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Abstract – We present β-FeSe magnetotransport data, and describe them theoretically. Using
a simplified microscopic model with two correlated effective orbitals, we determined the normal
state electrical conductivity and Hall coefficient, using Kubo formalism. With model parameters
relevant for Fe-chalcogenides, we describe the observed effect of the structural transition on the
ab-plane electrical resistivity, as well as on the magnetoresistance. Temperature-dependent Hall
coefficient data were measured at 16 tesla, and their theoretical description improves upon inclu-
sion of moderate electron correlations. We confirm the effect of the structural transition on the
electronic structure, finding deformation-induced band splittings comparable to those reported in
angle-resolved photoemission.

Copyright c© EPLA, 2016

Introduction. – Since the discovery of superconduc-
tivity in LaFeAsO1−xFx [1], several types of iron-based
superconductors have been reported. The so-called “11”
family of FeSe superconductors attracted much attention
due to their simpler crystal structure, and particular elec-
tronic and physical properties. Since the first report of
superconductivity with critical temperature Tc = 8 K for
PbO-type α-FeSe0.88 by Hsu et al. [2], a Tc of 37 K at a
pressure of 8.9 GPa was already reached [3]. FeSe com-
pounds have a band structure similar to that of ferrop-
nictides [4,5]. FeSe1−x with Se deficiency was reported
to exhibit anomalies related to spin density waves (SDW)
and magnetic ordering at temperatures near 100 K [6]. On
the other hand, ref. [7] reported that FeSe exhibited su-
perconductivity within a narrow range of stoichiometries,
Fe1.01±0.02Se, without magnetic ordering.

Pure β-FeSe undergoes a structural transition from a
low-temperature orthorhombic to a tetragonal phase at
Ts ∼ 90 K, not accompanied by a SDW, and the com-
pound exhibits superconductivity below Tc = 8.87 K.
Angle-resolved photoemission spectroscopy (ARPES) ex-
periments in β-FeSe revealed a significant change in the
electronic structure when going through the structural
transition [8]. Recently it was claimed [9] that the
observed changes in electronic structure could not be

explained by the small lattice distortion, an issue which
we will address in our present work.

Recently, Amigó et al. [10] reported that multiband ef-
fects are needed to describe the magnetotransport prop-
erties of β-FeSe (Fe0.96Se) single crystals. Concretely,
in the normal state below 90 K, a strongly anisotropic
positive magnetoresistance, that becomes negligible above
that temperature, was found. This magnetoresistance
and the upper critical field could be understood with a
phenomenological uncorrelated two-band model. Also a
recent ultra-high magnetic-field study [11] reported that
magnetotransport in FeSe results from a small multiband
Fermi surface (FS) with different carrier mobilities.

In this work, to study normal-state magnetotrans-
port properties of β-FeSe superconductors, we propose
to employ a minimal microscopic model, which includes
two effective bands describing the low-energy electronic
structure, as well as intra- and inter-orbital Coulomb in-
teractions. Previously [12] we treated the model using
perturbative techniques to determine the electron Green’s
functions and the temperature-dependent spectral density
function. The kinetic energy part of the Hamiltonian is
represented by the effective two-orbital model proposed by
Raghu et al. in ref. [13], consisting of a two-dimensional
lattice for the Fe atoms, with two degenerate orbitals

17005-p1



J. D. Querales-Flores et al.

per site. Tight-binding parameters were fitted to obtain
an effective band structure describing the Fermi surface
topology of ferropnictides [13,14]. The two-orbital model
was shown to be suitable to describe the extended s-wave
pairing and other superconducting properties of these
systems [14–21].

Calculation of magnetotransport properties of
FeSe compounds. –

Microscopic two-orbital minimal model for FeSe. To
describe analytically the normal-state magnetotransport
properties of FeSe superconductors, we will consider the
following minimal model preserving the essential low-
energy physics:

H = H0 + Vint. (1)

The kinetic energy part of the Hamiltonian in eq. (1) is
given by the uncorrelated two-orbital model by Raghu
et al. [13] mentioned in the Introduction:

H0 =
∑
k,σ

[
Ec(k)c†

kσckσ + Ed(k)d†
kσdkσ

]
, (2)

where c†
kσ creates an electron with crystal momentum �k

and spin σ in the effective band with energy Ec(�k), likewise
for d†

kσ and Ed(�k). The effective band energies are

Ed
c
(�k) = ε+(�k) ±

√
ε2−(�k) + ε2xy(�k) − μ, (3)

where μ denotes the chemical potential at temperature T ,
and

ε±(�k) =
εx(�k) ± εy(�k)

2
; εxy(�k) = −4t4 sin(kx) sin(ky),

εx(�k) = −2t1 cos(kx) − 2t2 cos(ky) − 4t3 cos(kx) cos(ky),

εy(�k) = −2t2 cos(kx) − 2t1 cos(ky) − 4t3 cos(kx) cos(ky).

