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The behaviour of masonry material subjected to different in-plane loading combination is studied in this
work. The masonry is considered as a periodic composite material composed by a regular distribution of
brick and mortar and it is analyzed using a homogenization technique. The mechanical properties of the
masonry, as an orthotropic homogeneous material, depend on the geometrical and mechanical properties
of the components based on the study of the equilibrium and compatibility of a basic cell. The masonry is
a frictional material and its behaviour depends on the loading direction, for these reasons, a unilateral
damage model is chosen for the analysis. This model describes the behaviour of brittle materials sub-
jected to tension–compression cyclic loads based on the introduction of two damage variables and it
assumes that the damage is due to the beginning and growth of cracks only in the mortar joints. It is con-
sidered that the bricks have a linear elastic constitutive relationship. Numerical applications are per-
formed with a nonlinear finite element code in order to test the proposed procedure by comparing the
results with those available in the literature and also with experimental data.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Because of the heterogeneity of most building and industrial
materials (mainly materials of two or more components), it is nec-
essary to use methods and techniques to represent and reproduce
the composite behaviour in both linear and nonlinear fields, either
through micromodels or macromodels where the composite is
considered as an homogeneous anisotropic material with average
properties. An interesting alternative for the treatment of compos-
ite materials and, in particular, to analyze the behaviour of ma-
sonry is the use of homogenization techniques, which can be
employed in those materials having a periodic configuration and
being possible to work in two scales: a microscopic scale, which
the mechanical and geometrical properties of the component
materials are specified and a macroscopic scale where the material
is treated as homogeneous [1]. The masonry is regarded as a com-
posite material whose components are the bricks and the mortar
used in the vertical and horizontal joints forming a periodic config-
uration. Thereby, it is possible, by homogenization techniques, to
derive the overall behaviour of the masonry structure from the
behaviour of the component materials and even adopting different
constitutive models for each one.
ll rights reserved.
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Many authors have studied the structural behaviour of
masonry. The first formulations of numerical models are based
on various simplifications. These may include consideration of
the masonry and its components as continuous, assuming isotropic
materials and acting in the linear elastic range. Other works raise
the analysis of masonry by combining structural elements of sim-
ple and known behaviours [2]. However, this does not always ade-
quately reflect the correct and complex structural mechanism that
characterizes the behaviour of the masonry.

Over the years, various models and techniques based on theo-
retical analysis and various levels of detail have been imple-
mented. Among these models is, for example, the finite element
method by Page [3].

This methodology allows the masonry to be modelled on a micro-
scale, discretizing its components and analyzing in detail the local
behaviour [4] or on a macroscale where it can be treated as a com-
posite material and analyze its global behaviour. At the microscale,
the bricks and the joints are represented by continuous elements,
while its interface is usually represented by discrete elements. Par-
ticularly, in this work, a previously developed ad hoc homogeniza-
tion proposed by Lopez et al. [5] is implemented together with the
unilateral damage criteria published by Faria et al. [6].
2. Homogenization

An approach whose effectiveness has been demonstrated by
several authors such as Lopez et al. [5], Anthoine [7], and Sacco
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Fig. 3. Deformation modes. (a) Mode 1. (b) Mode 2. (c) Mode 3.
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[8], is to work with a combination of both scales in which there is a
feedback. A periodic unit cell is identified so that its repetition gen-
erates entire masonry panel and their behaviour is analyzed as an
individual problem in such a way to know the average values of the
masonry as a single homogeneous material based on the actual
geometrical and mechanical characteristics of constituent materi-
als. The use of homogenization techniques saves computational
work generated by the use of complex meshes, when the bricks
and joints are discretized. Gabor et al. [9] presented different finite
element modelling approaches for the analysis of the behaviour of
unreinforced and fibre reinforced polymer strengthened masonry.
In order to overcome the disadvantages of a detailed discretized
modelling a homogenization of the brick/mortar assemblage was
performed, obtaining a good correlation between experimental
and numerical curves. On the other hand, a periodic unit cell could
be used as well to perform a limit analyze for the prediction of col-
lapse loads and homogenized failure mechanisms, such as Milani
[10] and Milani et al. [11,12] modelling bricks, joints, filling resin
and glass fibre reinforced polymer rods for out-of-plane loads.

