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† Background Herbivory reduces leaf area, disrupts the function of leaves, and ultimately alters yield and pro-
ductivity. Herbivore damage to foliage typically is assessed in the field by measuring the amount of leaf tissue
removed and disrupted. This approach assumes the remaining tissues are unaltered, and plant photosynthesis and
water balance function normally. However, recent application of thermal and fluorescent imaging technologies
revealed that alterations to photosynthesis and transpiration propagate into remaining undamaged leaf tissue.
† Scope and Conclusions This review briefly examines the indirect effects of herbivory on photosynthesis, measured
by gas exchange or chlorophyll fluorescence, and identifies four mechanisms contributing to the indirect suppression
of photosynthesis in remaining leaf tissues: severed vasculature, altered sink demand, defence-induced autotoxicity,
and defence-induced down-regulation of photosynthesis. We review the chlorophyll fluorescence and thermal
imaging techniques used to gather layers of spatial data and discuss methods for compiling these layers to
achieve greater insight into mechanisms contributing to the indirect suppression of photosynthesis. We also elaborate
on a few herbivore-induced gene-regulating mechanisms which modulate photosynthesis and discuss the difficult
nature of measuring spatial heterogeneity when combining fluorescence imaging and gas exchange technology.
Although few studies have characterized herbivore-induced indirect effects on photosynthesis at the leaf level, an
emerging literature suggests that the loss of photosynthetic capacity following herbivory may be greater than
direct loss of photosynthetic tissues. Depending on the damage guild, ignoring the indirect suppression of photosyn-
thesis by arthropods and other organisms may lead to an underestimate of their physiological and ecological impacts.

Key words: Chlorophyll fluorescence imaging, thermography, plant–insect interactions, spatial patterns, autotoxicity,
induced defences, jasmonates.

INTRODUCTION

Insects consume vast quantities of plant biomass each year,
but simply considering the amount of tissue removed may
underestimate their impact on yield and ecosystem pro-
duction. On average, herbivores remove approx. 15 % of
primary production in terrestrial ecosystems, but complete
removal is not uncommon in out-break years (Cyre and
Pace, 1993). Similarly, insects consume approx. 14 % of
total global agricultural output (Oerke and Dehne, 1997).
This value is relatively low because of the widespread
application of pesticides. In the absence of pesticides,
losses would exceed 50 % for all major crops (Oerke and
Dehne, 1997). Herbivore damage is assessed in agricultural
fields by surveying the amount of tissue removed from
foliage. This approach, however, assumes that the remain-
ing leaf tissue functions normally. Many types of insect
damage affect photosynthesis in undamaged tissues, and
these ‘indirect’ effects on photosynthesis may be consider-
ably greater than the direct removal of leaf area (Welter,
1989; Zangerl et al., 2002).

Insect herbivory, whether defoliation or by feeding on
specific tissues (e.g. phloem or xylem), triggers a complex
and interacting array of molecular and physiological
responses in plants. These responses potentially reduce the
photosynthetic capacity in remaining leaf tissues to a
greater extent than the direct removal of photosynthetic
surface area. For example, the removal of only 5 % of the

area of an individual wild parsnip leaf by caterpillars
reduced photosynthesis by 20 % in the remaining foliage
(Zangerl et al., 2002), and the decline in photosynthesis in
the remaining leaf tissue of an oak sapling was equal to
the decrease in photosynthesis associated with the actual
removal of leaf tissue (Aldea et al., 2006b). The mechanisms
reducing photosynthesis in remaining leaf tissues are multifa-
ceted, ranging from disruptions in fluid or nutrient transport
to self-inflicted reductions in metabolic processes. However,
the magnitude of these effects on photosynthesis and the
underlying mechanisms are highly variable, depending in
large part on the type of feeding damage and the mode of
defence deployed by the plant under attack.