The tight-binding parameters ti, i = 1 − 4, denote the
hopping amplitudes between sites of the two-dimensional
lattice of Fe atoms, derived in ref. [13] as t1 = −1 eV,
t2 = 1.3 eV , t3 = t4 = −0.85 eV.

The electron correlations are represented by Vint in
eq. (1). The effect of local intra- and inter-orbital corre-
lations in ferropnictides was previously studied [12,19,22].
It was found that the inter-orbital correlation was less rel-
evant than the intra-orbital one. Therefore, in our mini-
mal model for FeSe we consider only the local intra-orbital
Coulomb repulsion U :

Vint =
∑

i

U(ni↑ni↓ + Ni↑Ni↓), (4)

where niσ = c†
iσciσ and Niσ = d†

iσdiσ, and i denotes the
Fe-lattice sites. Since correlations in FeSe compounds are
intermediate [12,23–27], and mainly motivated by the fact
that it had been possible to describe previous magneto-
transport results in terms of a phenomenological model

with two uncorrelated carrier bands [10], here we de-
cided to use Hartree-Fock approximation (HF) for the
correlations. A recent study of the effect of correlations
in FeSe [27], which found no relevant qualitative differ-
ences employing density functional theory (DFT) calcula-
tions and DFT+DMFT (DFT with dynamical mean-field
theory) for the FS and the low-energy spectral properties,
provides further justification for the level of approxima-
tion we used. We determined the HF renormalized band
structure, and self-consistently calculated μ(T ) for total
electron filling n of the two renormalized effective bands
(see ref. [12] for details).

Calculation of the electrical conductivity tensor and Hall
coefficient. To describe magnetotransport in FeSe com-
pounds, we evaluated the electrical conductivity tensor
σαβ , defined by

〈jα(t)〉 = σαβEβ(t), (5)

where 〈jα(t)〉 is the average current at temperature T and
time t flowing in the α-direction, in response to an electric
field, Eβ(t), applied in the β-direction.

Assuming the presence of a magnetic field �H = Hz ẑ
perpendicular to the ab-plane of FeSe, and the electric
current flowing in the x-direction (jx) as a result of an
electric field along x̂ plus the Hall electric field along ŷ
we have

〈jx〉 = σxx(ω)Ex(t) + σxy(ω)Ey(t), (6)

where σxx(ω) and σxy(ω) are, respectively, the lon-
gitudinal and transversal components of the electrical
conductivity tensor. To compare our analytical results
with experiments, we determined the ab-plane dc-resistiv-
ity (ρxx) and the Hall resistivity (ρxy) as the static (zero-
frequency, i.e. ω → 0) limit of

ρxx =
σxx(ω)

σ2
xx(ω) + σ2

xy(ω)
; ρxy =

σxy(ω)
σ2

xx(ω) + σ2
xy(ω)

. (7)

In the Kubo formulation for transport [28,29], σαβ are
given by appropriate generalised susceptibilities χAB(ω),
measuring the linear response of observable A of a system
to an applied external field coupling to its observable B.
The susceptibilities, in turn, can be calculated using re-
tarded Green’s functions, 〈〈A; B〉〉(ω) [29,30]. Here

σxx(ω) = χjx,eX(ω) = 〈〈jx; eX〉〉(ω), (8)
σxy(ω) = χjx,eY (ω) = 〈〈jx; eY 〉〉(ω), (9)

where X and Y are the respective components of the sys-
tem’s position operator. The electron Green’s functions
include a sum of the respective contributions from the c
and d effective bands, which can each be calculated from
the following exact set of equations of motion (EOM) [30]:

