simply shift the levels down-

mon nanorod widths in experiments are of the order of tens . .
. wards, the strength of the shifts being controlled by the pa-

of nm. However, as we mentioned above, there are no ex-

perimental limitations to reducing the nanorod width to Val_rameters(aV/ax) for Rashba and,, and {y for Dresselhaus.

ues we consider here. Smaller widths allow us to explore th&Or the parameters chosen here the Rashba Sh'_ft is of the
basic physics and control of electronic wave functions withorOIer of 0.1 me_\/ for InSb and OAV for GaAs while the
only one relevant lateral energy sublevel. Moreover, notic‘gresselhaus shift is of the order of 0.01 meV for InSb and
that typical charge depletion induced by the free surface 01V for GaAs. N h hif h
further reduces the effective width of the nanorods, making;l_| As can be seen in Fig. 3 the energy shift producgd byt €
them more 1D-like. A final comment is that the incorporation’,'1dR varies quadratlcally with the structural electric f'e!d
of additional transverse levels in the nanorod is straightfor—<’9w’9x>' In Fig. 4 we show how the energy levels vary in

ward, but results in systems of coupled differential equationsS@S€(C) as a function oft, for the two lowest-energy states
for fixed €,=50 A. The functional dependence here is also

parabolic. This suggests that the spin-orbit corrections to the
Il. ENERGY LEVELS energy levels could be calculated fairly accurately with
second-order perturbation theory. We performed the second-
We present results for the energy levels in caésand  order perturbative calculation in the case with Rashba
(), i.e., with only Rashba and Dresselhaus terms presenfamiltonian, with a small magnetic field appli€@.1 T) in
respectively. The general cag#) does not present qualita- order to work with nondegenerate perturbation theory. A
tively different features fromb) or (c) and therefore we comparison between the exact and second-order energies
concentrate here on the simpler cases. For @@see fix the  shows, for example, a difference of 17% fdpV/ax)
strength of the Rashba term by giving the structural electric-1 5 mev/A, and increasing differences for larger Rashba
field (9V/ax). For casg(c), we use as confining potentials in fieds, as expected. These results agree qualitatively with
the lateral directions two harmonic-oscillator potentials withthose of Ref. 14 for quasi-2D circular dots, where differences
different frequenciesv(q)=1/2m’ wZg? g=x,y. These po-  of up to 30% between the results of exact calculations and of

tentials have associated characteristic lengtfs\%i/m w,.  second-order perturbation theory have been found.
In Fig. 2 we plot the two lowest energy levels for the InSb
QDs taking (3V/dx)=0.5 meV/A for case(b), and ¢, IV. EFFECTIVE g FACTOR

=50 A, €,=20 A for case(c). The indices on the horizontal The small magnetic fiel®=0.1 Tz breaks the spin de-
axis denote the inclusion of different terms in the Hamil- generacy of the ground state and allows the calculation of the
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FIG. 3. Contribution of the Rashba term to the energy levels of FIG. 5. Effect of the Rashba Hamiltonian on the effectiye
InSb (a) and GaAs(b) QDs as a function ofdV/adx). GS: Ground  factor.g"/g, for the ground state for different semiconductors as a
state; 1 and 2: first and second excited states, respectively. Notidanction of (9V/dx).
the effect is much smaller in GaA&nergy given inueV), as
anticipated. barrier widthw and the size of the QDso far we have taken

Lop1=Lopz=300 A). In Fig. 6@ we showg™ for w=30,
effectiveg-factor (g) as a function of V/dx) [case(b)] for ~ 130, and 330 Aasa function @fV/dx). We increase the
GaAs, InSb, InAs, and GaSb. In the figures we report norbarrier width but reducing gt the same time the sizes of the
malizedg-factors: two QDs so that the total size of thg structure remains con-

stant at 630 A. We note that increasimgeads gradually to
g (E,-E) havi_ng two uncoupled QDs and to a stronger varia_tiog*of
== 9 In Fig. 6(b) we setw=30 A and change the QDs’ sizes. We
% #eBY% take Lop; =100 A andLop,=500 A in one case, antlgp,
2 =Lgop2=300 A in the other. We observe here that gyen-
metric potential produces a stronger variationgdfthan the
where E; and E, are the Zeeman-split ground-state levels.asymmetricone.
Figure 5 shows the results for ca (i.e., with only Rashba We look at these symmetric and asymmetric structures in
contributions as a function ofV/dx). The decreasing trend more detail, and calculate the expectation val8g as a
of g is qualitatively similar for all the materials but the function of (3V/ax) for InSb dots and for the four lowest
magnitude of this Rashba effect varies greatly among thenpairs of statesZeeman doublejsAgain a magnetic field
The decrease of thg is strongest for InSb and weakest for =0.1 T is included. As expectedS,)=+1/2 in the absence

