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We study regular and asymptotically flat phantom black holes as gravitational lenses. We obtain the

deflection angle in both the weak and the strong deflection limits, from which we calculate the positions,

magnifications, and time delays of the images. We compare our results with those corresponding to the

Schwarzschild solution and to the vacuum Brans-Dicke black hole.
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I. INTRODUCTION

The subject of black hole gravitational lensing has re-
ceived growing attention since the discovery of supermas-
sive black holes at the center of galaxies, in particular, the
one associated with SgrA* in theMilkyWay. The light rays
passing close to the photon sphere have a large deviation,
and the deflection angle can be calculated by using the
strong deflection limit—consisting in a logarithmic
approximation—which was introduced some decades ago
[1] for the Schwarzschild spacetime. This method allows
for the calculation of the positions, the magnifications, and
the time delays of the relativistic images. It was rediscov-
ered several times [2], then extended to the Reissner-
Nordström metric [3], and to any spherically symmetric
object with a photon sphere [4]. Numerical studies of black
hole lenses were also performed [5]. Other interesting
works considering strong deflection lenses with spherical
symmetry can be found in Refs. [6–10]. The lensing effects
of rotating black holes were analyzed by several research-
ers [11,12] as well. The apparent shapes or shadows of
rotating black holes have a deformation due to the spin
[12–16]. It is thought that direct observation of supermas-
sive black holes and the optical effects associated with
them will be possible in the near future [16]. For recent
reviews about black hole lensing, see Ref. [17].

Thewell-known type Ia supernova observations [18] lead
to the cosmological scenario of an accelerated expansion of
the Universe. The usual explanation is that the Universe is
filled with a negative pressure fluid called dark energy
(see, for example, Ref. [19] and references therein), which
accounts for about 70%, with the other 30% corresponding
to visible and dark matter. For the prevailing component,
the simpler equation of state relating the pressure pwith the
energy density � has the linear form p ¼ w�: if w>�1 it
is called quintessence, the case w ¼ �1 corresponds to a
cosmological constant�, and when w<�1 it receives the
name of phantom energy. Dark energy can be modeled by a

self-interacting scalar field with a potential [19]. Within this
context, regular black hole and wormhole phantom solu-
tions with spherical symmetry were found in Ref. [20]. The
stability of these solutions was recently studied [21]. Static
and spherically symmetric solutions with phantom matter,
corresponding to regular black holes and black universes—
in which an observer gets into an expanding universe after
crossing the horizon—are discussed in Ref. [22]. Black
holes in scalar-tensor gravity are also analyzed in
Ref. [23]. Phantom dilaton black holes [24] were recently
studied as gravitational lenses [25].
In the present work, we consider as gravitational lenses

a class of regular phantom black holes studied in Ref. [20].
In Sec. II, we review the main physical properties of the
geometry adopted, introduce the lens equation, and we
obtain the exact expression for the deflection angle.
In Sec. III, we approximate the deflection angle by its
weak deflection limit value in order to find the positions
and magnifications of the primary and secondary images. In
Sec. IV, we find the strong deflection limit, from which we
calculate the positions and magnifications of the relativistic
images. In Sec. V, we show the mathematical expressions
corresponding to the time delays between the images.
Finally, in Sec. VI, we discuss the results obtained and the
observational prospects. We use units such thatG ¼ c ¼ 1.

II. LENS EQUATION AND DEFLECTION ANGLE

We consider the Lagrangian corresponding to Einstein
gravity coupled to a scalar field � with a potential Vð�Þ
and the electromagnetic field set to zero:

L ¼ ffiffiffiffiffiffiffi�g
p ½Rþ �g���;��;� � 2Vð�Þ�; (1)

with � ¼ �1 (phantom field) and

Vð�Þ ¼ � c
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The Einstein-scalar equations coming from this
Lagrangian admit a static and spherically symmetric
solution [20] having the metric

ds2 ¼ �AðrÞdt2 þ BðrÞdr2 þ CðrÞðd�2 þ sin2�d�2Þ;
(3)

with

AðrÞ ¼ BðrÞ�1

¼ 1þ r0r

b2
þ ðr2 þ b2Þ

�
c

b2
þ r0

b3
tan�1

�
r

b

��
;

CðrÞ ¼ r2 þ b2; (4)

and the scalar field

� ¼ ffiffiffi
2

p
tan�1

�
r

b

�
; (5)

where c, r0, and b > 0 are constants. The parameter b can
be interpreted as a scale of the scalar field. The radial
coordinate r is a real number, and the function SðrÞ ¼
4�R2ðrÞ, with RðrÞ ¼ ffiffiffiffiffiffiffiffiffiffi

CðrÞp
, gives the area of the spheri-

cal surface corresponding to a given value r. This area
function SðrÞ has the minimum value Sð0Þ ¼ 4�b2, so
the geometry presents a throat at rth ¼ 0. The solution is
regular everywhere and the position of the horizon can be
obtained from the equation AðrÞ ¼ 0. The metric becomes
asymptotically flat [20] as r ! þ1 when

c ¼ ��r0
2b

: (6)