2.1. Unit cells

The periodic structure of the masonry allows the application of
homegenization techniques. It is necessary to find a unit cell or rep-
resentative cell, so if this is repeated in the full dimension of the
structure the original one is obtained. As it is considered that the
structural element has width and height greater than the thickness,
it is possible to consider a plane stress state when a load is applied in
the plane of the masonry. When a study in the perpendicular direc-
tion to the plane is necessary, a three dimensional cell or a represen-
tative volume should be selected. It is possible to assign many types
of cells, a viable and among the simplest would be a brick completely
surrounded by mortar; the analyzed cell is shown in Fig. 1.

2.2. Homogeneous constitutive tensor

Based on the homogenization technique proposed by Lopez et
al. [5], the same deformation modes are employed to approach
the compatibility and equilibrium of a unit cell shown in Fig. 2.
The geometrical and mechanical properties of the components
are those of the articles by Page [3] and Anthoine [7].

The different modes of deformation are depicted in Fig. 3.
Mode 1 corresponds to tension or compression stresses in x

direction, as shown in Fig. 3a. The equilibrium equation is given by:

rxhC ¼ rxBhB þ rxM2hM2 ¼ rxM1hM1 þ rxM2hM2

rx ¼ rxB
hB

hC
þ rxM2

hM2

hC

rx ¼ rxM1
hM1

hC
þ rxM2

hM2

hC

ð1Þ

From Fig. 2:

rxB � rxM1 ð2Þ
Brick

Mortar

Fig. 1. Periodic structure of the masonry. Analyzed cell.
The compatibility equation can be written in an incremental
way as follows

_exC ¼ _exM2
LM2

LC
¼ _exB

LB

LC
þ _exM1

LM1

LC
ð3Þ

The constitutive equation of the components takes into account
the degradation of constitutive tensor. The masonry is a frictional
material and for this reason, a damage model is chosen to repre-
sent its behaviour. It is possible to take into account the stiffness
degradation due to the initiation and propagation of cracks that oc-
curs mainly in the mortar. The model expression is:

_rxi ¼ ExiðjÞð _exi � _ep
xiÞ ð4Þ

In Eq. (4) the Young’s modulus depends on the damage param-
eter j due to the change of the elastic modulus when the elastic
limit is exceeded.
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From the compatibility, equilibrium and constitutive equations
is possible the determination of the stresses in the components
materials as a function of the global cell stress and of its mechan-
ical and geometrical parameters. Using Eqs. (1)–(3) the following
expressions are obtained:

_rxB � _rxM1 ¼ _rxAxB
hCLM2

ExM2hM2
¼ _rxBxB ð5Þ

_rxM2 ¼ _rxBxM2 ð6Þ

with:

BxB ¼ AxB
hCLM2

ExM2hM2
; AxB ¼

1
LB
ExB
þ LM1

ExM1
þ hBLM2

ExM2hM2

� � ; BxM2 ¼
hC � BxBhB

hM2

Finally, employing the compatibility Eq. (3), the constitutive Eq.
(4) and considering rxB � rxM1 (Eq. (2)), the cell strain can be writ-
ten as:

_exC ¼
_rxB

ExB

LB

LC
þ

_rxB

ExM1

LM1

LC
¼ _rxB

LB

ExBLC
þ LM1

ExM1LC

� �

with:

_rxB ¼ _rxBxB; Dx ¼
LB

ExBLC
þ LM1

ExM1LC
! _exC ¼ _rxBxBDx ð7Þ

Then, the homogenized value in x direction for the constitutive
tensor can be derived from Eq. (7) as:

ExC ¼
1

BxBDx
ð8Þ

Following the same procedure for the remains modes (mode 2
and mode 3) the stresses corresponding to each component and
the constitutive homogeneous tensor are give by:

_ryM1 ¼ _ryByM1 ð9Þ

_ryB ¼ _ryByB ð10Þ

_ryM2 ¼ _ry ð11Þ

with,

ByM1 ¼ AyM1
LChB

EyBLB
; AyM1 ¼

1
LM1hB
EyM1LB

þ hM1
EyM1

� � ; ByB ¼
LC � ByM1LM1

LB

From compatibility equations and equilibrium equation for
mode 2:

_eyC ¼ _ry
hM2

hCEyM2
þ ByBhB

EyBhC

� �
ð12Þ

Finally, from Eq. (12):

EyC ¼
1

hM2
hC EyM2

þ ByBhB

EyBhC

ð13Þ

Meanwhile from the representation of mode 3:

_sB ¼ _sAxyB ð14Þ

_sM1 ¼ _sAxyM1 ð15Þ

_sM2 ¼ _s ð16Þ

with,

AxyB ¼
GxyBLC

GxyM1LM1 þ GxyBLB
; AxyM1 ¼

LC

LM1
� AxyB

LB

LM1

� �

From compatibility equations and equilibrium equation for
mode 3:
_cxyC ¼ _s hM2

GxyM2hC
þ AxyBhB

GxyBhC

� �
ð17Þ

Finally, from Eq. (17):

GxyC ¼
1

hM2
GxyM2hC

þ AxyBhB

GxyBhC

ð18Þ

Also, it is possible to analyze a mode 4, which corresponds to
out of plane strain. However, in this work only cases of plane stres-
ses are considered and thereby the strain in xz plane is limited to
that produced by Poisson effect. Obviously, the strain has a discon-
tinuity in the zone where the brick is supported by the mortar due
to the strong difference between their properties. The homoge-
nized strain ezC of the cell in z direction is considered as the envel-
opment of the components deformation curves (Fig. 4).

Taking as starting point the expression of the Secant Constitu-
tive Matrix in the case of orthotropy, we can obtain deformation
ezC as a function of the deformation on the other directions.

ezC ¼
ðmxzC þ mxyCmyzCÞexC þ ðmyzC þ mxzCmyxCÞeyC

ð�1þ mxyCmyxCÞ
ð19Þ
3. Implemented models

As mentioned, the use of homogenization for the resolution of
structural problems, through the interaction of the microscale
and macro-scale and feedback, allows separating the behaviour
of the component materials each one governed by different consti-
tutive models.

For the bricks a linear elastic constitutive law is considered. The
stress–strain relationship can be written as:

rB ¼ CBeB ð20Þ

with

rB ¼ ðrxB;ryB; sxyBÞT and eB ¼ ðexB; eyB; cxyBÞ
T

To characterize the behaviour of masonry as a frictional mate-
rial and to distinguish the behaviour under compression and
tension loads to the mortar a unilateral damage model is imple-
mented [6]. The most important feature of this model is the fact
that damage is irreversible but can be active or not depending on
load conditions. The mortar microcracks can occur due to tension
loads, but them can be ‘‘sealed’’ if the load direction changes. Thus,
the material can regain its initial stiffness in this case the damage is
present but is considered inactive.

For the description of the model is necessary to define two sca-
lar damage variables, d+ and d�, for tension and compression stres-
ses respectively. The effective stress is split into a positive part rþij
and a negative r�ij , being:
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�rij ¼ �rþij þ �r�ij ð21Þ

where:

�rþkl ¼
X

i

h�riipi
kpi

l ð22Þ

with ri: main stresses, pi
k: principal directions, h�i: ramp function.

The Helmholtz free energy is given by:

Wðe;dþ;d�Þ ¼ ð1� dþÞWþ0 ðeÞ þ ð1� d�ÞW�0 ðeÞ ð23Þ

where Wþ0 and W�0 are given by:

Wþ0 ¼
1
2

�rþij Co
ijkl
�1 �rkl ¼

1
2

�rþij eij; W�0 ¼
1
2

�r�ij Co
ijkl
�1 �rkl ¼

1
2

�r�ij eij
3.1. Damage criterion

The damage criterion used in this work is that from Faria et al.
[6] who considered it similar to scalar damage criteria by Simo and
Ju [13], but distinct in each direction, so an equivalent tension
stress and compressive stress are defined equivalent and that is
briefly described here:

�sþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþij C0

ijklrþkl

q
ð24Þ

�s� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3
p
ðKr�oct þ �s�octÞ

q
ð25Þ

where K is a material property, r�oct and �s�oct are the octahedral nor-
mal stress and octahedral shear stress respectively.