In this review, we build upon previous evaluations of the
effects of insect herbivory on photosynthesis (Welter, 1989;
Peterson and Higley, 2001) by examining feeding-induced
spatial heterogeneity in photosynthesis across individual
leaves. The application of fluorescence imaging techniques
(Rolfe and Scholes, 1995; Baker et al., 2001) is providing
new insight into how different damage guilds, including
pathogens and insects, affect the component processes of
photosynthesis. When combined with other imaging
methods such as thermography, the use of reporter genes
to follow transcription, and fluorescent dyes that track sig-
nalling compounds (e.g. Ca2þ ions, H2O2), the mechanisms
responsible for altering photosynthesis in remaining tissues
are being elucidated. The use of geographic image analysis
as a tool for making quantitative comparisons of images
representing different biological processes is discussed, as* For correspondence. E-mail delucia@uiuc.edu
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this method provides the capability to compile many layers
of covariate information to reveal new mechanistic insights.

INDIRECT VERSUS DIRECT EFFECTS OF
HERBIVORY ON PHOTOSYNTHESIS

Plant responses to arthropod herbivory traditionally have
been assessed from the guild perspective, where different
insect guilds are defined by their feeding mechanisms
(Welter, 1989; Peterson and Higley, 2001). These guilds
(e.g. chewing damage, piercing damage, etc.) were estab-
lished in an effort to recognize ‘homogeneity in physiologi-
cal response’ between different attacking agents
(arthropods) that alter plant physiological processes in a
similar manner (Higley et al., 1993). Using this guild
approach, Welter (1989) examined an extensive body of lit-
erature across multiple guilds and found over 50 % of all
plant–insect interactions resulted in a loss of photosyn-
thetic capacity. Defoliation generally increases photosyn-
thesis, whereas specialized cell-content feeding decreases
photosynthesis. Since then, several studies have examined
plant responses to different insect feeding guilds and even
to different insects within guilds in an effort to develop
models for predicting plant response to different feeding
mechanisms (see Peterson and Higley, 2001).

A review of the recent literature is not entirely consistent
with the conclusions stated by Welter (1989). Feeding on
specialized tissues typically reduces photosynthesis, regard-
less of whether the attacked component is the phloem
or xylem (Haile et al., 1999; Macedo et al., 2003a, b;
Heng-Moss et al., 2006), the stem (Macedo et al., 2005,
2007) or general leaf fluids (Haile and Higley, 2003).
There is some evidence indicating that increased photosyn-
thesis occurs in the presence of phloem feeding, particu-
larly when the annual photosynthesis rate is estimated
(Dungan et al., 2007). In contrast, defoliation injury often
does not alter photosynthetic capacity, within plant families
(e.g. legumes) or between hardwoods and crops (Peterson
et al., 1992, 1996, 2004); however, there are examples
where defoliation reduced (Delaney and Higley, 2006) or
increased photosynthesis (Turnbull et al., 2007).

The removal of leaf tissue by herbivores represents a
‘direct’ reduction of photosynthetic capacity. The suppres-
sion of photosynthesis in remaining leaf tissue is defined
by any one of a number of processes, including damage to
the vasculature supplying that tissue, as an ‘indirect’ effect
of herbivory. Arthropods damage xylem or phloem
(Welter, 1989), which may alter water transport, stomatal
aperture, and sucrose transport and loading, thereby reducing
photosynthesis in remaining leaf tissue. Severing tissue vas-
culature alters leaf hydraulics, and, subsequently, nutrient or
osmotica transport (Sack and Holbrook, 2006). If insect
feeding is subtle enough to avoid outright cell rupture,
modulation of nutrients sequestered by feeding will alter
plant osmotica or sink/source relationships (Girousse et al.,
2005; Dorchin et al., 2006). These effects also may be
mediated by the plant’s response. Insect attack, or even the
perception of attack, can induce a myriad of defence-related
responses while concomitantly reducing the expression of
photosynthesis-related genes (Kessler and Baldwin, 2002).

