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REVIEW

Detection and treatment of Trypanosoma cruzi: a patent review (2011-2015)
Juan B. Rodriguez, Bruno N. Falcone and Sergio H. Szajnman

Departamento de Química Orgánica and UMYMFOR (CONICET–FCEyN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires,
Buenos Aires, Argentina

ABSTRACT
Introduction: Trypanosoma cruzi is the etiologic agent of American trypanosomiasis (Chagas disease),
which is one of the important parasitic diseases worldwide. The number of infected people with T. cruzi
diminished from 18 million in 1991 to 6 million in 2010, but it is still the most prevalent parasitic disease
in the Americas. The existing chemotherapy is still deficient and based on two drugs: nifurtimox and
benznidazole, which are not FDA-approved in the United States.
Areas covered: This review covers the current and future directions of Chagas disease chemotherapy
based on drugs that interfere with relevant metabolic pathways. This article also illustrates the
challenges of diagnosis, which in recent infections, is only detected when the parasitemia is high
(direct detection); whereas, in the chronic phase is reached after multiple serological tests.
Expert opinion: The current chemotherapy is associated with long term treatments and severe side
effects. Nifurtimox and benznidazole are able to cure at least 50% of recent infections. Nevertheless,
they suffer from major drawbacks: selective drug sensitivity on different T. cruzi strains and serious side
effects. The aim of this review is focused on presenting an up-to-date status of the chemotherapy and
diagnosis.
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1. Introduction

American trypanosomiasis or Chagas disease, first described
by Carlos Chagas, is a chronic parasitosis caused by the
kinetoplastid parasite Trypanosoma cruzi [1,2]. As a conse-
quence of public policy on the control of Chagas diseases
vectors, the number of infected people with T. cruzi infection
declined from 18 million in 1991 to 6 million in 2010, yet,
Chagas disease is still the most prevalent parasitic disease in
the American continent [3]. Like other trypanosomatids, T.
cruzi has a complex life cycle that involves blood-sucking
activity between reduviid insects and mammals [4]. The para-
site proliferates in the insect gut as an epimastigote form and
is spread as a nondividing metacyclic trypomastigote from
the insect feces by contamination of intact mucosa or
wounds produced by the blood-sucking activity of the vec-
tor. In the mammalian host, T. cruzi multiplies intracellularly
in the amastigote form and is subsequently released into the
bloodstream as a nondividing trypomastigote (Figure 1) [4].
Transmission of Chagas disease could also occur through the
placenta or by blood transfusion. This latter mechanism is
responsible for the occurrence of Chagas disease in areas
where this disease is not endemic due to increasing travel
and immigration of infected people from other areas. As the
amastigote form is the dividing clinically more relevant form
of T. cruzi, this form is more recommended for biological
evaluation of new compounds against different discrete typ-
ing units of the parasite.

At the present time, there are no vaccines to prevent infection
of T. cruzi [5]. The current chemotherapy relies on two empirically
discovered drugs: nifurtimox (Lampit®, Bayer – El Salvador, 1) and
benznidazole (Abarax®, Elea – Argentina, 2), which have been
shown to cure at least 50% of recent infections [1,6]. Both drugs
produce serious side effects including vomiting, anorexia, per-
ipheral neuropathy, and allergic dermopathy, and as a conse-
quence, are not FDA-approved drugs. In the United States, they
are available only from CDC under investigational protocols.
Since 2012, benznidazole is being produced by Laboratorios
ELEA and Maprimed, Argentina, and it is commercialized as
Abarax® [7]. Both compounds are not suitable for pregnant
women [8]. Their toxic effects can be attributed to their corre-
sponding mode of action by oxidative stress, most effective in T.
cruzi cells thanmammalian cells [9,10]. Lastly, the main weakness
of these two drugs is their modest antiparasitic activity in the
chronic phase of the disease (Figure 2).

Other drugs available for the treatment of Chagas disease
are itraconazole (3) and allopurinol (4). However, none of
these compounds offers satisfactory treatments in the chronic
and acute stages of the disease [11,12].

The dye gentian violet (5) is the only currently available
chemoprophylactic agent to prevent blood transmission of
Chagas disease. Unfortunately, this drug gives a purple color
to the blood and stains the skin. In addition, safety concerns
have been raised, as it was shown to be carcinogenic in animal
models (Figure 2) [13].
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The growing knowledge of the biochemistry and physiol-
ogy of T. cruzi has led to the finding of new and valid
targets for drug design. Based on unique aspects of para-
sites’ biochemistry and physiology of the parasite, and tak-
ing into account the metabolic differences between the
mammalian host and the parasite, we have selected the
more promising molecular targets for drug design. At the
present time, several metabolic pathways are being tar-
geted such as sterol biosynthesis [14–16], pyrophosphate
metabolism [17,18], trypanothione biosynthesis [19],
cysteine proteinases [20], metacaspases [21], metallopepti-
dases [22], protein prenyltransferases [23], and others
[24–29].

2. Isoprenoid biosynthetic pathway

Isoprenoids are essential metabolites for the cellular machinery
of all organisms because of their roles in a variety of biological
processes. Certainly, this biosynthetic pathway in T. cruzi con-
tains a number of enzymes that are involved in the synthesis of
sterols [30], in farnesyl diphosphate formation [31], and in
protein prenylation [32]. These enzymes can be considered as
relevant molecular targets against trypanosomatids.

Sterol biosynthesis in parasites differs from that in mam-
malian hosts, as it leads to ergosterol rather than cholesterol,
the main sterol present in the mammals. Depletion of endo-
genous sterols such as ergosterol or 24-ethylcholesta-5,7,22-
trien-3β-ol elicits inhibition of multiplication of T. cruzi [14–16].
The isoprenoid biosynthetic pathway is illustrated in Scheme 1
[14–16]. The red bars crossing the arrows indicate the avail-
ability of inhibitors for each particular enzyme.

3. Inhibitors of Δ24(25)-sterol methyltransferase

Azasterols are known inhibitors of Δ24(25)-sterol methyltrans-
ferase. This type of drugs exhibited selective antiproliferative
effects against trypanosomatid parasites [33,34]. For example,
22,26-azasterol (6) is a potent inhibitor of the enzymatic activ-
ity of Δ24(25)-sterol methyltransferase. This enzymatic activity is
associated with an efficient antiproliferative action against T.
cruzi cells both in vitro and in vivo [33,34]. In addition, the
synthetic compound 24(R,S),25-epiminolanosterol (7) [35] has
also exhibited growth inhibitory effect against T. cruzi cells
producing ultrastructural alterations as evidenced by the
appearance of electron-dense granules, mitochondrial swel-
ling, and vacuolization leading to cell lysis [36]. The use of
this compound at lower concentrations but in combination
with ketoconazole produces a synergic antiproliferative effect

Article highlights

● Chagas disease is a parasitic illness produced by Trypanosoma cruzi,
endemic from southern United States to southern South America.