The constantm ¼ r0=3 can be interpreted in the usual way
as the mass. If m ¼ 0 the geometry is that of the Ellis
wormhole [26], which connects two symmetric asymptoti-
cally flat regions through a throat at rth ¼ 0. When m< 0
there are no horizons and the spacetime corresponds to a
wormhole with a throat at rth ¼ 0 that connects an asymp-
totically flat region (r > 0) with an asymptotically anti-de
Sitter region (r < 0). Ifm> 0, there is one Killing horizon,
corresponding to the only root rh of AðrÞ. In this case, the
region corresponding to r > rh is asymptotically flat and
the one with r < rh is asymptotically de Sitter. These
regular black holes also receive the name of black uni-
verses. When 0< b< 3�m=2 one has 0< rh < 2m, if
b ¼ 3�m=2 then rh ¼ 0, and when b > 3�m=2 one ob-
tains rh < 0. In the first case rth ¼ 0< rh, and the throat is
not a true one, because r corresponds to a time coordinate
in the region with r < rh; in the second case, the throat and
the horizon coincides (rth ¼ rh ¼ 0); and in the third case,
the throat is outside the horizon (rh < rth ¼ 0). The regular
phantom solution combines the properties of black holes
(the presence of a horizon) with those of wormholes
(the presence of a throat). In the limit b ! 0 the throat is
lost and for m> 0 the Schwarzschild solution, with
the singularity at r ¼ 0 and the horizon at rh ¼ 2m, is
obtained. For more details see Refs. [20,21].

From now on, we adopt the value of c given by the
condition (6), so that the geometry is asymptotically
flat, and m> 0 corresponding to a black hole (or black
universe). It is useful for the calculations that follow to
adimensionalize all quantities in terms of the mass m, by
defining the radial coordinate x ¼ r=m, the time coordi-

nate T ¼ t=m, and the parameter ~b ¼ b=m. Then the
solution takes the form

ds2 ¼ �AðxÞdT2 þ BðxÞdx2 þ CðxÞðd�2 þ sin2�d�2Þ;
(7)

with

AðxÞ ¼ BðxÞ�1 ¼ 1þ 3x
~b2

þ 3
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1þ x2
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2
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;

CðxÞ ¼ x2 þ ~b2; (8)

and

� ¼ ffiffiffi
2

p
tan�1

�
x
~b

�
: (9)

The value of the radial coordinate corresponding to the
horizon xh, obtained numerically from the condition

AðxhÞ ¼ 0, is the decreasing function of ~b shown

in Fig. 1; for ~b ¼ 3�=2 the horizon radial position is

xh ¼ 0 and when ~b > 3�=2 it is negative. The geometry
has a photon sphere, its radius xps is given by the largest

positive solution of the equation

A0ðxÞ
AðxÞ ¼

C0ðxÞ
CðxÞ ; (10)

where the prime represents the derivative with respect to x.
Replacing the metric functions in Eq. (10) and after some
straightforward calculations, we find that the photon sphere
radius has the constant value xps ¼ 3.

To study the lensing effects, we adopt the configuration
where the black hole (l) is situated between a point source
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FIG. 1. Adimensionalized radial coordinate xh ¼ rh=m of the
horizon as a function of the parameter ~b ¼ b=m. When ~b >
3�=2 the horizon radial coordinate is negative and there is a
throat outside the horizon, located at xth ¼ rth=m ¼ 0.
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of light (s) and an observer (o), both of them located in
the region corresponding to x > 0, at distances much
larger than the horizon radius xh, so that they lie in a flat
region. The lens equation relates the deflection angle �
with the angular positions—seen from the observer, with
the optical axis defined as the line joining the observer and
the lens—of the source � and the images �. We will take
�> 0 without losing generality. The lens equation can be
written in the form [27]

tan� ¼ dol sin �� dls sin ð�� �Þ
dos cos ð�� �Þ ; (11)

where dos, dol, and dls are the observer-source, observer-
lens, and lens-source angular diameter (adimensionalized)
distances, respectively. The deflection angle for a photon
coming from infinity, in terms of the closest approach
distance x0, is given by [8,28]

�ðx0Þ ¼ Iðx0Þ � �; (12)

where

Iðx0Þ ¼
Z 1

x0

2
ffiffiffiffiffiffiffiffiffiffi
BðxÞp

dxffiffiffiffiffiffiffiffiffiffi
CðxÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Aðx0ÞCðxÞ½AðxÞCðx0Þ��1 � 1
p : (13)

The deflection angle is a monotonic decreasing function of
x0; it diverges when x0 gets close to the radius of the
photon sphere xps and it approaches to zero for large x0,

as it can be seen in Fig. 2. When x0 is close enough to xps,

the deflection angle � is greater than 2�, and the photons
perform one or more turns around the black hole before
reaching the observer. Then, there are two infinite sets of
strong deflection or relativistic images, one of them due to
clockwise winding around the black hole and the other one
produced by counterclockwise winding. These relativistic
images are located, respectively, at the same side and at the
opposite side of the source. To obtain the positions of the

images for a given source position, we have to replace the
deflection angle given by Eqs. (12) and (13) in the lens
equation (11) and invert it. The resulting equation is quite
complicated and cannot be solved analytically without
some simplifying approximations.

III. WEAK DEFLECTION IMAGES

Let us first analyze the case of photons with a large
impact parameter, so the closest approach distance x0 is
large. By defining y ¼ x0=x, and performing a Taylor
expansion to second order around 1=x0 of the integrand,
the Eq. (13) takes the form

Iðx0Þ ¼
Z 1

0
fðyÞdy; (14)

where

fðyÞ � 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p þ 2ð1þ yþ y2Þ
ð1þ yÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� y2
p 1

x0

þ ð�b2ð�1þ yÞð1þ yÞ3 þ 3ð1þ yþ y2Þ2Þ
yð1þ yÞ2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�1þ y�2

p 1

x20
;

(15)

by calculating the integral and replacing it in Eq. (12), the
deflection angle, in the weak deflection limit, results

�ðx0Þ � 4

x0
þ�16þ ð15þ ~b2Þ�

4x20
: (16)

Keeping only the first order of Eq. (16), and using
the relation x0 ¼ dol sin � � dol�, the deflection angle
finally is

�ð�Þ � 4

dol

1

�
: (17)