In instances where plant defences are constitutively
expressed, the release of biocidal compounds against attack-
ers may damage photosynthetic or homeostatic mechanisms
vital for plant function (e.g. Zangerl et al., 2002). Indirect
effects of herbivory were assigned to four classes: severed
vasculature, altered sink demand, defence-related autotoxi-
city, and defence-induced down-regulation of photosynthesis
(Fig. 1).

SEVERED VASCULATURE ALTERS
PHOTOSYNTHESIS AND WATER BALANCE

Damage to leaf venation alters leaf hydraulic conductance
thereby reducing stomatal conductance and photosynthesis.
In the absence of alternative pathways for water transport, the
consequences of damage to venation can persist for weeks
after the initial injury and lead to leaf desiccation (Sack and
Holbrook, 2006). Defoliation injury which severs venation
indiscriminately or feeding on specific tissues, may physically
obstruct fluid flow with insect mouthparts (stylets) or cell
fragments and alter photosynthesis and water balance in
remaining leaf tissue (Reddall et al., 2004; Delaney and
Higley, 2006). In Glycine max (soybean) a form of defoliation
(skeletonization) which removes patches of tissue reduced
photosynthesis in remaining tissue on damaged leaves and
on adjacent undamaged leaflets (Peterson et al., 1998).
Interestingly, soybean increased carbon uptake rates and
transpiration in remaining leaf tissue when one or two leaflets
were completely lost (Suwignyo et al., 1995), but when leaf
area removal (no patches) occurred to only part of a leaflet,
CO2 uptake did not decrease in the remaining leaflet tissue
(Peterson et al., 2004).

Aldea et al. (2005) confirmed that skeletonizing of
soybean leaves by Japanese beetles substantially increased
water loss from the cut edges. Damaging the interveinal
tissue increased transpiration by 150 % for up to 4 d post-
injury. While this uncontrolled water loss had no detectable
effect on CO2 exchange, severed vasculature induced a short-
lived (2 d) increase in photosynthetic efficiency (FPSII) in
undamaged tissue of damaged leaves. The increase in FPSII

without a corresponding increase in CO2 uptake suggests
that insect damage transiently decoupled photosynthetic
electron transport from carbon assimilation (Aldea et al.,
2005). Severing veins and interveinal tissue alters the hydrau-
lic construction of leaves by reducing resistance exponen-
tially with increasing damage (Nardini and Salleo, 2005).

The effects of defoliation on photosynthesis seem to be
less predictable than damage caused by other feeding
guilds. In hardwoods, leaf gall and fungal damage consist-
ently reduced FPSII at distances �1 cm from the point of
direct damage, whereas defoliation resulted in only highly
local reductions (,1 mm) in FPSII (Aldea et al., 2006b).
With one exception, defoliation of soybean and Arabidopsis
thaliana leaves caused only a minimal reduction in FPSII.
When compared with the mild effect of feeding by larger
4th instar Trichoplusia ni larvae, damage by smaller 1st
instars severely depressed FPSII, maximum photosynthetic
efficiency, and nonphotochemical quenching (NPQ) in arabi-
dopsis (Tang et al., 2006). The greater perimeter-to-area
ratio of the numerous small holes produced by 1st instars
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compared with 4th instars may have promoted greater rates of
water loss from the cut edges and a corresponding reduction
in FPSII. That the reduction in FPSII could be reversed by
exposing the leaf to higher concentrations of CO2, suggests
that profligate water loss near cut edges reduced FPSII and
increased NPQ by causing localized stomatal closure in the
remaining undamaged leaf tissue.

HERBIVORY ALTERS SINK DEMAND

In instances where plants respond to herbivory with
increased CO2 uptake, the mechanism typically is linked
to compensation or an increase in the sink demand within
the leaf. An extensive literature exists on photosynthetic
compensation for arthropod herbivory (see Trumble et al.,
1993); yet recent examples have highlighted previously
uncharacterized compensatory responses. For some gall-
forming insects, gall tissue itself increases photosynthesis
relative to uninjured tissue. In Ilex aquifolium (holly),
increased FPSII and electron transport rate enhanced photo-
synthesis (Retuerto et al., 2004) whereas a reduction in res-
piration in Acacia pycnantha galls contributed to an
increase in net photosynthesis (Dorchin et al., 2006).
While phloem feeding increased whole-canopy photosyn-
thesis in beech trees, perhaps through a reduction in photo-
synthate build-up, the mechanism remains unclear and may
be as simple as herbivore preference for hosts with higher
rates of photosynthesis (Dungan et al., 2007).