● The current treatment for Chagas disease involves the use of two
empirically discovered drugs: nifurtimox and benznidazole, which
present severe side effects and are not FDA approved.

● The development of putative drugs exploits the metabolic differences
between the parasite and the host.

● Drugs have been developed targeting several metabolic pathways,
with many key enzymes present: Δ24(25)-sterol methyltransferase,
14α-demethylase (CYP51), squalene epoxidase, squalene synthase,
3-hydroxy-3-methyl-glutaryl-coenzyme A reductase, farnesyl pyro-
phosphate synthase, cysteine proteinases, trypanothione biosynth-
esis, Fe-superoxide dismutase, protein kinases and trans-sialidase.

● Some drugs have non-identified targets such as those producing
oxygen active species, analogues of ML341 and lychnopholide.

● Currently, only two drugs have progressed into clinical trials:
posaconazole and the prodrug of ravuconazole E1224.

● Patents filed regarding the diagnosis of the disease utilize biochem-
ical tools such as antigenic polypeptides, oligonucleotide sequences
and the detection of T. cruzi antibodies.
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Figure 1. Life cycle of Trypanosoma cruzi.
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against T. cruzi resulting in the same ultrastructural alterations
(Figure 3).

4. Inhibitors of the 14α-demethylase (CYP51)
activity

This target offers great potential, as it takes advantage of
drugs currently in use in the clinic. As the sterol biosynthesis
pathway in fungi is similar to the corresponding one in trypa-
nosomatids, drugs currently used as broad-spectrum antifun-
gals can be repurposed as antiparasitic agents such as
imidazole and triazole derivatives [37]. T. cruzi, as well as
fungi and yeasts, requires specific endogenous sterols for cell
viability and growth. Most of the clinically employed sterol
biosynthesis inhibitors are not able to induce complete para-
sitological cure in Chagas disease and animal models [14,38],
but some interesting examples are very efficient as will be
discussed later. A relevant broad-spectrum antifungal agent is
ketoconazole (8), an imidazole derivative that behaves as a
potent inhibitor of T. cruzi proliferation targeting 14α-
demethylase [39].

The R–(+)-enantiomer of bis-triazole derivative ICI 195,739
(9) [40], known as D0870, is an interesting example of an
antifungal agent to control T. cruzi proliferation. This compound
is able to achieve complete parasitological cure in murine
models of the acute and chronic stages of this disease [37].

Posaconazole (10) is a triazole derivative that targets 24α-
demethylase [14,41], exhibiting a broad-spectrum antifungal
activity and an extremely potent inhibitory action against T.
cruzi proliferation by blocking ergosterol biosynthesis [42].
This drug shows potent antiparasitic activity against a variety
of T. cruzi strains resistant to benznidazole, nifurtimox, and
ketoconazole [42] (Figure 4).

Ravuconazole (11) is another potent and broad-spectrum
antifungal agent possessing a potent inhibitory action against
T. cruzi proliferation. This drug blocks ergosterol biosynthesis
at the level of cytochrome P-450-dependent sterol C14α
demethylase [14,43]. Since 2012, posaconazole and ravucona-
zole are in clinical trials in Spain, Bolivia, and Argentina [14,44].
A very interesting prodrug of ravuconazole is the phospho-
nooxymethyl derivative 12 with improved water solubility
[45]. This prodrug is expected to be hydrolyzed by an alkaline

phosphatase to produce the corresponding hemiacetal deri-
vative, which is a very labile derivative that spontaneously
hydrolyzes to afford free ravuconazole [45]. Of particular inter-
est is the monoester of lysine of 12 (E1224), which has excel-
lent prospects as a promising candidate for the potential
treatment of Chagas disease [14,46]. This drug is administered
once a week orally and has good absorption and tolerability
profiles besides being reasonably inexpensive to manufacture.
An encapsulated formulation of this compound has been
recently patented [47]. TAK-187 (13) is another antifungal
and a potent growth inhibitor of T. cruzi amastigotes, inhibit-
ing the parasite CYP51 at nanomolar concentrations [48].
Recently, simpler and cheaper compounds compared to posa-
conazole chemical structure have been envisioned giving rise
to potent inhibitors of T. cruzi proliferation such as 14 acting
at the very low nanomolar range [49]. Further optimization
and simplification of this structure lead to 15–17, which are
extremely efficient growth inhibitors having EC50 values at the
subnanomolar level [50].

The antitumor agent tipifarnib (18) is a potent growth inhi-
bitor of intracellular T. cruzi [51]. This cellular activity is asso-
ciated with an inhibition of the enzymatic activity of CYP51 [51].
The tipifarnib analog 19 is more potent than 18 against amas-
tigotes and shows a good level of protection in in vivo mouse
models but to a lesser extent than posaconazole [52].

The imidazole-containing compounds 20 and 21, known as
VNI and VNF, respectively, are potent growth inhibitors of T.
cruzi targeting CYP51 [53]. Particularly, 20 is able to cure both
acute and chronic experimental Chagas disease models [54].
Closely related analogs have been recently developed, and
structural studies have been conducted in the search of an
improved molecular recognition [55]. In this context, 22 is a
representative member of imidazole-containing derivatives,
which exhibits a very potent EC50 value against amastigotes
(ED50 = 1.2 nM) [55].

In summary, the sterol 14α demethylase constitutes a valid
target for drug design in Chagas disease chemotherapy.
Therefore, posaconazole and ravuconazole are promising candi-
dates, and they are currently in clinical trials for Chagas disease
[56]. One limitation of posaconazole is its extremely high cost that
might restrict its use in areas where Chagas disease is ende-
mic [56].
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5. Inhibitors of squalene epoxidase

Terbinafine (23) is a broad-spectrum antifungal agent that
exhibits potent inhibitory action against amastigotes [57] tar-
geting squalene epoxidase [58]. Although terbinafine is less
effective than ketoconazole, it has a significant synergistic
effect, as these drugs act at different points of the ergosterol
biosynthesis [57]. Based on the nifurtimox and terbinafine
chemical structures, 5-nitrofuranes such as 24 has been con-
ceived [57], which behaves as a potent inhibitor of amasti-
gotes at the submicromolar range acting with a dual
mechanism of action: inhibition of squalene epoxidase and
oxidative stress [59] (Figure 5).