For high alignment, the lens equation (11) can be written
in a simpler form, by approximating the trigonometric
functions by their first order expansions, so it reduces to

� ¼ �� dls
dos

�: (18)

The Einstein ring is formed for perfect alignment of the
source, the lens, and the observer, i.e. when � ¼ 0, its
radius is given by

�E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4dls
doldos

s
: (19)

Then, in terms of the Einstein radius, the deflection angle
has the form

�ð�Þ � �2Edos
dls

1

�
: (20)

The angular positions of the primary and the secondary
images are obtained by replacing (20) in the lens equation
(18) to give
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FIG. 2. Deflection angle as a function of the adimensionalized
closest approach distance x0 ¼ r0=m, for three representative
values of the parameter ~b: 1 (solid line), 3 (dashed line), and
6 (dashed-dotted line). The deflection angle diverges when
x0 ¼ xps ¼ 3 (photon sphere).
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�p;s ¼
��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 4�2E

q
2

: (21)

Gravitational lensing conserves surface brightness.
The magnification is given by the quotient of the solid
angles subtended by the image and the source

� ¼
��������sin�sin�

d�

d�

���������1

; (22)

which for small angles reduces to

� ¼
���������� d�

d�

���������1

: (23)

By replacing the angular positions of the images given by
(21) in the expression (23), the magnifications of the
primary and secondary images take the form

�p;s ¼

�
��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 4�2E

q �
2

4�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 4�2E

q : (24)

It is important to note that the results obtained above do

not depend on ~b to first order in 1=x0. Higher order

corrections (which are functions of ~b) can be obtained
following the procedure detailed in Ref. [29].

IV. RELATIVISTIC IMAGES

We consider now the case of photons passing close to the
photon sphere, for which we adopt the so-called strong
deflection limit [4]. We split the integral (13) as a sum of
two parts:

Iðx0Þ ¼ IDðx0Þ þ IRðx0Þ; (25)

where

IDðx0Þ ¼
Z 1

0
Rð0; xpsÞf0ðz; x0Þdz; (26)

and

IRðx0Þ ¼
Z 1

0
½Rðz; x0Þfðz; x0Þ � Rð0; xpsÞf0ðz; x0Þ�dz;

(27)

with

z ¼ AðxÞ � Aðx0Þ
1� Aðx0Þ ; (28)

Rðz; x0Þ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðxÞBðxÞp

A0ðxÞCðxÞ ½1� Aðx0Þ�
ffiffiffiffiffiffiffiffiffiffiffiffi
Cðx0Þ

q
; (29)

fðz; x0Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðx0Þ � ½ð1�Aðx0ÞÞzþAðx0Þ�Cðx0Þ½CðxÞ��1

p :

(30)

By performing a Taylor expansion of the argument inside
the square root in Eq. (30), one has

f0ðz; x0Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
’ðx0Þzþ 	ðx0Þz2

p ; (31)

where

’ðx0Þ ¼ 1� Aðx0Þ
A0ðx0ÞCðx0Þ ½Aðx0ÞC

0ðx0Þ � A0ðx0ÞCðx0Þ�; (32)

and

	ðx0Þ ¼ ½1� Aðx0Þ�2
2½A0ðx0Þ�3½Cðx0Þ�2

f2½A0ðx0Þ�2Cðx0ÞC0ðx0Þ

� Aðx0ÞA00ðx0ÞCðx0ÞC0ðx0Þ
þ Aðx0ÞA0ðx0Þ½Cðx0ÞC00ðx0Þ � 2½C0ðx0Þ�2�g: (33)

With these definitions, ID converges for x0 � xps because

’ � 0 and f0 � 1=
ffiffiffi
z

p
. If x0 ¼ xps, from Eq. (32), we find

that ’ ¼ 0 and f0 � 1=z, and IDðx0Þ has a logarithmic
divergence. So, ID is the term containing the divergence
at x0 ¼ xps, and IR is regular since it has the divergence

subtracted. The logarithmic divergence of the deflection
angle for photons passing close to the photon sphere, in
terms of the impact parameter

u ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Cðx0Þ
Aðx0Þ

s
; (34)

can be approximated by the simple general form [4]

�ðuÞ ¼ �c1 ln

�
u

ups
� 1

�
þ c2 þOðu� upsÞ; (35)

where ups is the impact parameter evaluated at x0 ¼ xps
and

c1 ¼
Rð0; xpsÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	ðxpsÞ

q ; (36)

and

c2 ¼ ��þ cR þ c1 ln
2	ðxpsÞ
AðxpsÞ ; (37)

with

cR ¼ IRðxpsÞ: (38)

The quantities c1 and c2 are named the strong deflection
limit coefficients, which depend only on the metric func-
tions. For the phantom black hole, we obtain that the
critical impact parameter is given by

ups ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2~b3

2~b� 3�þ 6tan�1ð3~bÞ

s
; (39)

and the strong deflection limit coefficients have the values
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c1 ¼ 1; (40)

and

c2 ¼��þ cR

þ c1 ln
~b3½�6~bþ 9�þ ~b2�� 2ð9þ ~b2Þtan�1ð3~bÞ�2

ð9þ ~b2Þ2½2~b� 3�þ 6tan�1ð3~bÞ�3
;

(41)

where cR cannot be calculated analytically, so it is found

numerically for each value of ~b. The coefficient c1 is a

constant and c2 is shown as a function of the parameter ~b in
Fig. 3.