ω〈〈jx, eX〉〉c,d =
1
2π

〈[jc,d
x , eX ]〉 + 〈〈[jc,d

x , H]; eX〉〉,

ω〈〈jx, eY 〉〉c,d =
1
2π

〈[jc,d
x , eY ]〉 + 〈〈[jc,d

x , H]; eY 〉〉,
(10)
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where the current operator [31] is defined as jc
x =

e
m∗

c

∑
�k,σ kxc†

�k,σ
c�k,σ and jd

x = e
m∗

d

∑
�k,σ kxd†

�k,σ
d�k,σ, being

m∗
i , i = c, d, the effective masses of the carriers in each

band. New higher-order Green’s functions appear cou-
pled in eqs. (10). In order to close the system of coupled
equations of motion we used HF approximation to decou-
ple them, and determined 〈〈jx, eX〉〉 and 〈〈jx, eY 〉〉 in first
order of perturbations on the electron correlation U . The
final expressions obtained for the ab-plane electrical con-
ductivity components, in the presence of �H = Hz ẑ, read

σxx(ω) =
e2

Ω

∑
�k,σ

{ 〈c†
�kσ

c�kσ〉
h̄(ω − ωc) − ncEc(�k) − 2Un2

c

+
〈d†

�kσ
d�kσ〉

h̄(ω − ωd) − ndEd(�k) − 2Un2
d

}
, (11)

σxy(ω) =
ne

Hz
+

e2

Ω

∑
�k,σ

φ(�k)

{
1

h̄ω − Ẽc(�k) + h̄(ω + ωc)

− 1

−h̄ω − Ẽc(�k) + h̄(ω − ωc)
+

1

h̄ω−Ẽd(�k) + h̄(ω + ωd)

− 1

−h̄ω − Ẽd(�k) + h̄(ω − ωd)

}
, (12)

where Ω is the unit cell volume, Ẽi(�k) = Ei(�k) + 2Un2
i

for i = c, d. Above: φ(�k) ≡ (
〈c†

�kσ
c�kσ

〉−〈d†
�kσ

d�kσ
〉

Ed(�k)−Ec(�k)
), being

ωi ≡ eHz

c ( 1
m∗

i
) (i = c, d), i.e. the cyclotron frequency

of c and d electrons. m∗
i , i = c, d represent the diag-

onal components of the effective mass tensor, given by
( 1

m∗
i
)μν = 1

h̄2
∂2Ei(�k)
∂kμ∂kν

. The conductivity due to multiple
band maxima or minima is proportional to the sum of
the inverse of the individual masses, multiplied by the
density of carriers in each band, to take into account
all contributions to the conductivity [32]. To evaluate
the conductivities, we used the Chadi-Cohen BZ sampling
method [33,34] for square and rectangular lattices, to per-
form the required BZ summations.

The following expression for the Hall coefficient (RH)
was obtained, using eq. (12):

RH =
1

σxyHz
; σxy = lim

ω→0
δ→0+

� [σxy(ω + iδ)] ≡
(

1
γc + γd

)
,

γi ≡
{(

eni

m∗
i

)
(ω+ωi)[(ω−ωi)2+δ2]+(ω−ωi)[(ω+ωi)2+δ2]
(ω+ωi)2(ω−ωi)2+δ2(ω+ωi)2−δ2(ω−ωi)2+δ4

}
.

(13)

In the next section, we will compare our Hall coefficient
results with those obtained using the classical expression
for two types of uncorrelated carriers (with charge e): [35]

RH =
1
e

(μ2
cnc + μ2

dnd) + (μcμdHz)2(nc + nd)
(μcnc + μdnd)2 + (μcμdHz)2(nc + nd)2

, (14)
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Fig. 1: (Colour online) H = 0: ab-plane resistivity as a func-
tion temperature. ρxx(T )/ρxx(150 K), calculated for different
doping values (indicated in the figure): using the temperature-
dependent lattice parameters, a(T ) and b(T ), reported for
FeSe [37]. Also included is the result obtained assuming a
tetragonal lattice, with constant lattice parameter: a = b =
3.77 Å (double-dot–dashed line). Experimental curve (dot-
ted line): Fe0.96Se single crystal, from ref. [10]. Inset: ex-
perimental ρxx(T )/ρxx(150 K) (dotted line) measured for a
Fe0.94Se0.98S0.02 single crystal, and calculated curve (solid line)
for n = 2.25. Model parameters used: U = 3, t1 = −1.0,
t2 = 1.3, t3 = t4 = −0.85. All energies are in eV. Chadi-
Cohen [33,34] order for BZ summations: ν = 9.

where μi, i = c, d, denotes the mobility in each elec-
tron band. One has μi = eτi/m∗

i = σi/(eni) [36], being
τ−1
i and σi, respectively, the scattering rates and dc-

conductivities for the electrons in each band.

