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dInstituto de Matemática y F́ısica, Universidad de Talca,

Casilla 747, Talca, Chile

E-mail: ayon-beato@fis.cinvestav.mx, gaston@df.uba.ar,

hassaine@inst-mat.utalca.cl

Abstract: We study AdS-waves in the three-dimensional new theory of massive gravity

recently proposed by Bergshoeff, Hohm, and Townsend. The general configuration of this

type is derived and shown to exhibit different branches, with different asymptotic behaviors.

In particular, for the special fine tuning m2 = ±1/(2l2), solutions with logarithmic fall-

off arise, while in the range m2 > −1/(2l2), spacetimes with Schrödinger isometry group

are admitted as solutions. Spacetimes that are asymptotically AdS3, both for the Brown-

Henneaux and for the weakened boundary conditions, are also identified. The metric

function that characterizes the profile of the AdS-wave behaves as a massive excitation

on the spacetime, with an effective mass given by m2
eff = m2 − 1/(2l2). For the critical

value m2 = −1/(2l2), the value of the effective mass precisely saturates the Breitenlohner-

Freedman bound for the AdS3 space where the wave is propagating on. The analogies with

the AdS-wave solutions of topologically massive gravity are also discussed. Besides, we

consider the coupling of both massive deformations to Einstein gravity and find the exact

configurations for the complete theory, discussing all the different branches exhaustively.

One of the effects of introducing the Chern-Simons gravitational term is that of breaking

the degeneracy in the effective mass of the generic modes of pure New Massive Gravity,

producing a fine structure due to parity violation. Another effect is that the zoo of exact

logarithmic specimens becomes considerably enlarged.
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1 Introduction

A new theory of massive gravity in three dimensions has been recently proposed by

Bergshoeff, Hohm, and Townsend [1]. At the linearized level, this theory has been shown to

be equivalent to the three-dimensional Fierz-Pauli action for a massive spin-2 field, which

turns out to be unitary. In contrast with the Topologically Massive Gravity [2, 3], this new

theory of gravity is parity invariant. Following the authors of [4–6], we will refer to this

theory as the New Massive Gravity. As it is the case for Topologically Massive Gravity,

the New Massive Gravity entails higher order modifications to the three-dimensional Gen-

eral Relativity with the consequence that the graviton excitations of both theories become

massive through similar mechanisms.

This New theory of Massive Gravity has attracted much attention recently. In refs. [7,

8] the unitarity of the model was discussed; in ref. [4] exact solutions representing asymptot-

ically warped-AdS3 black holes were found; other interesting solutions are analyzed in [9].

In refs. [5, 6], the boundary conditions for the theory in asymptotically AdS3 spaces were

studied. In particular, it was argued in ref. [6] that, for a particular relation between the

cosmological constant and the mass parameter of the theory, the concept of asymptoti-

cally AdS3 boundary conditions is compatible with a weakened logarithmic fall-off at large

distance. This amounts to relax the standard Brown-Henneaux asymptotic conditions for

gravity in AdS3 space [10], and it is analogous to what happens in Topologically Massive

– 1 –
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Gravity at the chiral point [11, 12]. In the case of Topologically Massive Gravity, the

feasibility of considering weakened AdS3 boundary conditions allows to reinterpret some of

the AdS-waves with logarithmic profile found in refs. [13, 14] as being asymptotically AdS3

spacetimes. These configurations, together with those that do not exhibit the logarithmic

decay,1 have been reconsidered recently [17, 18] within the context of the revived interest

in Topologically Massive Gravity [19–23].

Here, we will explore the AdS-wave configurations of the New Massive Gravity. In

particular, this will allow us to study the dynamics of the theory beyond the linearized

level and to discuss the different asymptotic behaviors; a strategy proved to be useful in

Topologically Massive Gravity [14]. For example, we will find that solutions with logarith-

mic fall-off arise for certain values of the parameters. The existence of such solutions to

New Massive Gravity is suggested by the linearized analysis performed in ref. [6]. Never-

theless, in this paper we go beyond the perturbative analysis and find exact solutions of

this kind. More generally, we will exhibit a whole family of AdS-wave solutions of the New

Massive Gravity; and these solutions are, in some sense, the analogues of those arising in

Topologically Massive Gravity [13–18]. For a particular range of the parameters, we will

show that the isometry of the solutions coincides with the Schrödinger symmetry. We will

also analyze similar considerations for a more general theory given by the coupling between

both massive gravity theories.

The paper is organized as follows. In section 2, we provide a brief introduction to AdS-

wave configurations. Section 3 is devoted to present the New Massive Gravity of ref. [1].