GaAs. ) . . of (V/x). Figure 7 shows the results for a symmetric struc-
We now examine what happensdowhen one modifies

the features of the longitudinal potenti)(z), such as the

o
0.0 - =
Z 0.2
E -0.4] /7 .
~— .O 6_ { — GS T T T T T T T
uf 081 P InSb 00 02 04 06 08 10 1.2
10 i , . . . (a) <dV/dx> ( meV/A )
10 20 30 40 50
@ Ik (&) 1007~z
0.0 o R
. s 1 _ >
S 021 = 0.95- Lo, 100 A
€ 4] — @S o _ Lm: 300 A
= ] e 0.90 Tar TR N
wosy GaAs 00 02 04 06 08 1.0 1.2
85 10 20 30 40 50 (b) <dV/dx> (meV/A )
(b) Ix (&)

FIG. 6. Normalized effectivey factor for the ground state of

FIG. 4. Contribution of the Dresselhaus term to the energy levdnSb structures with Rashba Hamiltonida) For different barrier

els of InSb as a function df, for the ground statéGS) and the first ~ widths w=30, 130, and 330 A(b) For different sizes of the QDs.

excited state(1) for €,=50 A. Level splitting in GaAs is barely ~Asymmetric caselqp;=100 A andLgp,=500 A; symmetric case
visible on the same scale as in InSh. Lop1=Lop2=300 A
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FIG. 7. Mean value o8, and effectiveg factor for InSh systems FIG. 8. Same as Fig. 7 for asymmetrié,(z) with Lop,
with symmetricV,(2) (two equal dots with.op; =Lop,=300 A). (&) =100 A andL op2=500 A.

(S) as a function ofdV/ax) for the four lowest-energy doublets

irs of Z -split stategb) g'/go for th tates. . . :
(pairs of Zeeman-split statesb) g /go for the same states spin degeneracy of the electronic levels in the absence of an

i ) _external magnetic fiel¢as prescribed by the Kramers degen-
ture with Lgpy=Lgp2=300 A and Fig. 8 for an asymmetric eracy.
one with Lop;=100 A and Lop,; =500 A. The symmetric (2) The Rashba effects are in general stronger than the
case shows a crossing {8,) [Fig. 7(a)] while the asymmet-  pregselhaus effects, but the latter are not negligible in gen-
ric one does noftFig. 8@)]. Using this information we recal- grg| either.
culate the effectivey-factor for the first four pairs of eigen- (3) Changing the strength of the spin-orbit terms, which is
states for the symmetrifFig. 7(b)] and asymmetridFig.  done by changing the lateral confinement lengttor ¢, in
8(b)] structures. The effective-factor, given here by the the case of Dresselhaus or the structural electric field
difference in(S,) values for every Zeeman pair, vanishes at(gv/x) in the case of Rashba, results in energy levels that
the crossing ofS,). This vanishing ofg” is a potentially  vary nearly quadratically with the control parameter. This
useful effect in spintronics applications, as it can be achievethdicates that the SO corrections to the energy levels are
as a function of the potentially adjustable Rashba parametejose to the second-order corrections in perturbation theory.
(aVI1ax). It is interesting to note how different spatial asym- We verified this result by comparing the exact and the per-
metry, introduced by the confinement potential alan@e., turbatively calculated energies.
different size dotg has a strong effect agi, and results in a (4) By changing the strength of the Rashba term, the size
finite value even at large Rashba fields. of the central barrier, and the size and symmetry of the two
QDs, it is possible to control the value of the effective
g-factor, which determines the Zeeman splitting. In particu-

We have studied how the spin-orbit Rashba and Dresselar it is possible to make the effectigefactor equal to zero.
haus terms modify the electronic structure of nanorod quasi-
one-dimensional double quantum dots. We have solved the
problem by numerical diagonalization of the total Hamil-
tonian for varying confining potentials, in the lateral as well We acknowledge support from the CMSS Program at
as in the longitudinal directions. The main conclusions of ourOhio University, Proyectos UBACyT 2001-2003 and 2004-
work are the following. 2007, Fundacion Antorchas, ANPCyT grant 03-11609, and

(1) For our system, the Rashba and Dresselhaus HamiltdNSF-CONICET through a US-Argentina-Brazil collabora-
nians shift downwards the energy levels but do not break th&éon grant NSF 0336431. P.I.T. is a researcher of CONICET.

V. CONCLUSIONS
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