The deflection angle, obtained above in the strong
deflection limit, can be directly related to the positions
and magnifications of the relativistic images by using the
lens equation. The lensing effects are more significant
when � and � are small, i.e. when the objects are highly
aligned. In this case, � is close to an even multiple of �.
For � � 0, two infinite sets of relativistic images are
obtained, one on each side of the lens. So, the deflection
angle for the first set of relativistic images can be written as
� ¼ 2n�þ��n, with n 2 N, and 0< ��n � 1. In this
approximation, the lens equation (11) takes the simple
form

� ¼ �� dls
dos

��n: (42)

For the other set of images, which satisfy � ¼ �2n��
��n, the quantity ��n is replaced by ���n in Eq. (42).
The deflection angle can also be expressed in terms of two
measurable magnitudes: the angular position of the image
� and the distance between the observer and the black
hole dol. According to the lens geometry, we have that
u ¼ dol sin � � dol�, so Eq. (35) results in

�ð�Þ � �c1 ln

�
dol�

ups
� 1

�
þ c2: (43)

The angular position of the nth image is obtained by
inverting Eq. (43) and performing a first order Taylor
expansion around � ¼ 2n�:

�n ¼ �0n � 
n��n; (44)

where

�0n ¼
ups
dol

½1þ eðc2�2n�Þ=c1�; (45)

and


n ¼
ups
c1dol

eðc2�2n�Þ=c1 : (46)

From Eqs. (42) and (44), �n can be rewritten using
��n ¼ ð�n � �Þdol=dls. Then,

�n ¼ �0n � 
ndos
dls

ð�n � �Þ: (47)

Since 0< 
ndos=dls < 1 and keeping only the first-order
term in 
ndos=dls, which is a small correction to �0n, the
angular positions for one set of relativistic images finally
take the form

�n ¼ �0n þ 
ndos
dls

ð�� �0nÞ; (48)

and for the other set

�n ¼ ��0n þ 
ndos
dls

ð�þ �0nÞ: (49)

The magnification �n of the nth relativistic image is
given by the angle subtended by the image and the source,
as in the weak deflection case, i.e. Eq. (22). Considering
small angles and replacing Eq. (48) in the expression (23),
we have

�n ¼ 1

�

�
�0n þ 
ndos

dls
ð�� �0nÞ

�

ndos
dls

: (50)

After performing a Taylor expansion in 
ndos=dls, the
magnification of the nth image for both sets of relativistic
images finally reduces to

�n ¼ 1

�

�0n
ndos
dls

: (51)

Equations (45) and (46) imply that the magnifications
decrease exponentially with n, so the first relativistic image
is the brightest one. On the other hand, the factor
ðups=dolÞ2 is very small meaning that the magnifications

are very faint unless the lens and the source are highly
aligned (� � 0).
These results can be compared with observations by

defining the observables [4]

�1 ¼ ups
dol

; (52)

s ¼ �1 � �1; (53)
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FIG. 3. Strong deflection limit coefficients c1 and c2 as
functions of the parameter ~b: the coefficient c1 ¼ 1 is a constant
and c2 is the decreasing function shown in the plot.

REGULAR PHANTOM BLACK HOLE GRAVITATIONAL LENSING PHYSICAL REVIEW D 88, 103007 (2013)

103007-5



and

r ¼ �1P1
n¼2 �n

: (54)

The limiting value �1, where the images approach as

n ! 1, is an increasing function of ~b for a given value
of dol. As the first relativistic image is the outermost and
brightest one, it would be resolved from the others, so s is
defined as the angular separation between the first relativ-
istic image and the others, which approach to the limiting
angular position �1. The observable r is the quotient
between the flux of the first image and the flux coming
from all the other ones. As it is shown in the above
expressions, the angular positions and the magnifications
of the relativistic images are related to the strong deflec-
tion limit coefficients. For high alignment, the observables
take the form

s ¼ �1eðc2�2�Þ=c1 ¼ �1ec2�2�; (55)

and

r ¼ e2�=c1 ¼ e2�: (56)

The observable r is a constant and the quotient s=�1 is

plotted as a function of the parameter ~b in Fig. 4.

V. TIME DELAYS

In the case of transient sources, it is of interest to study
the time delays between the images, due to the different
paths that follow the photons that form them. The
(adimensionalized) time delay between the primary and
the secondary images is given by [30]

�Tp;s ¼ 4

�
�2s � �2p

2j�p�sj þ ln

���������s
�p

��������
�
; (57)

which can be written in the form

�Tp;s ¼ 4

0
B@��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 4�2E

q
2�2E

þ ln

�������������
��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 4�2E

q
�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 4�2E

q
�������������
1
CA:
(58)

From Eq. (58), it is clear that for perfect alignment
(i.e. �¼0), there is no time delay. As �=�E grows,
larger time delays can be obtained, but if �=�E � 1,
the magnification of the primary image is close to one
and the secondary image is very faint and it could not be
observable. The optimal situation is when �=�E is small
enough to have large magnifications of both images, but
not too close to zero, so the time delay can be longer
than the typical time scale of the variable source. By
using the results of Sec. III, we see that, in the first order
approximation adopted in the present work, the value of
�Tp;s is the same as for the Schwarzschild black hole.