Therefore, the damage criteria are defined as:

gþð�sþ; rþÞ ¼ �sþ � rþ 6 0 ð26Þ

g�ð�s�; r�Þ ¼ �s� � r� 6 0

where r� and r+ are thresholds of damage and r�o and rþ0 are the ini-
tial parameters of damage:

rþ0 ¼
�rþffiffiffiffiffi
E0
p ; r�0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
p

3
k�

ffiffiffi
2
p� �

�r�

s
ð27Þ

The evolution laws of internal variable d+ is given by

_dþ ¼ _#þ
@GþðrþÞ
@rþ

ð28Þ

_rþ ¼ _#þðP 0Þ
Stress-Strain in
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where G+ is an arbitrary monotonic increasing function and #+ is the
damage parameter of consistency. The evolution law of d� is the
same as the previous for the other direction but with G� and #�

respectively.
The conditions of loading and unloading of Kuhn–Tucker are ex-

pressed as:

_#þ P 0; gþ 6 0; _#þgþ ¼ 0 ð29Þ

For a given generic time is

rþ ¼max rþ0 ;max
s2½o;t�
ð�sþs Þ

� �
and r� ¼max r�0 ;max

s2½o;t�
ð�s�s Þ

� �

The rule of evolution of variables d+ and d� have been derived
using as a basis previous works. In particular for d+, the adopted
law is that from Oliver et al. [14]:

dþ ¼ GþðrþÞ ¼ 1� rþ0
rþ

e
Aþ 1�rþ

rþ
0

� �
ð30Þ

Aþ ¼ Gf E
lCHrþ2

0

� 1
2

 !�1

P 0

where Gf is the tensile fracture energy and lCH is the ‘‘characteristic
length’’, depending on the size of the element adopted for the spa-
tial discretization (Oliver [15]) .

For the variable d�, the law of evolution is adopted from Mazars
and Pijaudier-Cabot [16]:

d� ¼ G�ðr�Þ ¼ 1� r�0
r�
ð1� A�Þ � A�e

B� 1�r�
r�o

� �
ð31Þ

where A� and B- are obtained by experimental uniaxial tests.
Finally, the Cauchy stress tensor results:

rij ¼ ð1� dþÞrþ þ ð1� d�Þr� ð32Þ
4. Computational implementation

The described model has been implemented in a global finite
element code (FEM) PLCD4.02 [17]. This way, it is possible to solve
the individual problem in each scale and the feedback between
them. In the microscale must be differentiated the constitutive
model for each component and the macroscale which solves the
composite structure as a single homogeneous material whose
mechanical properties are updated at each load step according to
 Tension

.00E-04 2.50E-04 3.00E-04 3.50E-04 ε

Mortar
Composite
Brick

osite and its components.
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what happened with the brick and mortar, if the latter exceeds, or
not, its elastic limit.

5. Numerical results

To show the behaviour of the composite and its individual com-
ponents, a simple uniaxial test with cyclic loads is performed. The
results depict the typical performances of the constitutive model
used for the mortar during tension–compression cyclic loads. A
complex loading scheme has been imposed, comprising an incur-
sion into tensile regimen up to the initial elastic threshold, and
leading to damage thereafter. Loading is then reversed, producing
Fig. 6. Behaviour of the mortar under
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Fig. 7. Comparisons of stress–strain cur
a return to the initial state and a subsequent incursion into com-
pression up to its initial elastic threshold, also the stiffness is
recovered. From there, progressive damage deformation is ob-
served; then a new load reversal is enforced. This unilateral effect
corresponds to a peculiar feature of brittle materials behaviour,
fully captured by the proposed model, owing to its ‘‘memory’’ pro-
ficiency. The curve in Fig. 5, also shows the composite stiffness
degradation due to the mortar behaviour, which is showed in
Fig. 6 for the complete tension–compression cyclic load.