Results and discussion. – We present magnetotrans-
port results for the normal state of FeSe compounds, and
compare them with those calculated as presented in the
previous section. Using the optimal correlation value
U = 3 eV, previously found to describe best other elec-
tronic properties of these compounds [12], we analize the
dependence on temperature, doping and magnetic field
Hz = H , and compare our results with new experimental
data and those of ref. [10], as well as with the results ob-
tained assuming uncorrelated electrons. Notice that the
value U = 3 eV represents less than one-third, ∼ 0.29, of
the total bandwidth for uncorrelated electrons [13], thus
characterising FeSe compounds as systems with interme-
diate electron correlations as discussed in the previous
section.

First, in fig. 1 we study the temperature dependence
of the ab-plane dc-resistivity, represented by ρxx(T ), for
Fe0.96Se and Fe0.94Se0.98S0.02 single crystals in the absence
of magnetic field, measured with a standard 4-points dc-
technique. The main figure compares the experimental
data (normalized at T = 150 K) with two calculations
using our approach: one for a tetragonal crystal with
constant lattice parameters (the normalized resistivity
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Exp. data: H= 8 T [10]
Calc.: H = 16 T
Exp. data: H = 16 T [10]
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=
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 1
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S
0.02

n = 2.25, H = 16 T

U = 3 eV, n = 2.3

Fig. 2: (Colour online) Effect of a magnetic field parallel to
the c-axis: temperature dependence of the ab-plane resistiv-
ity (normalized to ρ(150 K,H = 0)) for Fe0.96Se (n = 2.3) in
the main figure. Calculated and experimental [10] results for
H = 8T, 16 T, as indicated in the plot. Other parameters
as in fig. 1. Inset: calculated and experimental [10] ab-plane
resistivity (normalized to ρ(150 K,H = 0)) of Fe0.94Se0.98S0.02

for H = 16 T.

plotted has negligible dependence on doping up to 150 K),
while the other, more realistic, takes into account the
T -dependence of the lattice parameters a(T ), b(T ) of
FeSe [37] and, in particular, the structural transition
[10,38], which occurs at Ts ∼ 90 K for the Fe0.96Se sam-
ple, and at 87 K for the Fe0.94Se0.98S0.02 one. As ex-
pected, a clear improvement of the description of the
ab-plane dc-resistivity at H = 0 is obtained using the
T -dependent lattice parameters of FeSe [37]. The best
agreement to the experimental data is obtained consider-
ing a total electron filling n = 2.3 (main figure), and 2.25
(inset), for the correlated two-orbital model, which corre-
sponds to an Fe-content of x = 0.96, and x = 0.94, re-
spectively. In accordance with experiment, the calculated
ab-plane resistivity presents a metallic-like behavior in the
normal state with a change of slope around the struc-
tural transition temperature. Hence, we will continue us-
ing the temperature-dependent lattice parameters in what
follows.

In the next three figures we will present magnetotrans-
port results obtained under applied magnetic fields paral-
lel to the c-axis of the FexSe samples: i.e. perpendicular
to the plane formed by the Fe atoms.

In fig. 2, the main figure exhibits the normal-state
ab-plane resistivity ρxx(T ) calculated and measured at
magnetic fields of 8 T and 16 T, having fixed the total band
filling at n = 2.3 to describe Fe0.96Se. In the inset we show
ρxx(T ) at 16 tesla for the Fe0.94Se0.98S0.02 sample, with
the corresponding calculated curve using n = 2.25. Notice
that above Tc = 8.87 K for Fe0.96Se [10], and above Tc =
10.06 K for Fe0.94Se0.98S0.02, we obtain very good agree-
ment. A change of slope of the resistivity at the struc-
tural transition temperature is seen, and, in particular, our

0 2 4 6 8 10 12 14 16 18

H (Tesla)