For the relativistic images, the (adimensionalized) time
delay between the nth and mth images formed at the same
side of the lens is given by [31]

�Ts
n;m ¼ ups

�
2�ðn � mÞ þ 2

ffiffiffi
2

p ½eðc2�2m�Þ=ð2c1Þ � eðc2�2n�Þ=ð2c1Þ� �
ffiffiffi
2

p
dos�

c1dls
½eðc2�2m�Þ=ð2c1Þ � eðc2�2n�Þ=ð2c1Þ�

�
; (59)

where the upper (lower) sign corresponds if both images are on the same (opposite) side of the source. For the images at the
opposite side of the lens we have [31]

�To
n;m ¼ ups

�
2�ðn�mÞ þ 2

ffiffiffi
2

p ½eðc2�2m�Þ=ð2c1Þ � eðc2�2n�Þ=ð2c1Þ� þ
ffiffiffi
2

p
dos�

c1dls
½eðc2�2m�Þ=ð2c1Þ þ eðc2�2n�Þ=ð2c1Þ� � 2dos�

dls

�
;

(60)

where the image with winding number n is on the
same side of the source and the other one on the opposite
side. In both cases, the expressions from Ref. [31]
have been expanded to first order in the source position
angle, measured from the observer instead of from

the source. The first term in Eqs. (59) and (60) is
by large the most important one [31], and is the
delay related to the difference of loops given by
the photons around the black hole before emerging.
The time delay between the primary and the secondary

0 1 2 3 4 5 6

0.00095

0.00100

0.00105

0.00110

0.00115

0.00120

0.00125

b

s

FIG. 4. The observables s=�1 and r: the quotient s=�1 is the
decreasing function of ~b shown in the plot, and r ¼ e2� is a
constant.
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images is shorter than the time delays between the
relativistic images.

VI. CONCLUSIONS

In this paper, we have studied the gravitational lensing
effects produced by regular black holes, which are solu-
tions of the Einstein equations with a scalar field possess-
ing a negative kinetic term and a potential, without the
presence of the electromagnetic field. These black holes
(or black universes) have an asymptotically flat region that
continues to an asymptotically de Sitter region after cross-
ing the horizon, and they can have a throat outside the
horizon. We have obtained the weak and the strong de-
flection limits of the deflection angle in order to calculate
the positions, magnifications, and time delays of the im-
ages for a high alignment scenario. The results were shown
in terms of the quotient between the parameter b associated
to the ghost field and the (positive) mass m of the black
hole.

Let us compare the results obtained in the present
work, with those corresponding to the Schwarzschild
black hole solution. In the weak deflection limit, to first
order in the quotient m=r0 between the mass and the
closest approach distance r0, we have found that the
deflection angle does not depend on b=m and the posi-
tions, magnifications, and time delays of the images
are the same as in the case of the Schwarzschild space-
time. The strong deflection limit coefficients for the
Schwarzschild black holes [4] have the values cSch1 ¼ 1

and cSch2 ¼ ln ½216ð7 � 4
ffiffiffi
3

p Þ� � � � �0:400230. For
the phantom black holes, we have obtained that c1 ¼
cSch1 , and that c2 is a decreasing function of b=m, which

is equal to cSch2 in the limit b ! 0. For a given value of

the distance Dol between the observer and the black
hole, we have found that the limiting value of the

angular position of the images �1 is larger than �Sch1 ¼
3

ffiffiffi
3

p
m=Dol � 5:19615m=Dol, and the relative separation

of the images s=�1 is smaller than ðs=�1ÞSch ¼ 0:00125,
so the images are farther from the origin and more
packed together than in the Schwarzschild case. With
respect to the magnifications, the behavior is similar to
that of the Schwarzschild lenses, in the sense that the
quotient between the flux of the first image and the flux
coming from all the others satisfy r ¼ rSch ¼ e2�. The
complicated expressions for the time delays of the rela-
tivistic images makes a general comparison difficult, so
we have to rely on a numerical example (see below).
One particularly interesting case occurs if b=m ¼ 3�=2,
i.e. when the horizon coincides with the throat, since it
was shown in Ref. [21] that the solution is stable; we
have that c2 ¼ �0:646528, �1 ¼ 7:84411m=Dol and
s=�1 ¼ 0:000978, with large differences with respect
to the Schwarzschild values.

To provide a numerical example, let us consider the
Galactic center supermassive black hole [32], for which

the mass is M ¼ 4:31� 106M	 and the distance from
the Earth is Dol ¼ 8:33 kpc. We also adopt Dos ¼ 2Dol

as the value of the distance between the observer and
the source, an angular position of the source � ¼ 0:5�1,
and b=m ¼ 3�=2. Then, we have that the limiting value
of the angular positions of the relativistic images is
�1 ¼ 40:0183 �as, with the first image separated from
it by s ¼ 0:03915 �as. The magnification of the first
strong deflection image is �1 ¼ 7:6� 10�13, and the
quotient between the flux of the first image and the
flux coming from all the others is r ¼ e2� � 535.
The time delay between the first relativistic image at
one side and the first one at the other side is j�to1;1j ¼
1:122� 10�9 min , and the time delay between the first
relativistic image and the second one at the same side
is j�ts1;2j ¼ 17:638 min . The corresponding values for

the Schwarzschild black hole are �Sch1 ¼ 26:5093 �as,
sSch ¼ 0:03318 �as, �Sch

1 ¼ 6:4 � 10�13, rSch ¼ r,
j�to1;1Schj ¼ 4:952� 10�10 min , and j�ts1;2Schj ¼
11:704 min . We see that for the phantom black hole
the time delays are, in both cases, larger than those for
the Schwarzschild geometry.
Another interesting spacetime for a comparison with

our results is the spherically symmetric vacuum solution
of Brans-Dicke theory, for which the gravitational lensing
in the strong deflection limit was studied in Ref. [7]. The
theory has a coupling parameter !; in the limit ! ! 1
the Schwarzschild geometry is recovered. Following
Ref. [7], we adopt for the calculations the values ! ¼
500 and ! ¼ 50000. The strong deflection limit coeffi-
cients [7] are cBD1 ¼ 1 (independent of !), cBD2 ¼
�0:400155 when ! ¼ 500, and cBD2 ¼ �0:400232 for
! ¼ 50000 (cBD2 decreases with !). In the case of the
supermassive Galactic black hole, using the same values
of the parameters as above, if ! ¼ 500 we obtain that
�BD1 ¼ 26:4947 �as, sBD ¼ 0:03316 �as, �BD