6. Squalene synthase

Squalene synthase (SQS) is a valid target against trypanoso-
matids [60]. SQS catalyzes the first committed step in sterol
biosynthesis: a reductive dimerization of two molecules of
farnesyl pyrophosphate to yield squalene. The human coun-
terpart of SQS has been studied as a cholesterol-lowering
target, and the crystal structure of this enzyme is available
[61]. It is worthy to point out that the quinuclidine derivative
25, a known inhibitor of human SQS [62], exhibits cellular
activity against epimastigotes [60], which is associated with
a noncompetitive nanomolar inhibition of the enzymatic
activity of SQS [60]. WC-9 (26) is an interesting compound,
which presents ED50 values at the low nanomolar range
against intracellular T. cruzi even more potent than nifurti-
mox and ketoconazole when assayed at the same conditions
[63] (Figure 6). WC-9 is a potent noncompetitive inhibitor of
both glycosomal and mitochondrial T. cruzi SQS, with IC50

values at the low nanomolar range [64]. A rigorous SAR
study has been conducted on the WC-9 chemical structure
concluding that the phenoxyethyl thiocyanate unit is the
pharmacophore [63,65,66]. The introduction of electron
withdrawing atoms such as fluorine at the terminal phenyl
ring of WC-9 has proven to be quite beneficial for biological
activity [65]. Certainly, fluoro derivatives 27 and 28 are

much more potent than WC-9 against T. cruzi (amastigotes)
proliferation [65]. Recently, different WC-9 analogs have
been synthesized and biologically evaluated, but their
potency was found to be slightly below than that of the
lead structure WC-9 [66]. The crystal structure of the WC-9
−TcSQS complex is not available yet. However, the X-ray
crystallographic structure of WC-9 bound to dehydrosqua-
lene synthase (CrtM) from Staphylococcus aureus has been
recently published [67]. It has been postulated that WC-9
might bind into the same hydrophobic S2 pocket in TcSQS
as it does in CrtM keeping the same polar interactions with
the thiocyanate group of WC-9 [67]. Bearing in mind the
relevance of WC-9, crystallization of this compound bound
to its target enzyme TcSQS has been attempted but, unfor-
tunately, without positive results [68]. Interestingly, the crys-
tal structure of the WC-9−human SQS complex has been
recently published [68], but no inhibition data against the
enzymatic activity are available [68]. This information can be
used to facilitate rational drug design to optimize the WC-9
chemical structure. Despite the great projection of WC-9,
there is no patent application involving its structure or
other closely related compounds.

Even though there are no crystal data at hand in TcSQS,
based on the charge distribution of WC-9, it is reasonable to
suggest that the electrophilic carbon atom of the thiocyanate
group acts by mimicking the carbocationic transition state of
the reaction that leads to the formation of the cyclopropylcar-
binyl intermediate presqualene-diphosphate 29, a precursor of
squalene (Scheme 2).

Our lead structure WC-9 originated while working on the
design and preparation of juvenile hormone analogs (JHAs) of
insects, which are crucial metabolites to maintain larval stages
[69]. Fascinatingly, Chagas disease vectors such as Rhodnius
prolixus or Triatoma infestans, when treated with JHA, are less
susceptible to get natural infections with T. cruzi than non-
treated vectors [70]. In addition, it has been found that JHAs,
which act on non-Chagas disease vectors, also show moderate
inhibitory action against T. cruzi multiplication [71]. This dual
action of JHAs on Chagas disease vectors and also on T. cruzi
cells led to modification of the chemical structure of the insect
growth regulator fenoxycarb (30), which has the 4-phenoxy-
phenoxy moiety in its structure [72] (Figure 7). Structure opti-
mization of 30 yielded WC-9 and other relevant analogs.

E5700 (31) and ER-119884 (32) are two novel active SQS
inhibitors that have been designed as cholesterol-lowering
and triglyceride-lowering agents for humans (Figure 8).
These compounds are potent inhibitors of T. cruzi prolifera-
tion. This cellular activity can be attributed to an efficient
noncompetitive (E5700) or mixed (ER-119884) inhibition of
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Figure 5. Chemical structures of terbinafine, a representative antifungal agent targeting squalene epoxidase and compound 24.
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the enzymatic activity of TcSQS at the subnanomolar level [73].
31 is more efficient than 32 in in vivo assays, while 31 shows a
dose-dependent effect on parasitemia and survival at 50 mg/
kg/day; its analog only induces a 50% survival at the same
dose [73].

SQ109 (33) is a relatively new drug against tuberculosis [74]
and at the present time is in advanced (Phase II) clinical trials
for tuberculosis (Figure 9) [75]. The target of SQ109 is MmpL3,
an acid transporter, which is crucial for the incorporation of
mycolic acid into bacterial cell wall [75]. Based on previous
studies, 33 and closely related analogs such as 34–36 were
found to behave as antibacterial agents toward different spe-
cies including Mycobacterium tuberculosis and Plasmodium fal-
ciparum and also against fungi [76]. Interestingly, SQ109 acts
against the three main morphologies of T. cruzi [77]. 33 acts at
the nanomolar range against trypomastigotes (IC50 = 0.050
µM) and is practically devoid of action on blood cell hemolysis

rendering a selectivity index greater than 1600 [77]. SQ109
also inhibits amastigote proliferation (ED50 = 1.2 µM), whereas
its analogs 34–36 present a comparable efficacy toward this
form of T. cruzi [78]. In addition, SQ109 acts synergistically with
posaconazole suggesting that TcSQS might be its molecular
target, but SQ109 modestly inhibits TcSQS [77]. The authors
have considered that SQ109 functions as an uncoupler produ-
cing ultrastructural cell alterations in all the stages of the
parasite [77]. Very recently, these and other closely related
compounds have been patented based on their potential as
antibacterial and antiparasitic agents [78].

7. 3-hydroxy-3-methyl-glutaryl-coenzyme A
reductase

Lovastatin (37) is a cholesterol-lowering agent for humans
targeting 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase
(HMG-CoA reductase) [79]. The parasitic counterpart is a gly-
cosomal enzyme and is a valid target for drug design [80]. In
fact, lovastatin has a synergistic effect when used in combina-
tion with ketoconazole against intracellular T. cruzi [81], but
when used alone, lovastatin exhibits a vanishing inhibitory
action against amastigotes. Fluconazole (38), itraconazole
(39), and miconazole (40) are other examples of antifungal
agents that behave as antiparasitic agents as well [82] but to a
lesser extent than those drugs previously discussed
(Figure 10).