The general AdS-wave solutions are derived and the different branches depending on their

asymptotic behaviors are analyzed. In section 4, we discuss some analogies between these

configurations and their cousins arising in Topologically Massive Gravity; we also point

out some differences. Besides, we consider the coupling between both massive models

and derive the corresponding AdS-wave configurations. The nontrivial effects due to the

inclusion of the topological mass term are analyzed in details in section 5.

2 Brief introduction to AdS waves

AdS waves are a special kind of exact gravitational waves propagating along AdS space.

The first examples of exact gravitational waves in the presence of a cosmological constant

were studied by Garćıa and Plebański [24]; see also refs. [25–27]. Such solutions were based

on generalizations of some algebraically special solutions previously found for the case

of vanishing cosmological constant in refs. [28, 29]. The algebraically special spacetimes

are defined by the fact that their Weyl tensor has a multiple principal null direction. In

addition, if this null direction is a Killing vector for the exact wave solutions then, in

the case of a negative cosmological constant, one recovers the so-called Siklos spacetimes

defining the AdS waves [30]. Siklos spacetimes allow an alternative characterization as

a generalized Kerr-Schild transformation of AdS, which reinforces their interpretation as

1See ref. [15] for a preliminary derivation of the no-logarithmic branch, where it was argued that in order

to be supersymmetric the solutions should not depend on the retarded time. See also ref. [16], where the

interpretation as AdS-waves was first given to the final forms of the metric originally derived in ref. [13].
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exact gravitational waves propagating on AdS space [31]. This means that their metrics

can be written in terms of the AdS metric as follows

gµν = gAdS
µν − Fkµkν , (2.1)

where kµ is a null geodesic field, and F is an arbitrary function that is only constrained to be

independent of the integral parameter along kµ; see ref. [14] for a more detailed discussion.

Now, let us consider the three-dimensional case we are interested in. The AdS3 metric

in Poincaré coordinates reads

ds2
AdS =

l2

y2

(

−2dudv + dy2
)

, (2.2)

where l is the radius of AdS characterizing its constant scalar curvature R = 6Λ = −6/l2.

Choosing as null geodesic field kµ∂µ = (y/l)∂v , the Kerr-Schild transformation (2.1) allows

to write the metric of the AdS3-waves as follows

ds2 =
l2

y2

[

−F (u, y)du2 − 2dudv + dy2
]

. (2.3)

This metric is conformally related to that of a pp-wave. Nevertheless, it is worth point-

ing out that AdS-waves and pp-waves have different geometrical and physical properties.

Let us be reminded of the fact that the term pp-wave stands for plane fronted gravitational

waves with parallel rays. The fronts of the wave are defined by surfaces u, v = const. in

any number of dimension, and for the AdS-waves in higher dimensions they are not planes

but hyperboloids, having constant curvature proportional to −1/l2. Additionally, the null

rays are defined by the field ∂v, which is a Killing vector but not a closed 1-form, and thus

the rays fail to be covariantly constant, namely parallel.

We will explore the existence of AdS waves configurations rigged by the New Massive

Gravity of ref. [1].

3 The AdS waves of new massive gravity

The action of the New Massive Gravity is2

S =
1

16πG

∫

d3x
√−g

(

R − 2λ − 1

m2
K

)

, (3.1)

where the quadratic contribution K = RµνRµν − 3
8R2 introduces the modification to stan-

dard gravity with cosmological constant λ, being m the mass of the resulting massive

degrees of freedom. The variation of (3.1) gives rise to the modified gravity equations of mo-

tion

Gµν + λgµν − 1

2m2
Kµν = 0, (3.2)

2We follow the conventions of [6].
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where Gµν = Rµν − R
2 gµν is the Einstein tensor and

Kµν = 2�Rµν − 1

2
∇µ∇νR − 1

2
�Rgµν + 4RµανβRαβ

− 3

2
RRµν − Kgµν , (3.3)

is a symmetric, conserved tensor that satisfies gµνKµν = K. This condition on Kµν implies

that the trace of the equations of motion is a second order constraint, despite the fact these

are equations of fourth order.

3.1 AdS-waves solutions

For the New Massive Gravity to admit an AdS3 vacuum (2.2), a special constraint between

the AdS3 radius l, the cosmological constant λ, and the mass parameter m is needed. This

fixes the value of the cosmological constant to be [1, 6]

λ = − 1

l2

(

1 +
1

4l2m2

)

, (3.4)

which means the scale of the cosmological constant and the AdS radius only coincide in

the General Relativity limit m2 → ±∞.