1 ¼
6:4 � 10�13, rBD ¼ r, j�toBD1;1 j ¼ 4:947 � 10�10 min ,

and j�tsBD1;2 j ¼ 11:698 min . If ! ¼ 50000 we have that

�BD1 ¼ 26:5091 �as, sBD ¼ 0:03318 �as, �BD
1 ¼

6:4 � 10�13, rBD ¼ r, j�toBD1;1 j ¼ 4:950� 10�10 min ,

and j�tsBD1;2 j ¼ 11:704 min . The values of all quantities

are very close to the corresponding ones for the
Schwarzschild black hole, and quite different from those
for the phantom black holes with b=m ¼ 3�=2.
The observation of the vicinity of black holes will be

possible in the next years, when new instruments are
expected to be operational, in the radio and X bands,
such as RADIOASTRON [16,33], Event Horizon
Telescope [34], and MAXIM [35]. RADIOASTRON is
a space-based radio telescope, with an angular resolution
of about 1–10�as. The Event Horizon telescope is based
on very long baseline interferometry, to com-
bine existing and future millimeter/submillimeter
facilities into a high-sensitivity, high angular resolution
telescope. The MAXIM project is a space-based x-ray
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interferometer with an expected angular resolution of

about 0:1�as. Some observational features of the

Galactic supermassive black hole, including strong deflec-

tion traits, can be found in the recent review [36]. Subtle

effects coming from the comparison of different black hole

models, such as those arising from alternative theories, will

surely require more advanced future instruments.

ACKNOWLEDGMENTS

This work has been supported by CONICET. We thank
an anonymous referee for very useful comments and
suggestions.
Note added.—The same week this article was sent to the

journal, the work [37] appeared online as a preprint
(arXiv), containing a partial overlap with our results.

[1] C. Darwin, Proc. R. Soc. A 249, 180 (1959).
[2] J.-P. Luminet, Astron. Astrophys. 75, 228 (1979); H.C.

Ohanian, Am. J. Phys. 55, 428 (1987); R. J. Nemiroff, Am.
J. Phys. 61, 619 (1993); V. Bozza, S. Capozziello, G. Iovane,
and G. Scarpetta, Gen. Relativ. Gravit. 33, 1535 (2001).

[3] E. F. Eiroa, G. E. Romero, and D. F. Torres, Phys. Rev. D
66, 024010 (2002); E. F. Eiroa and D. F. Torres, Phys. Rev.
D 69, 063004 (2004).

[4] V. Bozza, Phys. Rev. D 66, 103001 (2002).
[5] K. S. Virbhadra and G. F. R. Ellis, Phys. Rev. D 62, 084003

(2000); K. S. Virbhadra and C. R. Keeton, Phys. Rev. D 77,
124014 (2008); K. S. Virbhadra, Phys. Rev. D 79, 083004
(2009).

[6] A. Bhadra, Phys. Rev. D 67, 103009 (2003); E. F. Eiroa,
Phys. Rev. D 73, 043002 (2006); N. Mukherjee and A. S.
Majumdar, Gen. Relativ. Gravit. 39, 583 (2007); G. N.
Gyulchev and S. S. Yazadjiev, Phys. Rev. D 75, 023006
(2007); S. Chen and J. Jing, Phys. Rev. D 80, 024036
(2009); Y. Liu, S. Chen, and J. Jing, Phys. Rev. D 81,
124017 (2010); E. F. Eiroa and C.M. Sendra, Classical
Quantum Gravity 28, 085008 (2011).

[7] K. Sarkar and A. Bhadra, Classical Quantum Gravity 23,
6101 (2006).

[8] K. S. Virbhadra, D. Narasimha, and S.M. Chitre, Astron.
Astrophys. 337, 1 (1998).

[9] K. S. Virbhadra and G. F. R. Ellis, Phys. Rev. D 65, 103004
(2002).

[10] E. F. Eiroa, Phys. Rev. D 71, 083010 (2005); R. Whisker,
Phys. Rev. D 71, 064004 (2005); A. S. Majumdar and N.
Mukherjee, Int. J. Mod. Phys. D 14, 1095 (2005); C. R.
Keeton and A.O. Petters, Phys. Rev. D 73, 104032 (2006);
S. Pal and S. Kar, Classical Quantum Gravity 25, 045003
(2008); A.Y. Bin-Nun, Phys. Rev. D 81, 123011 (2010);
A. Y. Bin-Nun, Phys. Rev. D 82, 064009 (2010); E. F.
Eiroa and C.M. Sendra, Phys. Rev. D 86, 083009 (2012).

[11] V. Bozza, Phys. Rev. D 67, 103006 (2003); S. E. Vázquez
and E. P. Esteban, Nuovo Cimento Soc. Ital. Fis. 119B, 489
(2004); V. Bozza, F. De Luca, G. Scarpetta, and M. Sereno,
Phys. Rev. D 72, 083003 (2005); V. Bozza, F. De Luca, and
G. Scarpetta, Phys. Rev. D 74, 063001 (2006); G.V.
Kraniotis, Classical Quantum Gravity 28, 085021 (2011).

[12] V. Bozza and G. Scarpetta, Phys. Rev. D 76, 083008
(2007).

[13] H. Falcke, F. Melia, and E. Agol, Astrophys. J. 528, L13
(2000).

[14] A. de Vries, Classical Quantum Gravity 17, 123 (2000); R.
Takahashi, Astrophys. J. 611, 996 (2004); K. Hioki and U.