8. Farnesyl diphosphate synthase

Farnesyl diphosphate synthase (FPPS) is a key enzyme of iso-
prenoid biosynthesis that catalyzes the consecutive condensa-
tion of isopentenyl pyrophosphate first with dimethylallyl
pyrophosphate and then with geranyl diphosphate to form
farnesyl diphosphate. In protozoan parasites, the FPPS gene
has been cloned from T. cruzi [83]. So far, all the FPPSs that
have been characterized are homodimeric enzymes and
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Scheme 2. Reaction calalyzed by SQS, converting FPP into squalene with of cyclopropylcarbinyl presqualene-diphosphate 29 as intermediate.
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require divalent metal ions such as Mg2+ or Mn2+ for activ-
ity [84].

The replacement of the oxygen atom bridge of pyropho-
sphate (41) with substituted methylene groups gives rise to
metabolically stable compounds known as bisphosphonates
(42), initially designed to mimic the chemical structure of
pyrophosphate [85]. Several bisphosphonates such as etidro-
nate (43), clodronate (44), pamidronate (45), alendronate (46),
risedronate (47), tiludronate (48), ibandronate (49), zoledro-
nate (50), and incadronate (51) are in clinical use for the
treatment and prevention of osteoclast-mediated bone
resorption associated with various bone disorders
(Figure 11) [86].

Besides their clinical use in long-term treatment of bone
disorders, bisphosphonates exhibit a broad scope of biological
activities such as antibacterial agents, antitumor agents, as
selective inhibitors of the enzymatic activity of acid sphingo-
myelinase, and, of particular interest in this article, as antipar-
asitic agents against trypanosomatids [17,84,87].

Most of the bisphosphonates of pharmacological impor-
tance are nitrogen-containing bisphosphonates, from which
some of them are effective inhibitors of T. cruzi in vitro and
in vivo without toxicity to the host cells [87]. For example,
risedronate is able to significantly increase the survival of mice
infected by T. cruzi [88], indicating that bisphosphonates pos-
sess great prospects to be candidate drugs to treat infections
by T. cruzi.

Of special interest are linear bisphosphonates such as 2-
alkyl(amino)ethyl derivatives. For example, 52–54 are repre-
sentative members of this class of bisphosphonates, and they
behave as potent growth inhibitors of amastigotes and pos-
sess IC50 values at the nanomolar range against the target
enzyme [89,90]. The crystal structures of T. cruzi FPPS with
some of these compounds have been recently solved [91].
With these data at hand, it is possible to design new com-
pounds with the aid of molecular modeling studies.
Unexpectedly, the corresponding bisphosphonate derivatives
bearing a hydroxyl group at the C-1 position are devoid of
activity against both T. cruzi cells and the target enzyme [92].
Taking 55 as an example, which is free of antichagasic activity,
but it is a selective and efficient inhibitor of T. gondii cells and
the enzymatic activity of TgFPPS (Figure 12) [92].

1-Hydroxy-, 1-alkyl-, and 1-amino-derivatives such as 56–59
are bisphosphonates that turn out to be a relevant starting
point in an attempt to establish a rigorous structure activity
relationship as antiparasitic agents [93–95]. 56 is an interest-
ing example of a compound that has no functionality in its
structure but the bisphosphonate unit possessing a moderate
inhibitory action against T. cruzi [93] targeting FPPS [95].

Unexpectedly, linear α-fluoro-1,1-bisphosphonates such as
60 and 61 are not efficient antiparasitic agents against either
trypanosomatids or their target enzyme FPPS [96]. Sulfur-con-
taining bisphosphonates 62–65 are interesting compounds
exhibiting inhibitory action against trypanosomatids [97]. For
example, the thioether derivative 62 is moderately potent
against T. cruzi (amastigotes). This cellular activity is associated
with a potent inhibition of the enzymatic activity of TcFPPS
enzyme at the nanomolar range [97]. Oxidation of the
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thioether function to form the corresponding sulfoxide gives
rise to bisphosphonate that are devoid of anti-T. cruzi activity,
but they show potent action against both T. gondii cells and
TgFPPS. 64 exhibits high selectivity toward T. gondii and is
practically inactive against T. cruzi [97].

A recent patent confirms and shows the great potentiality
that bisphosphonates have as antiparasitic agents with char-
acterized mechanisms of action involving the blockade of
FPPS, geranylgeranyl diphosphate synthase, and decaprenyl
diphosphate synthase [98]. The compound of formula 66
could potentially be used as antiparasitic agent (Figure 13).
M could be a cation or an alkyl group; Y could be a hydrogen
atom, a hydroxyl group, or a halogen atom; n varies from 1 to
3; R1, R2 could be substituted amines or mercaptans; Z could

be substituted phenyl groups or five- or six-membered hetero-
cyclic aromatic rings [98].

In conclusion, bisphosphonates present good perspectives
for being good candidates to control parasitic diseases caused
by trypanosomatids, particularly, to control American trypano-
somiasis based on the fact that bisphosphonates are straight-
forwardly synthesized, they are FDA-approved drugs, and
many of them are currently in use for long-term treatments
for bone disorders.

9. Cysteine proteinases

Cysteine proteinases can also be considered as valid targets
for Chagas disease chemotherapy where cruzipain, also known
as cruzain, is the major cysteine protease of T. cruzi [20,21,99].
This enzyme is expressed in all the stages of the parasite and is
crucial for T. cruzi life cycle including immunoevasion, nutrient
uptake, and parasite differentiation [99]. Several compounds
have been conceived as inhibitors of its enzymatic activity,
and as a consequence of these studies, there are crystal struc-
tures of several target enzyme-inhibitor complexes [100]. 67
and 68 are irreversible inhibitors of cruzipain known as
K11777 and WRR-483, respectively. They have great potenti-
ality to be used clinically as very potent trypanocidal agents,
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as they have shown activity in vitro and in vivo [101], whereas
69 (E-64) is one of the first irreversible inhibitors described
against cysteine proteases [102] (Figure 14). However, the
main drawback of designing irreversible inhibitors is that
they can also inhibit host proteases producing undesired
side effects due to their off-target activity and further irrever-
sible covalent binding.

Certainly, there are a number of compounds with diverse
structure that have proven to be anti-T. cruzi agents targeting
cruzipain, particularly nonpeptidic derivatives such as 70,
which has a potent inhibitory action against the target
enzyme at the low nanomolar range and an associated cellular
activity against amastigotes [103]. 71–73 are also relevant
nonpeptidic derivatives targeting cruzipain [103,104]
(Figure 15).

As mentioned earlier, there are several compounds of
diverse chemical structures with anti-T. cruzi activity targeting
cruzipain that have been patented. For example, compounds
bearing the 2,2-dioxidoimidazo[4,5-c][1,2,6]thiadiazine moiety
in their structure have been depicted as growth inhibitors of T.
cruzi whose mode of action is the blockade of cruzipain [105].