In other galls of hardwoods, feeding damage reduced
photosynthesis and altered water balance. Gall formation
in red maple, pignut hickory and black oak reduced FPSII,
but increased NPQ, indicating a down-regulation of the
PSII reaction centres in the area around galls (Aldea
et al., 2006b). A sharp reduction in leaf temperature near
galls suggests that transpiration was greater and fluid and
nutrient transport increased near the point of damage
(Macfall et al., 1994). In contrast to gall-forming insects,
a leaf-mining moth that lives enclosed within leaf tissue
of apple trees, reduced carbon assimilation rates by decreas-
ing transpiration (Pincebourd et al., 2006); however, the
effects of this guild on plant physiology have yet to be eval-
uated using fluorescence and thermal imaging.

Defoliation also may increase photosynthesis by altering
sink demand, but concerns over what and how remaining
tissues were measured have been noted (Welter, 1989).
By enclosing severed edges within gas exchange cuvettes
or measuring treatment effects on leaves where adjacent
leaves were removed (within-plant controls), the data may
not accurately describe plant responses specific to the her-
bivory treatment. Despite these potential limitations, data
suggest that defoliation, as well as removal of reproductive
and other vegetative sinks, may improve photosynthesis in
remaining leaf tissue by increasing carboxylation efficiency
and the rate of RuBP regeneration (Layne and Flore, 1992;
Holman and Oosterhuis, 1999; Thomson et al., 2003; Ozaki
et al., 2004; Turnbull et al., 2007).

Leaf area reduction or
tissue disruption

Direct
effects

Indirect
effects

Severed vasculature

Defence-induced
down-regulation 

Defence-induced
autotoxicity

Sink demand

FI G. 1. Conceptual model of the direct effect of herbivory (removal of leaf area) and the indirect effects of herbivore damage to foliage on photosyn-
thesis in the remaining leaf tissues.
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PLANT RESPONSES INDUCE AUTOTOXICITY

Plants invest in defences differently depending upon taxa,
habitat, and resource availability (Fine et al., 2006), and
many chemical defences are known for both model plant
systems and across less-studied taxa (Coley and Barone,
1996; Berenbaum and Zangerl, 2008). Plants run the risk
of autotoxicity because of the biocidal properties of many
secondary compounds. Although in vivo studies of autotoxi-
city are limited, photosynthesis may be severely reduced
for some species. For example, wild parsnip (Pastinaca
sativa) contains an arsenal of defence compounds including
furanocoumarins, which are photoactivated and biocidal
against a variety of organisms (Arnason et al., 1991).
Furanocoumarins are contained in oil tubes under positive
pressure and bleed profusely from the wounding site (Gog
et al., 2005). When herbivores sever these tubes, the
release of furanocoumarins reduces FPSII and gas exchange
at considerable distances from the actual point of insect
damage (Zangerl et al., 2002; Gog et al., 2005).

The autotoxic effect of defensive compounds on photo-
synthesis is highly species specific. Essential oils derived
from parsley (Petroselinum crispum), wild parsnip and
rough lemon (Citrus jambhiri) reduce FPSII when applied
to leaves of conspecifics; however, oils from parsley
affected a 2-fold greater area than the other species (Gog
et al., 2005). Baldwin and Callahan (1993) fed nicotine to
two species of tobacco (Nicotiana sylvestris, N. glauca)
that naturally synthesized this alkaloid as a defence
(Kessler and Baldwin, 2002), and to two other solanaceous
species lacking nicotine (Datura stramonium, Solanum
lycopersicum). Photosynthetic rates declined in both
species that synthesize nicotine but only in one that did
not (S. lycopersicum). Priming plants with nicotine (simu-
lated damage) prior to being fed reduced photosynthetic
rates more than in damaged-unfed plants, linking nicotine
toxicity to the reduction in photosynthesis. Reduced
photosynthesis, in part, reduced total growth and fitness.
Subsequently, plants producing nicotine constitutively or
upon the induction of defence are likely to endure auto-
toxicity and reductions in fitness.