The AdS-wave solutions (2.3) are meant to describe exact gravitational waves propa-

gating along AdS3 spacetime of radius l, and thus we have to consider the same election (3.4)

for the cosmological constant. With this choice for λ, the equations of motion (3.2) become

a single differential equation for the wave profile F ; namely

[

y4∂4
yF + 2y3∂3

yF

− (1 + 2l2m2)

2

(

y2∂2
yF − y∂yF

)

]

δu
µδu

ν

2l2m2y2
= 0, (3.5)

This is a fourth order Euler-Fuchs differential equation, which is easily solved by ap-

plying the standard substitution F = yα. The corresponding fourth-degree characteristic

polynomial is

α(α − 2)

(

(α − 1)2 − 1 + 2l2m2

2

)

= 0. (3.6)

Therefore, the generic solution for the wave profile is

F (u, y) = F+(u)
(y

l

)1+

q

1+2l2m2

2

+ F−(u)
(y

l

)1−

q

1+2l2m2

2

, (3.7)

where F+ and F− are arbitrary integration functions that depend only on the retarded

time u. Here and in what follows, we also use the fact that the homogeneous and quadratic

dependence of the wave-front coordinate y can be eliminated by coordinate transformations,

see the detailed discussion in ref. [14].

In addition to (3.7), we have to consider the possibility of having multiplicities in the

roots of the characteristic polynomial (3.6). In this case, the power-law particular solutions
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fail to span the whole space of linearly independent solutions, and thus new additional

logarithmic modes appear. Such multiplicities arise for the mass values m2 = ±1/(2l2).

For m2 = −1/(2l2), there exists double multiplicity; the two roots exhibited in the generic

solution (3.7) become one. Then, after discarding trivial behaviors, the wave profile at this

point turns out to be given by

F (u, y) =
y

l

[

F1(u) ln
(y

l

)

+ F2(u)
]

. (3.8)

On the other hand, for m2 = +1/(2l2) we find double multiplicity both for α = 0 and

for α = 2, because in this case the roots of the generic solution (3.7) reduce to these values.

Then, in this case we are left with the following solution

F (u, y) = ln
(y

l

)

[

F1(u)
(y

l

)2
+ F2(u)

]

. (3.9)

Finally, for m2 < −1/(2l2) the relevant roots of (3.6) take complex values, and the

solution becomes

F (u, y) =
y

l

{

F1(u) sin

[

l

√

− 1

2l2
− m2 ln

(y

l

)

]

+ F2(u) cos

[

l

√

− 1

2l2
− m2 ln

(y

l

)

]}

. (3.10)

The configurations given by (3.7)–(3.10) represent the AdS3-wave solutions to the

New theory of Massive Gravity [1]. In section IV we will discuss the analogy between these

solutions and those arising in the context of the Topologically Massive Gravity. But, first,

let us comment on the asymptotic behavior of the solutions we just described.

3.2 The asymptotically AdS3 sector

As mentioned, AdS-waves are Siklos spacetimes [30] that can be thought of as gravitational

wave profiles propagating on AdS spacetime [31]. Here, we will show that, in addition, some

of these wave solutions of New Massive Gravity are also asymptotically AdS3.

New Massive Gravity in AdS3 has been recently studied in [1, 5, 6]. According to

AdS3/CFT2 correspondence, the theory formulated in AdS3 would be dual to a two-

dimensional conformal field theory with central charge given by

c =
3l

2G

(

1 − 1

2m2l2

)

. (3.11)

This value for the central charge is easily obtained by standard means [32]. From this

we observe that something special happens at m2 = 1/(2l2), where c vanishes. Likely,

the unitarity of the theory (when sufficiently relaxed boundary conditions are considered)

would demand the bound m2 > 1/(2l2). Let us discuss the different asymptotic behaviors

in relation to this bound.

First, let us take a look at solutions (3.7). The wave solution turns out to be an

asymptotically AdS3 spacetime if F− = 0 and m2 > 1/(2l2). That is, the solution is

– 5 –
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asymptotically AdS3 according to Brown-Henneaux boundary conditions [10], which, in

these coordinates, are defined by the next-to-leading behavior

gµν = gAdS
µν + hµν , (3.12)

where gAdS
µν is given by (2.2), while the components of the perturbation hµν are of order

huu ∼ huv ∼ hvv ∼ hyy ∼ O(1), and huy ∼ hvy ∼ O(y).

On the other hand, at the critical value m2 = 1/(2l2), solution (3.9) turns out to

be compatible with the weakened (logarithmic) AdS3 asymptotic behavior discussed in

refs. [11, 12, 22, 23], which amount to relax boundary conditions as huu ∼ O(ln y) and

huy ∼ O(y ln y). These weakened AdS3 boundary conditions were originally discussed

within the context of Topologically Massive Gravity, where the analog of solution (3.9)

given in refs. [13, 14] is eq. (5.22) below, and it was recently argued that they might play

an important role in New Massive Gravity too [6]. It has been known for a while that,

for certain particular points of the space of parameters of a given theory, the concept of

asymptotically AdS3 space may be consistently extended to incorporate a larger class of ge-

ometries [33]. This issue has played an important role in recent discussions on Topologically

Massive Gravity [23].