Taking 74 and 75 as representative examples, they exhibit a
moderate antiparasitic activity against epimastigotes and
some inhibitory action toward cruzipain [105] (Figure 16).

Nitrile-containing compounds such as 76 [106] and 77
[107] are reversible inhibitors of the enzymatic activity of
cruzipain at the very low nanomolar range. Both of these
drugs are very efficient orally administered agents in murine
models of acute Chagas disease with a 90% of protection at a
dose as low as 3 mg/kg [108]. The structures of these drugs
and other closely related compounds have been recently
patented [109] (Figure 17).

There are other examples of compounds that inhibit pro-
liferation of trypanosomatids, particularly of T. cruzi, which
act by inhibiting the enzymatic activity of cruzipain [110]. For
instance, 78–81 show some degree of activity against T. cruzi
cells [110]. Recently, a number of closely related analogs of
78–81 have been synthesized and evaluated against T. cruzi,
with 82 emerging as a representative member of this class of
compounds [111]. However, there is no discussion on
whether 82 and its analogs still target cruzipain [111]
(Figure 18).
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10. Trypanothione biosynthesis

Trypanothione (83) is a crucial metabolite in trypanosomatids
for two reasons: (i) it is responsible for maintaining the cell
redox equilibrium as glutathione does in the mammalian host;
(ii) these microorganisms do not have an alternate mechanism
of protection against the oxidative stress [112]. Both cysteine

residues present in trypanothione take part in the interconver-
sion between its oxidized [83a, T(S)2] and its reduced forms
[83b, T(SH)2] by breaking and restoring the corresponding
intramolecular disulfide bond (Figure 19). The enzyme that
catalyzes the reduction of trypanothione is trypanothione
reductase (TryR), which is highly specific for trypanothione
and does not recognize glutathione as a substrate [113].

Trypanosomatids are exposed to highly reactive oxygen
species, which can cause lethal damage by reacting with
DNA or cellular membrane lipids [114]. The defense system
maintains low levels of H2O2 and O2–. Glutathione reductase
activity is not present in trypanosomatids, but there exists the
trypanothione–trypanothione reductase system instead.
Trypanothione synthase (TryS) emerges as an interesting
molecular target, as it has no counterpart in mammals [1]
(Scheme 3). TryS is a flavoenzyme ATP-dependent C:N ligase,
requiring Mg2+ as cofactor, and they catalyze trypanothione
formation through a condensation reaction of spermidine with
two molecules of glutathione [115].

76
N

HN

H

N

CF3

O

iPr

H
N

N

H3CO2S

H

N

CF3

O

H
N

N

CH3

CH3

F

F
N

77

Figure 17. Chemical structures of reversible inhibitors of the enzymatic activity of cruzipain bearing nitrile groups.

N
S

N

74, X = H
75, X = Cl

O

O

NH2

Bn

N

N

X

Figure 16. Chemical structure of relevant 2,2-dioxidoimidazo[4,5-c][1,2,6]thia-
diazine derivatives.

78

N
H

O

H
N

N

H
N

O

Cl

O
NO2

79

N
H

O

H
N

O

Cl
Cl

Cl

82

O

H
N

N

H
N

Cl

80

N
H

N

O

Cl
OH 81

N
H

O

H
N

NH2

H
N

O

Cl

O
NO2

Figure 18. Chemical structures of hidrazide-N-acylhydrazone derivatives targeting cruzipain.

+H3N

H
N

N
H

H
N

CO2
-

O

O

O H2N+

N
H

O
H
N

O

S
S

N
H

O

CO2
-

+H3N

Trpanothionye
reductase

NADPH, H+

+H3N

H
N

N
H

H
N

CO2
-

O

O

O H2N+

N
H

O
H
N

O

SH
HS

N
H

O

CO2
-

+H3N

83a, T[S]2
83b, T[SH]2

Figure 19. Chemical structure of the oxidized (83a) and reduced (83b) forms of trypanothione.

EXPERT OPINION ON THERAPEUTIC PATENTS 1003



TryR is essential in trypanosomatids, but it has its corre-
sponding counterpart in mammals in gluthatione reductase
[116]. This target has been carefully studied, and the crystal
structures of the enzyme–inhibitors complexes are available.
At the present time, many inhibitors have been designed, with
different mechanisms of action. They either function as cova-
lent, competitive, or suicide inhibitors of this enzyme [1,116].

Quinone derivatives are representative examples of potent
inhibitors of the enzymatic activity of TryR in T. cruzi [117]. In
this sense, a series of hybrids of two quinines such as 2-
phenoxy-anthraquinone (85) and 2-phenoxy-naphthoquinone
(86), which, in turn, show potent inhibitory action toward TryR
from T. b. rhodesiense [118], with different polyamines such as
putrescine, cadaverine, spermidine, and spermine, has been
conceived as conjugate structures of formula 87–94 [119]. 85
and 86 show a moderate action against T. cruzi cells; however,
the selectivity index values are disappointing. In addition, the
conjugate products 87–94 exhibit vanishing antiparasitic
action against T. cruzi cells [119] (Figure 20).

As mentioned earlier, TryS is a unique enzyme in trypano-
somatids with no counterpart in mammals. An interesting
example of inhibitors that mimic the tetrahedral transition
state of this C:N ligase is a series of phosphinopeptides struc-
turally related to glutathione. Of this family of compounds, 95
and 96 are the most representative examples being potent
growth inhibitors of amastigotes [9]. The efficacy for these
drugs is comparable to WC-9 [9]. The simple phosphinopep-
tide structure found as a pharmacophore constitutes a starting

point for the development of optimized drugs. Phosphonates
or phosphinates are interesting examples of compounds to be
used to mimic the tetrahedral transition states of other C:N
ligases, giving rise to inhibitors of Ala-D-Ala ligase, glutamine
synthase, and glutathione synthase [120]. The design of the
simplified structures 95 and 96 has been based on the rela-
tively complex structures of the slow tight-binding inhibitors
of glutathionyl spermidine synthase from Crithidia fasciculata
97 and 98 [121]. Then, as their synthesis is straightforward, the
core structure of phosphinopeptides would facilitate further
optimization (Figure 21).

As previously discussed, trypanothione biosynthesis is a
potentially selective target given the differences in oxidative
stress responses in T. cruzi versus the respective host cells.
However, at the present time, numerous published studies
have not succeeded in finding effective inhibitors of the enzy-
matic activity of TryS that can be moved forward into drug
candidates.