DEFENCE-INDUCED DOWN-REGULATION
OF PHOTOSYNTHESIS-RELATED GENES

Jasmonates play a central role in regulating plant defence
responses to herbivores. The mechanism by which
herbivore-induced jasmonate synthesis promotes global
reprogramming of defence gene expression and the regu-
lation of this response have been reviewed recently (Howe
and Jander, 2008). While jasmonates induce defences,
they also inhibit growth and photosynthesis (Giri et al.,
2006; Zavala and Baldwin, 2006; Yan et al., 2007).

Transcriptional analysis of plant–herbivore interactions
revealed that photosynthesis-related genes are down-
regulated after attack (e.g. Hui et al., 2003; Reymond
et al., 2004); however, few studies have demonstrated the
effects of herbivore attack on photosynthesis at the pro-
teome and physiological levels. Attack by herbivores or
pathogens reduces transcription of the primary enzyme

responsible for carbon fixation, ribulose-1,5-bisphosphate
carboxylase/oxygenase (RuBPCase; Hermsmeier et al.,
2001; Hahlbrock et al., 2003; Hui et al., 2003). Using two-
dimensional electrophoresis, Giri et al. (2006) observed that
herbivory reduced the abundance of RuBPCase activase
(RCA) in N. attenuata. RCA modulates the activity of
RuBPCase (Portis, 1995), a key regulatory enzyme of
photosynthetic carbon assimilation, by facilitating the
removal of sugar phosphates (ribulose bisphosphate) that
prevent substrate binding and carbamylation of the protein’s
active site.

The regulation of RCA content may optimize plant per-
formance during attack. Reducing RCA protein and tran-
script levels by gene silencing, similar to elicited plants,
decreases both net photosynthetic rates and nitrate assimila-
tion in N. attenuata; these reductions in photosynthesis and
nitrogen assimilation, in turn, reduced the rate of biomass
accumulation (Giri et al., 2006). Since nitrogen and
carbon metabolism are linked, crosstalk between signalling
pathways that regulate nitrogen assimilation and carbon
metabolism is expected (Schachtman and Shin, 2007).
Either genetic or environmental manipulations that decrease
photosynthesis also inhibit nitrate assimilation (Matt et al.,
2002). These studies suggest that herbivore-induced
reductions in RCA protein explain, at least in part, the
decrease in photosynthetic rates in attacked leaves.

Partial defoliation of individual leaves by herbivores
largely increases evapotranspiration via enhanced water loss
from cut edges and produces leaf dehydration (Aldea et al.,
2005), which not only reduces photosynthesis by causing
stomata to close, but also by initiating senescence signalling
(Lim et al., 2007). A number of genes are induced by
endogenous abscisic acid (ABA) in response to dehydration
through the synthesis of the regulating transcription factors
MYC and MYB (Yamaguchi-Shinozaki and Shinozaki,
2006). Both MYC and MYB function as cis-acting elements
which regulate transcription of dehydration-related genes
(Abe et al., 1997). Transgenic plants overproducing MYC
and MYB had higher osmotic stress tolerance, and microarray
analysis indicated the presence of ABA- and jasmonic acid
(JA)-inducible genes (Abe et al., 2003). In addition,
AtMYC2 is a transcription factor that in arabidopsis func-
tions in JA and JA–ethylene-regulated defence responses
(Anderson et al., 2004; Boter et al., 2004; Lorenzo et al.,
2004). It has been suggested that crosstalk occurs on
AtMYC2 between ABA- and JA-responsive gene expression
at the MYC recognition sites in the promoters, and that
AtMYC2 is a common transcription factor of ABA and
JA pathways in arabidopsis (Yamaguchi-Shinozaki and
Shinozaki, 2006).