Miyamoto, Phys. Rev. D 78, 044007 (2008); C. Bambi,
and K. Freese, Phys. Rev. D 79, 043002 (2009); K. Hioki
and K. I. Maeda, Phys. Rev. D 80, 024042 (2009); L.
Amarilla, E. F. Eiroa, and G. Giribet, Phys. Rev. D 81,
124045 (2010); C. Bambi and N. Yoshida, Classical
Quantum Gravity 27, 205006 (2010); C. Bambi, F.
Caravelli, and L. Modesto, Phys. Lett. B 711, 10 (2012);
A. Yumoto, D. Nitta, T. Chiba, and N. Sugiyama, Phys.
Rev. D 86, 103001 (2012); L. Amarilla and E. F. Eiroa,
Phys. Rev. D 87, 044057 (2013).

[15] A. N. Aliev and P. Talazan, Phys. Rev. D 80, 044023
(2009); J. Schee and Z. Stuchlik, Int. J. Mod. Phys. D
18, 983 (2009); L. Amarilla and E. F. Eiroa, Phys. Rev. D
85, 064019 (2012).

[16] A. F. Zakharov, A.A. Nucita, F. DePaolis, and G. Ingrosso,
New Astron. 10, 479 (2005); A. F. Zakharov, F. De Paolis,
G. Ingrosso, and A.A. Nucita, Astron. Astrophys. 442,
795 (2005); F. De Paolis, G. Ingrosso, A.A. Nucita, A.
Qadir, and A. F. Zakharov, Gen. Relativ. Gravit. 43, 977
(2011).

[17] V. Bozza, Gen. Relativ. Gravit. 42, 2269 (2010); E. F.
Eiroa, arXiv:1212.4535.

[18] A. G. Riess et al. (Supernova Search Team Collaboration),
Astron. J. 116, 1009 (1998); S. Perlmutter et al. (SNCP
Collaboration), Astrophys. J. 517, 565 (1999).

[19] K. Bamba, S. Capozziello, S. Nojiri, and S.D. Odintsov,
Astrophys. Space Sci. 342, 155 (2012).

[20] K. A. Bronnikov and J. C. Fabris, Phys. Rev. Lett. 96,
251101 (2006).

[21] K. A. Bronnikov, R. A Konoplya, and A. Zhidenko, Phys.
Rev. D 86, 024028 (2012).

[22] K. A. Bronnikov, H. Dehnen, and V.N. Melnikov, Gen.
Relativ. Gravit. 39, 973 (2007).

[23] T. P. Sotiriou and V. Faraoni, Phys. Rev. Lett. 108, 081103
(2012).

[24] G.W. Gibbons and K. Maeda, Nucl. Phys. B298, 741
(1988); D. Garfinkle, G. T. Horowitz, and A. Strominger,
Phys. Rev. D 43, 3140 (1991).

[25] G. N. Gyulchev and I. Zh. Stefanov, Phys. Rev. D 87,
063005 (2013).

[26] H. G. Ellis, J. Math. Phys. (N.Y.) 14, 104 (1973).
[27] V. Bozza, Phys. Rev. D 78, 103005 (2008).
[28] S. Weinberg, Gravitation and Cosmology: Principles and

Applications of the General Theory of Relativity (Wiley,
New York, 1972).

[29] C. R. Keeton and A.O. Petters, Phys. Rev. D 72, 104006
(2005).

ERNESTO F. EIROA AND CARLOS M. SENDRA PHYSICAL REVIEW D 88, 103007 (2013)