11. Compounds producing oxygen active species

Quinoxaline N,N′-dioxides are interesting chemical structures
that exhibit antiparasitic activity particularly against T. cruzi
without toxicity for the host cells [122]. The mode of action of
this family of compounds could be attributed to the ability of
these molecules to produce reactive oxygen species such as
HO• which interfere with the corresponding redox metabo-
lism, particularly, by inhibiting mitochondrial activity [123]. 99
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and 100 are representative members of this class of molecules
that behave as trypanocidal agents against trypomastigotes
[123]. Preliminary in vivo assays show good prospects for these
compounds [123]. The use of this type of compounds has
been recently patented against T. cruzi [124] (Figure 22).

12. Fe-superoxide dismutase

Fe-superoxide dismutase (Fe-SOD) is other crucial enzyme in
the defense mechanism against oxidative stress in trypanoso-
matids that has no counterpart in mammals, which possess
manganese and copper/zinc superoxide dismutases instead
[125]. Very recently, a macrocyclic polyamine bearing a pyridi-
phane core has been designed and evaluated against trypano-
somatids [126]. These inhibitors of the Fe-SOD activity are
named scorpiand ligands due to the ability of the side chain
toward the macrocyclic skeleton [126]. Representative members
of this class of compounds such as 101–104 are shown in
Figure 23. The title compounds exhibit biological activity
against the three main morphological forms of T. cruzi [126].
For example, 101–104 exhibit potent inhibitory action against
amastigotes possessing IC50 values of 6.0, 4.2, 2.8, and 5.2 µM,
respectively [126]. These scorpiand-like ligands were originally
designed as intercalating agents of DNA that affect cell viability
[127]. The use of these scorpiand azamacrocycles as antiparasi-
tic agents against T. cruzi has been recently patented [128].

In addition, imidazole derivatives containing a nitrophtha-
lazine moiety turn out to be growth inhibitors of T. cruzi at the
low micromolar range [129]. Taking derivatives 105 and 106
as representative examples, these molecules possess ED50

values of 8.8 and 4.0 µM against intracellular T. cruzi [129].
Although these compounds present inhibitory action against
the enzymatic activity of Fe-SOD, it is too modest to be
considered as the primary target of these compounds [129]
(Figure 24).

Squaramides are interesting structures that are potent inhi-
bitors of T. cruzi proliferation [130]. Although many members
of this class of compounds have been evaluated, most of them
present low selectivity index values, but 107 behaves as a
potent growth inhibitor against intracellular T. cruzi
(ED50 = 8.5 µM) and shows an excellent selectivity index
(toxicity in Vero cell, ED50 = 453.1 µM, SI = 53) [130]. 107 is
also very efficient in in vivo assays toward the chronic and the
acute stages of the disease [130]. 107 produces ultrastructural
alterations of epimastigotes. In fact, parasites treated with 107
suffer from a complete breakdown of their cell structures
leading to mitochondrial swelling with rupture of the mem-
brane [130]. Although the precise mode of action of these
compounds has not been resolved yet [130], their use against
T. cruzi infections has been recently patented [131] (Figure 25).

13. ML341 and related compounds

108 constitutes an interesting example of a potent inhibitor of
intracellular T. cruzi at the very low nanomolar range [132,133].
This lead compound is a representative structure that has
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emerged as a result of a high-throughput screening of about
100,000 compounds obtained from diversity-oriented synth-
esis [132,133]. ML341 has three stereogenic centers in its
structure where the optimal combination turns out to be all
in the S configuration (S,S,S) [132]. 108 is an extremely potent
growth inhibitor of amastigotes possessing an ED50 value of
0.016 µM [132]. Bearing in mind the potentiality of ML341 and
other structurally related compounds, these molecules and
their applications have been recently patented [133]. To the
best of our knowledge, the mode of action of 108, also
described as ML341, is still unknown (Figure 26).

14. The sesquiterpene lactone known as
lychnopholide

The sesquiterpene lactone lychnopholide (109), isolated from
Lychonophora trichocarpha, is an interesting natural product
that had previously exhibited potent action against trypomas-
tigotes [134]. 109 is a hydrophobic molecule, but if loaded in
polymeric nanocapsules, it could be useful as a potential
antiparasitic agent [135,136]. In fact, encapsulation of 109 in
nanocapsules enhances the efficacy exhibiting an in vivo effect
in the acute models of Chagas disease [137] (Figure 27).

15. The phosphoinositide-3-kinase pathway

An interesting molecular target is the phosphoinositide-3-
kinase (PI3-kinase) pathway, which has been previously
employed for cancer chemotherapy. Protein kinases are
involved in regulating cellular pathways that are associated
with cell growth, cell survival, energy homeostasis, and stress
resistance [138]. There are at least 12 PI3-kinases [139] and the
downstream enzyme mammalian target of rapamycin (mTOR),
which belongs to the family of PI3K-related protein kinases

[140]. Some kinases of Trypanosoma brucei TOR such as
TbTOR1 and TbTOR2 have been identified [141]. In addition,
two other putative kinases have been found in T. brucei:
TbTOR-like 1 and TbTOR-like 2 [142]. TbTOR-like 1 would mod-
ulate acidocalcisome and polyphosphate metabolism [142]. In
this context employing the concept of drug repurposing strat-
egy [139], it was considered that the trypanosomal PI3-kinase
pathway was an interesting target to develop antiparasitic
compounds [143]. In fact, there are many antitumor and
anti-inflammatory agents available whose target is mTOR or
PI3K [144]. Some representative human mTOR/PI3K inhibitors
such as 110–117 have shown in vitro and in vivo antiparasitic
action against trypanosomatids [143] (Figure 28). Only 110
was effective against T. b. brucei [143]. 113, 114, and 117
were devoid of antiparasitic activity, whereas 111, 112, 115,
and 116 exhibited potent action against trypanosomatids
[143], particularly 116, which exhibited trypanocidal action
against T. cruzi (trypomastigotes), showing an IC50 value of
0.12 µM [142]. In vivo assays indicated that 116 was also
effective against T. brucei rhodesiense but proved not to be
efficacious against T. cruzi [143]. The use of 110–117 and
other closely related molecules as antiparasitic agents target-
ing mTOR/PI3K has been recently patented [145].