0

0.25

0.5

0.75

1

1.25

[ρ
xx

(H
)-

ρ xx
(H

=
0)

]/
ρ xx

(H
=

0)

Exp. data (T = 14 K) [10]
Calc. (T = 14 K)
Exp. data (T = 16 K)
Calc. (T = 16 K)
Exp. data (T = 50 K)
Calc. (T = 50 K)

Fig. 3: (Colour online) Magnetoresistance as a function of H
parallel to the c-axis: calculated (lines) and experimental (sym-
bols) results for temperatures T = 14, 16, and 50 K, as indi-
cated in the plot. The experimental data at T = 14K are
taken from ref. [10]. Model parameters: U = 3 eV, n = 2.3 and
others as in fig. 1.

results describe the positive magnetoresistance observed
below Ts [10] and the negligible one above Ts.

In fig. 3 we present calculated and experimental magne-
toresistance results for Fe0.96Se as a function of the mag-
netic field parallel to c, at three different temperatures.
Only the experimental T = 14 K results included have
been published before [10]. Notice the remarkable agree-
ment at T = 14 K, 16 K, and 50 K between the experimen-
tal magnetoresistance and the values calculated assuming
U = 3 eV and n = 2.3. In particular, our results describe
a quadratic ∼ H2 behavior of the magnetoresistance, con-
sistently with the prediction from a phenomelogical two-
band model used in ref. [10]. In the present work, we
also find experimentally and describe theoretically that
the magnetoresistance concavity (and therefore also its
magnitude) is monotonically reduced as temperature is
increased towards Ts ∼ 90 K, which is consistent with the
results in fig. 2, and in agreement with recent measure-
ments included in an ultra-high magnetic field study of
FeSe [11].

At T = 40 K, we find effective masses: m∗
c = 2.63me and

m∗
d = 3.46me, in agreement with DFT + DMFT calcula-

tions by Aichhorn et al. [23], where a significant orbital-
dependent mass renormalization in the range 2–5 was pre-
dicted, and confirmed by ARPES results at T = 40 K [24].

Next, in fig. 4, we present experimental and theoret-
ical results obtained for the Hall coefficient RH in a
Fe0.94Se0.98S0.02 single crystal as a function of tempera-
ture, at H = 16 T parallel to the c-axis. The Hall contri-
bution was measured with a standard dc-technique using
four contacts along two perpendicular lines, separating the
small resistivity contributions by measuring in positive
and negative magnetic fields along the c-axis. We also
included in fig. 4 the theoretical result obtained with our
analytical approach, for the correlated two-orbital model
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Fig. 4: (Colour online) Temperature dependence of the Hall
coefficient at H = 16 T. Comparison between: our experimen-
tal results for Fe0.94Se0.98S0.02 (points), and two theoretical
calculations: present analytical approach (solid line) for the
correlated two-orbital model (U = 3 eV, n = 2.25, other pa-
rameters as in fig. 1), and phenomenological uncorrelated two-
carrier model: eq. (14) (dot-dashed line). An arrow indicates
the critical temperature of the sample at H = 0. The inset
shows the effect of temperature on the difference (nc − nd)
of the partial fillings of the effective bands in our correlated
two-orbital model.

with parameters U = 3 eV and filling n = 2.25. Notice the
good agreement obtained with the experimental data. We
found that, in our theoretical approach, RH , apart from its
dependence on the magnetic field, is very sensitive to total
electron filling n, presenting qualitative sizeable changes
depending on the Fe-content. These changes are related
to the position of the Fermi level with respect to the effec-
tive model’s band structure [12,13] (which can be seen in
fig. 5(a)). The theoretical curve in fig. 4 corresponds to a
multi-band situation in which the Fermi level crosses the
two c and d correlated bands, with unequal fillings of those
bands. In particular, the inset depicts the temperature de-
pendence of the difference (nc − nd) between the partial
fillings of these bands at total filling n = 2.25. Notice that
it is maximum at the same temperature, ∼ 38 K, at which
the dependence on temperature of the lattice parameters
sets in. This maximum coincides with the inflection point
in RH(T ), which we checked that also occurs at H = 16 T
if two uncorrelated carrier bands contributed to RH(T )
according to eq. (14). The latter case is also shown in
fig. 4, using the carrier mobilities and densities obtained
from our approach for U = 0 and n = 2.25. Figure 4 evi-
dentiates that better agreement to the experimental data
is obtained with the correlated two-orbital model, than in
the absence of electron correlations.