To analyze the behaviour of the masonry with the implemented
model in the finite element code, the following brick properties are
used:
tension–compression cyclic load.

2 0.0025 0.003 0.0035 0.004

ε ε 

Composite (Page Experimental) [3]
Mortar (Page) [3]
Brick (Page) [3]
Composite (Present Model)
Mortar (Present Model)
Brick (Present Model)

ves for composite and components.
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Ex = 5900 MPa, Ey = 7550 MPa, Ez = 5900 MPa, Poisson coeffi-
cient m = 0.167. Meanwhile, for the mortar an isotropic constitutive
tensor is chosen, with: E = 1200 MPa and Poisson coefficient
m = 0.21.

A masonry panel, studied experimentally by Page [3] is chosen
for comparison purposes. This test is one of the most commonly
used in the calibration of numerical models of masonry. Masonry
panels of 50 � 24 � 5.4 cm3 were tested in uniaxial compression
with load applied normal to the bed joint, stress–strain values were
measured on a central gage length for the composite, and the curves
for the bricks and mortar has been adopted by Page in an analytical
way. The marked difference in stiffness between the composites is
apparent, but the mortar does not have a limit. In the present mod-
el, the mortar reaches a limit value �rM

C ¼ 0:32 MPa and has no
capacity to take more stress. The obtained results and the compar-
isons with Page [3] are shown in Fig. 7.

Luccioni and Martin [18] also used the Page test for calibrating
their model, which are also compared with the results of the model
proposed here (Fig. 8).

The panel is considered under a compression load parallel and
perpendicular to the mortar joint and the resulting curves force-
vertical and horizontal displacement are plotted in Fig. 8. In the
case of the horizontal compression load, since no experimental
data by Page was available, the author made a general and a fine
mortar-brick discretization. A very close agreement is found as
the result of the comparison.
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Fig. 8. Force-vertical (a) and horizontal (b) displacement for a masonry panel.
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A bending test on a panel did by Page [3] has been also
simulated with a mesh of 100 four-node elements. The testing
arrangement is shown in Fig. 9, and the mechanical properties of
the materials are the same as before and fracture energies
GM

f ¼ 0:16 kg=cm and GB
f ¼ 6 kg=cm have been assumed for the
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mortar and the bricks respectively. Vertical strain on level A–A was
measured, then vertical stress distribution along A–A was deter-
mined. The comparison was performed for the loads of 20 and
60 kN, and the results obtained are given in Figs. 10 and 11. Models
by Lourenço [19] and Lopez [5] were compared as well.
6. Conclusions

A methodology using homogenization techniques to solve ma-
sonry problems subjected to in-plane loadings has been developed
in this work. The masonry is considered as a homogeneous mate-
rial due to its periodic structure made up of mortar and bricks with
different mechanical and geometrical characteristics. The ad hoc
homogenized model allows a simplified treatment of the masonry.
The usefulness of this type of homogenization is the capability to
save on computational time and to simplify the mesh generation
process when the model is implemented in a global finite element
code. The number of elements needed is much smaller than in
macromodels.

A linear elastic constitutive law is considered for the bricks,
while the unilateral damage model is implemented for the mortar
in order to describe the behaviour of brittle materials subjected to
alternating tension–compression cyclic loads, based on the intro-
duction of two scalar damage variables for tension and compres-
sion stresses respectively.

The heterogeneity in the composition of the masonry along
with the arrangement of the elements (bricks and joints) lead to
a combination that is strongly anisotropic. Orthotropic and isotro-
pic constitutive tensors were used for the bricks and the mortar
respectively to reproduce this anisotropic behaviour by the consti-
tution of an orthotropic constitutive tensor for the masonry by
means of the homogenization techniques.

Moreover, the procedure can be extended including further
nonlinear effects of the masonry constituents, such as the limited
compressive strength and the tensile failure of the bricks and to
the case of out-of-plane behaviour of masonry panels.
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