16. Lapatinib analogs

Continuing with the target repurposing concept [146], and
based on the structure of the antitumor agent lapatinib
(118) that had previously exhibited action on protein kinases
of African trypanosomes [147], several compounds structurally
related to 118 were synthesized and evaluated against trypa-
nosomatids given their close phylogenetic relationship
[147,148]. Taking 119 as a representative lapatinib analog,
this molecule was very effective against T. brucei
(ED50 = 0.042 µM) [147], but also exhibited inhibitory action
against T. cruzi (ED50 = 1.8 µM) [148]. These results were very
encouraging leading to further structural optimization by
synthesizing many compounds bearing quinoline, isoquino-
line, cinnoline, phthalazine, and 3-cyanoquinoline moieties in
their chemical structures, with 120 emerging as the most
potent compound in this family of lapatinib analogs [148].
120 proved to be a very effective growth inhibitor of amasti-
gotes exhibiting a low ED50 value of 0.09 µM [148] (Figure 29).
The use of these compounds as antiparasitic agents has been
recently patented [149]. In addition, a number of 5,6,7,8-tetra-
hydropyrido[4,3-d]pyrimidine derivatives targeting PI3K have
been recently patented. 121 arose as a relevant member of
this class of drugs inhibiting the target enzyme at a low
nanomolar concentration [150].

17. ß-Lapachone analogs

Naphthoquinone derivatives are interesting low-molecular-
weight compounds exhibiting a variety of biological activities.
Of particular interest are those structurally related to the
natural product ß-lapachone (122), which behaved as growth
inhibitors of T. cruzi [151]. Imido-substituted 1,4-naphthoqui-
none derivatives such as 123–125 also showed antiparasitic
activity against epimastigotes at the low micromolar range
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[152]. 126, designed as an antitumor agent [153], arises as a
relevant member of this type of compounds. The authors
suggested that 126 might act by inhibiting tubulin polymer-
ization in T. cruzi [154] (Figure 30).

18. trans-Sialidase

trans-Sialidase is a distinctive glycosylphosphatidylinositol
(GPI)-anchored enzyme that is associated with the invasion
process of trypomastigotes to the host cells [155]. Sialic acid
(127) is an important metabolite that protects cells from
invasion of pathogenic microorganisms by blocking the

corresponding binding sites of host galactose residues. This
enzyme transfers sialic acid from host sialic acid-containing
glycoconjugates to mucins (O-glycan-type glycoproteins) on
the parasite surface [156]. The crystal structure of T. cruzi
trans-sialidase is available, which provides valuable informa-
tion for drug design [157]. The Tyr342 residue plays a key role
in the transferring process of sialic acid by forming a covalent
bond at the C-1 position [158]. Based on these data, the
fluorine-containing derivative 128 was conceived, which
turned out to be an effective inhibitor of the enzymatic
activity of trans-sialidase [158]. Structure optimization of
128 led to more efficient inhibitors such as 129 and 130
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[159]. Interestingly, sialic acid analogs and precursors such as
2-deoxy-N-acylmannosamines proved to be inhibitors of T.
cruzi invasion to mammalian cells [160]. In this sense, 2-
deoxy-N-propionylmannosamine (131) was the most relevant
sialic acid precursor to prevent cell invasion [160]. The use of
2-deoxy-N-acylmannosamines as potential protecting agents
against T. cruzi invasion has been recently patented [161]
(Figure 31).

19. Boron-containing compounds

Recently, a new class of boron-containing compounds has
been developed as potential antiparasitic agents caused by
trypanosomatids. These compounds known as benzoxabor-
oles were evaluated as antiparasitic agents but were initially
conceived as antibacterial and anti-inflammatory agents
[162,163]. Benzoxaboroles 132 and 133 resulted to be potent
inhibitors of T. cruzi growth with an ED50 value of 1.15 and
0.49 µM, respectively, and promising in vivo activity [162,163].
The precise mode of action of these compounds is still
unknown, but the authors have hypothesized that the pre-
sence of the boron atom having an empty p-orbital would
interact with their actual target [162]. The potential use of
benzoxaborole derivatives as antiparasitic agents has been
patented [164] (Figure 32).

20. Diagnosis

At the present time, diagnosis of infection by T. cruzi is still a
challenge in spite of having several methods at hand ranging
from the wet smear preparation to immunoenzymatic assays
with recombinant antigens. In recent infections, unless para-
sitemia is elevated and acute symptoms awfully severe, T. cruzi
is seldom detected [5,165]. Certainly, in the acute phase of the
disease, direct detection of T. cruzi trypomastigotes in the
bloodstream can be done through parasitological fresh-
blood test, and also through smear and thick blood test, the
former being more sensitive than the latter one [166]. If the
diagnosis is negative but classical symptoms are observed
such as inflammation at the wounds produced by the vector
parasite known as chagoma or the characteristic cellulitis of
the eyelid (Romaña sign) [167], further evaluation should be
conducted [166]. In this case, concentration tests such as the
microhematocrit or Strout test should be employed [166].
Individuals who are suspected of having acute Chagas disease
that obtained negative results from direct blood testing are
encouraged to go through concentration test. As Chagas dis-
ease is transmitted through the placenta, it is very important
to have a precise diagnosis in newborns from potentially
infected mothers especially taking into account the high rate
of cure in children with the current chemotherapy. Children
having negative results concerning direct detection of trypo-
mastigotes should be checked for specific IgG antibodies
against T. cruzi within 9 months. In the chronic stage, the
number of circulating trypomastigotes diminishes below the
capacity of microscopic detection or by the presence of IgG
antibodies directed toward antigens of T. cruzi [5,165,166].
Diagnosis at this stage should be based on conventional
serology, indirect immunofluorescence test, indirect
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hemagglutination test, enzyme-linked immunosorbent assay,
or on indirect parasitological methods such as xenodiagnosis
samples or hemoculture [168]. These indirect methods are
specific, but their major drawbacks are the lack of sensitivity
[166,168]. A reliable diagnosis is very relevant to avoid spread
of this disease through blood transfusion and organ transplan-
tation even in areas where this disease is not endemic.

In the acute phase of Chagas disease, there is a high rate of
cure after treatment either with nifurtimox or with benznida-
zole. In this case, a period of 2 years is required to consider a
patient cured under the conventional serology assay. On the
other hand, in the chronic phase of the disease, given that
negative sero-conversion is slow, many years of surveillance
are required to be sure that a patient is cured [166,169]. The
complement-mediated lysis test is employed to detect anti-
bodies against trypomastigotes [170]. This test has been
employed as an additional assay to search for an active infec-
tion [171]. In summary, diagnosis at an early stage, when
parasites may be directly detected, is not frequently sought.
In most cases, this disease evolves without diagnosis into the
chronic phase where the number of circulating trypomasti-
gotes diminishes to an undetectable threshold, from which
direct detection is no longer possible. As discussed previously,
a definite diagnosis requires several serological tests together
with epidemiological data and clinical symptoms [165,166].
Recently, an interesting review article has appeared indicating
a challenge for an effective chemotherapy monitoring the
chronic and the acute disease in all stages [172]. Certainly,
the lack of a proper biomarker has been stated not only for
Chagas disease, but also for many other parasitic diseases
[172]. In summary, adult patients present the major challenges
for diagnosis for a number of reasons: (i) evaluation of the
clinical response to a special treatment requires many years of
surveillance; (ii) negativization of parasitemia is poorly evalu-
ated by conventional serology, its reaction is slower as the
time of the original infection increases; (iii) in the chronic
phase, the level of bloodstream trypomastigotes is below the
detection threshold of direct assay, requiring polymerase
chain reaction (PCR) instead [173].