The lipoxygenase pathway is differentially induced
depending on the attacking agent (Heidel and Baldwin,
2004; De Vos et al., 2005; Kempema et al., 2007), and the
initiation of jasmonate signalling reduces photosynthesis
and vegetative growth. Plants treated with methyl jasmonate
develop shorter petioles than control plants (Cipollini, 2005),
and arabidopsis mutants that accumulate higher JA concen-
trations have shorter petioles than wild-type (Bonaventure
et al., 2007); these effects of JA on plant growth are modu-
lated by the gene JASMONATE-ASSOCIATED1 (JAS1)
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(Yan et al., 2007). Moreover, herbivore-induced JA signalling
suppresses regrowth and contributes to apical dominance
(Zavala and Baldwin, 2006). It has been suggested that the
slower growth and down-regulation of photosynthetic-related
genes by herbivore elicitation may be required to free-up
resources for defence-related processes (Baldwin, 2001).
Herbivore attack produced rapid changes in sink–source
relations and increased the allocation of sugars to roots in
N. attenuata plants; this process is regulated by the
b-subunit of SnRK1 (SNF1-related kinase) protein kinase,
but is independent of jasmonate signalling (Schwachtje
et al., 2006). It is not clear whether the change in carbon
allocation affects photosynthetic rate, per se, but growth
reduction would affect leaf expansion and total plant
photosynthesis.

IMAGING METHODS APPLIED TO DAMAGED
LEAVES

Chlorophyll fluorescence provides a non-invasive probe
which quantifies the component processes related to photo-
synthetic electron transport and correlates with photosyn-
thetic capacity measured by gas exchange. There are
several comprehensive discussions of the theory behind cal-
culating fluorescence parameters and how imaging has been
applied to leaf-level physiology (Lenk et al., 2007), aided in
crop production practices (Baker and Rosenqvist, 2004), or
has been used to screen for stressors and circadian rhythms
(Chaerle et al., 2007). High-resolution spatial maps of
primary photosynthetic processes, including estimates of
the rate of electron transport through PSII, energization
of the thylakoid membrane and the quantum efficiency of
PSII, not only provide direct estimates of the magnitude
of damage but also provide insight into underlying mechan-
isms (Baker et al., 2001; Oxborough, 2004, 2005).

The mechanisms governing the spatial patterns of photo-
synthesis following herbivory can be explored further by
examining the spatial correspondence of other processes.
The ability to collect spatially resolved data for a wide
range of molecular, physiological and biophysical processes
is increasing dramatically (Chaerle and Van Der Straeten,
2000; Table 1). The damage to water-conducting xylem
by chewing insects may generate localized water limitations
(Tang et al., 2006). Insofar as these water limitations or
other localized changes in leaf chemistry affect stomatal
conductance, thermal imaging offers a powerful tool for
mapping changes in temperature associated with variation
in latent heat flux across leaf surfaces (Jones, 1999;
Omasa and Takayama, 2003). With proper calibration,
thermal maps can be converted directly into maps of
stomata conductance (Jones, 2004; Bajons et al., 2005;
Grant et al., 2006). However, because of intrinsic properties
of thermal cameras as well as lateral heat transfer within
leaves (Jones, 2004), the resolution of thermal images typi-
cally is lower than fluorescence images.

The spatial pattern of other components of the photo-
synthetic machinery, including chlorophyll content and
engagement of the xanthophyll cycle (Lichtenthaler et al.,
1996; Gamon et al., 1997; Gitelson et al., 2005) are
readily mapped with hyperspectral imaging (Chaerle and
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Van Der Straeten, 2000; Schuerger et al., 2003), though this
has not yet been applied to variation within single leaves.