To end, we discuss the effect of the lattice deforma-
tion related to the structural transition on the electronic
properties of FeSe superconductors, in the absence of mag-
netic field. It has been suggested that the emergence
of magnetoresistance in FeSe superconductors below Ts
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Fig. 5: (Colour online) H = 0, effect of lattice deformation δ on
the electronic structure. (a) Band structure of the correlated
two-orbital model in Hartree-Fock approximation shown in the
large (unfolded) BZ [13], i.e. one Fe/cell, at δ = 0 (dashed line)
and δ = 0.002 (solid line). T = 10K, nc = 1.87 and nd = 0.43.
Inset: amplification near �k0 = (π, π), which corresponds to
the zone center Γ in the small (folded) BZ, i.e. two Fe/cell.
(b) T -dependence of the band splitting at two BZ points: de-
noted as Γ and M in the small BZ. Concretely: T -dependence
of the calculated band splitting at Γ, and for comparison we
include the respective ARPES data at Γ and M . Inset: tem-
perature dependence of the deformation parameter using the
lattice parameters of ref. [37].

might be related to changes in the electronic struc-
ture [8,10]. On the HF renormalized band structure of
our effective correlated two-orbital model for FeSe com-
pounds, the main effects of the deformation are found
in the BZ region around �k0 = (π, π) of the large BZ,
i.e., with one Fe/cell [13], as fig. 5(a) shows. We in-
clude results for two values of the orthorhombicity pa-
rameter δ = (a − b)/(a + b) [8], namely, δ = 0 and
δ = 0.002. Our results indicate that the energetically
non-equivalent xz and yz orbitals [13] become degenerate
at and above the structural transition, in agreement with
recent ARPES experiments [8]. The symmetry break-
ing, manifested in the band splitting appearing at �k0,
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results from the lattice deformation from tetragonal to
orthorhombic. Next, fig. 5(b) exhibits the temperature
dependence we calculated for the band splitting at �k0,
measured by Φ(T ) = Ed( �k0) − Ec( �k0). Notice that �k0
of the large BZ, corresponds to the centre of the small
BZ obtained with two Fe/cell, i.e. Γ. For comparison, in
fig. 5(b) we also include ARPES results for Φ(T ) at Γ and
M (using the small BZ notation, as in ARPES [8,9,39]).
Reference [8] mentions that the band splitting measured
at M is nearly comparable to that at Γ, possibly due to
the relatively large error bars for these data. The inset of
fig. 5(b) depicts the T -dependence of δ, resulting from the
T -dependent FeSe lattice parameters of ref. [37].

Conclusions. – We studied magnetotransport in the
normal state of FexSe compounds, presenting experimen-
tal data obtained in single crystals as well as a theoretical
description of the results. Using a simplified microscopic
model to describe the compounds, based on two correlated
effective orbitals, we determined the normal-state electri-
cal conductivity tensor and Hall coefficient in the linear
response regime, employing the Kubo formulation. We
decoupled the equations of motion for the current-current
correlation functions in first-order (Hartree-Fock) approx-
imation, with model parameters in the range relevant for
Fe-chalcogenides, previously used to describe their spec-
tral properties. With this simplified model we could suc-
cessfully describe i) the effect of the structural transition
from a tetragonal to an orthorhombic phase observed in
the ab-plane electrical resistivity; ii) the positive magne-
toresistance in the presence of a magnetic field perpen-
dicular to the ab-plane in the orthorhombic phase, which
becomes negligible above the structural transition tem-
perature; iii) the Hall coefficient RH as a function of tem-
perature, showing that the inclusion of moderate electron
correlations improves the description of the experimental
results; iv) effects of the lattice deformation related to the
structural transition on the electronic properties of FeSe
superconductors: we found changes in the electronic struc-
ture below the structural phase transition temperature,
comparable to those reported in ARPES experiments.

Our work presents experimental and theoretical evi-
dence confirming the key role of the structural transition
on the strongly anisotropic magnetotransport properties
observed in the normal state of β-FeSe superconduc-
tors, and that moderately correlated multiband models
can provide the best description of these experimental
results.
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