As discussed previously, most of the methods available are
based on indirect methods and are used during the chronic
stage of the disease. In the acute phase, symptoms are scarce
and dwell of fever, the characteristic Romaña sign, or inflam-
mations around the wounds caused by the vector. There are
new patents available in which innovative tools for the detec-
tion of this disease are described. For example, T. cruzi anti-
genic polypeptides proved to be a valuable resource in
diagnosis, and there is a patent describing the use of T. cruzi
polypeptides immobilized onto a surface to diagnose for T.
cruzi infection [174]. A further invention takes advantage of
using oligonucleotide sequences as detection probes followed
by a nucleic acid amplification as a method to diagnose T.
cruzi infections [175]. It is worth mentioning a patent which
describes a method to diagnose the Chagas disease by mon-
itoring the presence of antibodies to T. cruzi peptides from the
membrane protein. The method is able to differentiate all the
stages of the disease and is particularly useful for monitoring
the treatment in chronic patients [176]. Furthermore, a
method has been patented to diagnose a T. cruzi infection
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using loop-mediated isothermal amplification, in which the
Tc24 is amplified and detected [177]. Finally, there is a patent
available describing the detection of antibodies for sequences
of collapsin response mediator protein 5 from T. cruzi as a
means to diagnose the disease [178].

21. Conclusion

In summary, the aim of this review was given attention to
presenting a wide-ranging panorama of some relevant targets
for drug design to treat American trypanosomiasis or Chagas
disease. This health problem can be judged as a neglected
parasitic disease, which does not have the consideration from
pharmaceutical companies to carry out a serious investment
program due to the lack of financial incentives. At the present,
Chagas disease still represents a major health problem asso-
ciated with important cause of morbidity and mortality mostly
in developing countries where this illness is endemic. It is
worth mentioning that its occurrence is strongly associated
with poverty and bad housing quality that allows the vector of
the disease to interact with humans. Although there are other
potentially valuable targets, only the more illustrative ones
were discussed here. Finally, with the appropriate knowledge
of the biochemistry and physiology of T. cruzi will be possible
the full suppression of this parasitic disease.

In spite of many compounds that act on a variety of mole-
cular targets, only two of them have been developed since the
appearance of nifurtimox and benznidazole. These drugs are the
antifungal agent posaconazole and E1224, a prodrug of ravuco-
nazole. Different treatments based on combinations with exist-
ing chemotherapies have been essayed in last years [179].

22. Expert opinion

The aim of this review was focused at presenting a broad
scope of several relevant targets for rational drug design for
the treatment and surveillance of American trypanosomiasis or
Chagas disease. These drugs exploit metabolic differences
between the etiologic agent of this disease, the hemoflagel-
lated protozoan T. cruzi, and the mammalian host. One of the
most important challenges of Chagas disease chemotherapy is
the development of a compound that is able to cross the
corresponding infected cell membrane and to make a journey
through the complex environment present in the cell cyto-
plasm to finally cross the membrane of the multiplying intra-
cellular parasites (amastigotes, the most clinically relevant
dividing form of the parasite). Finally, this molecule must
arrive at its target for the pharmacological action to occur.

Chagas disease can be classified as a neglected disease for
presenting insignificant profits for pharmaceutical companies
to carry out a serious research and developmental program for
drug design. As a result, most of the research, including the
patent applications, has been carried out by Academia. In
spite of the reduction in the number of infected people
observed in the last decade, this disease is still an important
cause of mortality and deterioration in the quality of life,
particularly, in developing countries where it is endemic. In
fact, its appearance is clearly associated with poverty and bad
housing quality, which facilitate the spreading of the vectors.
In countries where Chagas disease is not endemic, its trans-
mission is congenital or through transfusion of infected blood
from people moving from other areas. In addition, in the
recent years, a reactivation of the disease has been observed
in patients with AIDS.

Currently, only two drugs are available for the treatment of
this chronic zoonosis: nifurtimox and benznidazole. However,
they present serious drawbacks: both are not effective against
some of the T. cruzi strains, are associated to long-term treat-
ments presenting considerable side effects, are not effective in
the chronic phase of the disease, and are not FDA approved.
Evidently, there is an urgent need for new and safe medicines
to treat and monitor this disease, and the concept of rational
drug design can aid in the discovery of new compounds.

In our opinion, and as evidence by the new compounds
discovered in the recent decades, several metabolic pathways
are available that can provide effective drug targets. Of parti-
cular interest is ergosterol biosynthesis, since this compound
is a crucial metabolite for the parasite as it is a key component
of the cell membrane. Many enzymes in this pathway are
interesting molecular targets: Δ24(25)-sterol methyltransferase,
14α-demethylase (CYP51), squalene epoxidase, and SQS. From
these enzymes, 14α-demethylase is a very promising target
because there are many potent inhibitors developed so far. In
fact, posaconazole and the prodrug of ravuconazole E1224 act
toward this enzyme at the low nanomolar range.
Posaconazole and ravuconazole are known antifungal drugs
but have the disadvantage of being too expensive from the
point of view of manufacturing. However, in spite of having
this potent inhibitory action, clinical evaluation of posacona-
zole and E1224 on chronic Chagas disease indicated that these
drugs had vanishing effectiveness. These results suggest the
urgent need for developing better screening processes for
new approaches to control Chagas disease. In addition, farne-
syl pyrophosphate synthase also has great prospective bearing
in mind that there are abundant structural data available on
the binding of their inhibitors, novel compounds bearing a
bisphosphonate group. 4-Phenoxyphenoxyethyl thiocyanate
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(WC-9) constitutes one of the few examples of a lead drug
possessing a covalently bonded thiocyanate group. This com-
pound targets SQS and has great prospects due to its drug-
like character. Trypanothione reductase is a unique enzyme in
T. cruzi which is not present in the mammalian host, having
glutathione reductase as its counterpart. Therefore, it has
great potential to be utilized as a target for the design of
selective inhibitors. trans-Sialidase is an interesting enzyme
that could be potentially employed to control the invasion
process especially during the acute phase of the disease.

In conclusion, the appropriate knowledge of the biochem-
istry and physiology of this parasite will allow the control and
surveillance of this parasitic disease.
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