The construction of transgenic plants with the promoter
region of a gene of interest connected to a ‘reporter gene’
permits monitoring of the spatial distribution of transcrip-
tion, and markers for various organelles, subcellular struc-
tures, protein motility and the cellular environment (e.g.
pH; Dixit et al., 2006). Genes for firefly luciferase or
b-glucuronidase (de Ruijter et al., 2003) have been useful
in this regard (Jefferson et al., 1987; Greer et al., 2002);
intrinsically fluorescent proteins, such as green, blue and
yellow fluorescent proteins, may be more useful partners
for in vivo imaging studies because of their high quantum
yield (Dixit et al., 2006).

In addition to the use of various tracers and dyes for
mapping the movement of water, labeling defence com-
pounds (reactive oxygen species) and following transmem-
brane signals (Ca2þ), measurement of beta emissions from
carbon isotopes by autoradiography provides a powerful
technique for tracking the movement of carbohydrates and
metabolites (Kawachi et al., 2006; Thorpe et al., 2007).
Beta emissions from 11C are more useful for in vivo experi-
ments than 14C, as the particles emitted from the former are
short lived and more powerful, thus reducing the logistical
problems of handling radioactive waste and providing the
capability of penetrating thick plant tissues (Minchin and
Thorpe, 2003).

A wealth of information about how herbivory affects
photosynthesis and other aspects of leaf physiology could
be obtained by applying complementary imaging methods
(Table 1) and, if they are applied to the same leaf in one
experiment, could provide deeper insight into the mechan-
isms by which herbivory reduces photosynthesis in the
remaining leaf tissue. Combining different images with
different resolution is, however, challenging. One approach
is to construct simple regressions between the values in
aggregate pixels in one image with aggregate pixels in
another image. West et al. (2005) applied this approach to
an examination of the effect of stomatal patchiness
(thermal image) on photosynthesis (fluorescence image).
Deeper insight can be gained by applying methods of geo-
graphical image analysis to physiological data (Omasa and
Takayama, 2003; Leinonen and Jones 2004; Aldea et al.,
2006a). By registering and re-sampling images taken with
different instruments, multiple images can be aligned
precisely and expressed at a common resolution. Once
aligned, new maps are generated that represent the compo-
site information derived from the original separate images
(Aldea et al., 2006a). The ‘image map’ of A. thaliana
damaged by T. ni larvae (Fig. 2) revealed that immediately
near holes, FPSII was greatly reduced and the gene coding
for cinnamate-4-hydroxylase (C4H) was strongly induced
(red areas). C4H is the first cytochrome P450 monooxyge-
nase in the phenylpropanoid pathway and its induction
near damaged areas suggests that a reorientation of
metabolism toward defence may have contributed to the
loss of photosynthetic efficiency near the cut edges. At
greater distances from the edge, other factors contribute
to the reduction in quantum efficiency as values of dark-
adapted Fv/Fm and C4H expression are low.

LIMITATIONS TO MEASURING GAS
EXCHANGE SIMULTANEOUSLY WITH

IMAGING

One of the major limitations to estimating herbivore-induced
effects on photosynthesis is correctly characterizing CO2 dif-
fusion and uptake within the leaf. Gas exchange measure-
ments typically are used to generate a relationship between
photosynthetic assimilation and internal [CO2] – the A/Ci

response curve. This relationship assumes leaves have hom-
ogenous distribution of chloroplasts (for light absorption)
and of stomata (for gas exchange; von Caemmerer, 2000).
Heterogeneity across remaining leaf tissues caused by her-
bivory may compromise the utility of the A/Ci response
curve. In addition, gas exchange chambers enclosing leaves
reduce internal CO2 where gaskets overlay leaf area
through shading-induced stomatal closure (Pieruschka
et al., 2006). Diffusion of CO2 may also occur laterally,
with respect to morphology, and may diffuse 2 mm in homo-
baric and up to 1 mm in heterobaric (compartmentalized)
leaves (Pieruschka et al., 2006; Morison et al., 2007).
Heterogeneity in photosynthesis caused by non-uniform
CO2 uptake, in addition to lateral diffusion of CO2 within