103007-8

http://dx.doi.org/10.1098/rspa.1959.0015
http://dx.doi.org/10.1119/1.15126
http://dx.doi.org/10.1119/1.17224
http://dx.doi.org/10.1119/1.17224
http://dx.doi.org/10.1023/A:1012292927358
http://dx.doi.org/10.1103/PhysRevD.66.024010
http://dx.doi.org/10.1103/PhysRevD.66.024010
http://dx.doi.org/10.1103/PhysRevD.69.063004
http://dx.doi.org/10.1103/PhysRevD.69.063004
http://dx.doi.org/10.1103/PhysRevD.66.103001
http://dx.doi.org/10.1103/PhysRevD.62.084003
http://dx.doi.org/10.1103/PhysRevD.62.084003
http://dx.doi.org/10.1103/PhysRevD.77.124014
http://dx.doi.org/10.1103/PhysRevD.77.124014
http://dx.doi.org/10.1103/PhysRevD.79.083004
http://dx.doi.org/10.1103/PhysRevD.79.083004
http://dx.doi.org/10.1103/PhysRevD.67.103009
http://dx.doi.org/10.1103/PhysRevD.73.043002
http://dx.doi.org/10.1007/s10714-007-0407-5
http://dx.doi.org/10.1103/PhysRevD.75.023006
http://dx.doi.org/10.1103/PhysRevD.75.023006
http://dx.doi.org/10.1103/PhysRevD.80.024036
http://dx.doi.org/10.1103/PhysRevD.80.024036
http://dx.doi.org/10.1103/PhysRevD.81.124017
http://dx.doi.org/10.1103/PhysRevD.81.124017
http://dx.doi.org/10.1088/0264-9381/28/8/085008
http://dx.doi.org/10.1088/0264-9381/28/8/085008
http://dx.doi.org/10.1088/0264-9381/23/22/002
http://dx.doi.org/10.1088/0264-9381/23/22/002
http://dx.doi.org/10.1103/PhysRevD.65.103004
http://dx.doi.org/10.1103/PhysRevD.65.103004
http://dx.doi.org/10.1103/PhysRevD.71.083010
http://dx.doi.org/10.1103/PhysRevD.71.064004
http://dx.doi.org/10.1142/S0218271805006948
http://dx.doi.org/10.1103/PhysRevD.73.104032
http://dx.doi.org/10.1088/0264-9381/25/4/045003
http://dx.doi.org/10.1088/0264-9381/25/4/045003
http://dx.doi.org/10.1103/PhysRevD.81.123011
http://dx.doi.org/10.1103/PhysRevD.82.064009
http://dx.doi.org/10.1103/PhysRevD.86.083009
http://dx.doi.org/10.1103/PhysRevD.67.103006
http://dx.doi.org/10.1393/ncb/i2004-10121-y
http://dx.doi.org/10.1393/ncb/i2004-10121-y
http://dx.doi.org/10.1103/PhysRevD.72.083003
http://dx.doi.org/10.1103/PhysRevD.74.063001
http://dx.doi.org/10.1088/0264-9381/28/8/085021
http://dx.doi.org/10.1103/PhysRevD.76.083008
http://dx.doi.org/10.1103/PhysRevD.76.083008
http://dx.doi.org/10.1086/312423
http://dx.doi.org/10.1086/312423
http://dx.doi.org/10.1088/0264-9381/17/1/309
http://dx.doi.org/10.1086/422403
http://dx.doi.org/10.1103/PhysRevD.78.044007
http://dx.doi.org/10.1103/PhysRevD.79.043002
http://dx.doi.org/10.1103/PhysRevD.80.024042
http://dx.doi.org/10.1103/PhysRevD.81.124045
http://dx.doi.org/10.1103/PhysRevD.81.124045
http://dx.doi.org/10.1088/0264-9381/27/20/205006
http://dx.doi.org/10.1088/0264-9381/27/20/205006
http://dx.doi.org/10.1016/j.physletb.2012.03.068
http://dx.doi.org/10.1103/PhysRevD.86.103001
http://dx.doi.org/10.1103/PhysRevD.86.103001
http://dx.doi.org/10.1103/PhysRevD.87.044057
http://dx.doi.org/10.1103/PhysRevD.80.044023
http://dx.doi.org/10.1103/PhysRevD.80.044023
http://dx.doi.org/10.1142/S0218271809014881
http://dx.doi.org/10.1142/S0218271809014881
http://dx.doi.org/10.1103/PhysRevD.85.064019
http://dx.doi.org/10.1103/PhysRevD.85.064019
http://dx.doi.org/10.1016/j.newast.2005.02.007
http://dx.doi.org/10.1051/0004-6361:20053432
http://dx.doi.org/10.1051/0004-6361:20053432
http://dx.doi.org/10.1007/s10714-010-1122-1
http://dx.doi.org/10.1007/s10714-010-1122-1
http://dx.doi.org/10.1007/s10714-010-0988-2
http://arXiv.org/abs/1212.4535
http://dx.doi.org/10.1086/300499
http://dx.doi.org/10.1086/307221
http://dx.doi.org/10.1007/s10509-012-1181-8
http://dx.doi.org/10.1103/PhysRevLett.96.251101
http://dx.doi.org/10.1103/PhysRevLett.96.251101
http://dx.doi.org/10.1103/PhysRevD.86.024028
http://dx.doi.org/10.1103/PhysRevD.86.024028
http://dx.doi.org/10.1007/s10714-007-0430-6
http://dx.doi.org/10.1007/s10714-007-0430-6
http://dx.doi.org/10.1103/PhysRevLett.108.081103
http://dx.doi.org/10.1103/PhysRevLett.108.081103
http://dx.doi.org/10.1016/0550-3213(88)90006-5
http://dx.doi.org/10.1016/0550-3213(88)90006-5
http://dx.doi.org/10.1103/PhysRevD.43.3140
http://dx.doi.org/10.1103/PhysRevD.87.063005
http://dx.doi.org/10.1103/PhysRevD.87.063005
http://dx.doi.org/10.1063/1.1666161
http://dx.doi.org/10.1103/PhysRevD.78.103005
http://dx.doi.org/10.1103/PhysRevD.72.104006
http://dx.doi.org/10.1103/PhysRevD.72.104006


[30] P. Schneider, J. Ehlers, and E. E. Falco, Gravitational
Lenses (Springer-Verlag, Berlin, 1992).

[31] V. Bozza and L. Mancini, Gen. Relativ. Gravit. 36, 435
(2004).

[32] S. Guillessen, F. Eisenhauer, S. Trippe, T. Alexander, R.
Genzel, F. Martins, and T. Ott, Astrophys. J. 692, 1075
(2009).

[33] http://www.asc.rssi.ru/radioastron.
[34] http://eventhorizontelescope.org.
[35] http://bhi.gsfc.nasa.gov.
[36] M. R. Morris, L. Meyer, and A.M. Ghez, Res. Astron.

Astrophys. 12, 995 (2012).
[37] C. Ding, C. Liu, Y. Xiao, and L. Jiang, Phys. Rev. D 88,

104007 (2013).

REGULAR PHANTOM BLACK HOLE GRAVITATIONAL LENSING PHYSICAL REVIEW D 88, 103007 (2013)

103007-9

http://dx.doi.org/10.1023/B:GERG.0000010486.58026.4f
http://dx.doi.org/10.1023/B:GERG.0000010486.58026.4f
http://dx.doi.org/10.1088/0004-637X/692/2/1075
http://dx.doi.org/10.1088/0004-637X/692/2/1075
http://www.asc.rssi.ru/radioastron
http://eventhorizontelescope.org
http://bhi.gsfc.nasa.gov
http://dx.doi.org/10.1088/1674-4527/12/8/007
http://dx.doi.org/10.1088/1674-4527/12/8/007
http://dx.doi.org/10.1103/PhysRevD.88.104007
http://dx.doi.org/10.1103/PhysRevD.88.104007