0·6 0·7

FI G. 2. False colour images of the location of damage classes surrounding
holes in an arabidopsis leaf exposed to herbivory by Trichoplusia ni larvae.
Transgenic Arabidopsis thaliana carried a cinnamate-4-hydroxylase (C4H)
promoter and b-glucuronidase (GUS) reporter gene fusion. In A. thaliana,
enzymes in the phenylpropanoid pathway may contribute to defence
against pathogens; C4H is constitutively expressed in the veins of unda-
maged leaves and induced by wounding near the site of damage. The
image was constructed by combining independent images of the same
leaf of chlorophyll fluorescence (FPSII) and GUS staining for C4H activity
using geographic image analysis software. The false-colour scale bars indi-
cate the mean value of FPSII for each damage class. The veins shown in
blue and purple were classes that were excluded from analysis because
their high level of GUS staining was not related to herbivory. Data were

generously provided by Dr Jennie Tang.

Nabity et al. — Indirect Effects of HerbivoryPage 6 of 10



leaves, will interact with heterogeneity induced by feeding
damage when scales are similar. For example, defoliation
damage may reduce FPSII within a distance of 1–2 mm
(Aldea et al., 2005, 2006b); however, CO2 diffusion
through cut edges into damaged tissues and adjacent unda-
maged tissues, may increase Ci and alleviate the suppression
or even enhance photosynthesis.

CONCLUSIONS

In many cases, arthropod damage reduces photosynthesis to
a greater extent than would be predicted by the direct loss of
leaf tissue. With the use of new imaging technologies we
are beginning to understand how photosynthesis and water
balance are modulated in undamaged tissue following her-
bivory. Connecting these alterations in physiology to
changes in gene transcription and hormonal signalling
will increase our ability to estimate whole-plant responses
to herbivory, and will improve our estimates of the impact
of herbivory on higher levels of biological organization,
such as yield loss and assessments of overall ecosystem
productivity.

Indirect alterations of photosynthesis have been identified
across multiple plant systems and can be categorized by
plant responses. Severed vasculature increases transpiration,
reduces FPSII, and reduces NPQ, whereas sink demands of
galls enhance transpiration. Photosynthesis is greatly
reduced through the release of toxic secondary compounds
or defences elicited by herbivore attack. Even the initiation
of these defences triggers down-regulation of photosyn-
thetic component processes or proteins. Despite these
characterized indirect effects, investigations are lacking
for some damage types (e.g. specialized cell content
feeders) and their subsequent interactions with primary
and secondary metabolite pools.

While we are closer to elucidating the mechanisms respon-
sible for herbivore-induced alterations in photosynthesis and
related processes in undamaged tissues, a complete under-
standing of how the indirect suppression of photosynthesis
propagates away from the point of damage remains
unknown. Genomic analyses of plants challenged by arthro-
pods have revealed a trend for down-regulation of
photosynthesis-related genes, but a closer look at transcrip-
tional changes between and within feeding guilds has identi-
fied differential regulation of defence genes and overlap
among damage guilds. A universal response to herbivory is
the induction of the lipoxygenase pathway, but attacking
agents differentially induce this pathway and corresponding
jasmonate concentrations (Heidel and Baldwin, 2004; De
Vos et al., 2005; Kempema et al., 2007). Differences in
concentrations of defence signalling molecules may lead
to differential down-regulation of photosynthesis genes.
Already, the overlap in the magnitude of down-regulation
has been noted between caterpillars and general cell
content feeders compared with aphids (Voelckel et al.,
2004), leading to species-specific regulation of different
metabolic pathways (e.g. nitrogen metabolism by aphids).
Subsequently, within-plant mechanisms underlying the indir-
ect effect, and not the direct effect, may drive physiological
responses in future plant–insect interactions.
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