4 Analogies with topologically massive gravity

It is interesting to notice that all the branches of solutions discussed above, except the

complex one (3.10), have their counterparts in Topologically Massive Gravity [13–18]. In

particular, the critical cases m2 = ±1/(2l2) deserve a particular attention because these are

reminiscent of the chiral values µ = ±1/l of Topologically Massive Gravity, with µ being

the topological mass. These points of the space of parameters were shown to be special

in what regards to the massive behavior of AdS3-wave solutions [14]. More recently, the

points µ = ±1/l appeared to be relevant also for the discussion about the chiral gravity

conjecture [19]; see also [11, 17, 20, 23] and references therein.

The purpose of this section is to discuss this and other analogies between the AdS-wave

solutions of New Massive Gravity and those of Topologically Massive Gravity.

4.1 The Schrödinger invariant sector

Recently, a generalization of the AdS/CFT correspondence has been proposed in the con-

text of non-relativistic conformal field theories. The basic idea is that geometries whose

isometry group agrees with the non-relativistic conformal group, namely the Schrödinger

group, could represent gravity duals for systems of condensed matter physics [34, 35]. The

Schrödinger group is defined as the maximal group of symmetries which leave invariant

the Schrödinger equation for a free particle [36, 37], and can be thought of as the semi

direct product of SL(2, R) with the connected static Galilei group. The set of Schrödinger

transformations are given by the standard Galilei transformations augmented by the time

dilatation and a special conformal transformation.

Because of the holographic applications to non-relativistic CFTs, the search of theories

that admit as solutions Schrödinger-invariant backgrounds has attracted much attention

– 6 –
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recently. Moreover, it is worth mentioning that the AdS-waves of Topologically Massive

Gravity [14] contains Schrödinger invariant solutions at the special point µ = 3/l [38].

These solutions correspond to the null warped-AdS3 spacetimes of [21]. Here, let us show

that our generic solution (3.7) of New Massive Gravity may exhibit the Schrödinger isom-

etry too. In fact, if one takes one of the arbitrary functions F± to be a constant and the

other one to be zero, then the solution (3.7) simply reads

F (y) = F0

(y

l

)−2ν
(4.1)

where F0 is an arbitrary constant and ν = −α/2 is called the “dynamical exponent” in

this context. Interesting enough, the isometry group of metric (2.3) for solution (4.1)

gets enhanced, exhibiting the so-called partial Schrödinger group, which is the group of

all Schrödinger transformations except the special conformal transformation. The partial

Schrödinger symmetry is realized by the Killing vectors

H = ∂v, N = ∂u,

D = (1 + ν)v∂v + (1 − ν)u∂u + y∂y.

In addition, the particular election F+ = 0 and F− = const. allows the special case ν = 1,

which corresponds to

m2 =
17

2l2
, (4.2)

and the solution exhibits the full Schrödinger symmetry, i.e. the isometry group is aug-

mented by the Killing vector

C = v2∂v +
1

2
y2∂u + yv∂y.

This critical point (4.2) is analogous to the point µ = 3/l of the Topologically Massive

Gravity (see eq. (5.9) below). This reinforces the resemblance between both theories.

4.2 AdS waves as massive scalar modes: log waves saturate the BF bound

Another interesting property of solutions (3.7) is that the profile function F behaves exactly

as a massive scalar mode, as it satisfies the Klein-Gordon equation

�F = m2
effF, (4.3)

with effective mass given by

m2
eff = m2 − 1

2l2
. (4.4)

This shifting of the bare mass m by a term proportional to the curvature of the AdS3 space

is also observed in the case of AdS3-waves of Topologically Massive Gravity, where the

effective mass is found to be

µ2
eff = µ2 − 1

l2
,

– 7 –
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(see ref. [14] for details). However, the New Massive Gravity profile (3.7) describes in fact

the superposition of two scalar modes, in contrast with Topologically Massive Gravity, for

which a single mode arises (see eq. (5.9) later). Actually, at this level it may seem artificial

to make a distinction between the “two modes” appearing in eq. (3.7) since, after all, they

have the same effective mass (4.4). However, we will see in the next section that the inclu-

sion of a topologically massive term (i.e. the Chern-Simons gravitational term) breaks this

mass degeneracy and thus the distinction between the two modes ultimately makes sense.

In the case of the New Massive Gravity, and for the special case m2 = −1/(2l2),

the profile (3.8) also describes the superposition of two exact massive scalar modes, each

one satisfying

�F = − 1

l2
F. (4.5)

This case does not differ from the generic one (4.3) since the effective mass becomes

m2
eff = −1/l2 and thus corresponds to the mass given by (4.4). Interesting enough, we find

that this value for the effective mass exactly saturates the Breitenlohner-Freedman bound

for the mass of a scalar field in the AdS3 space where the wave is propagating on [39, 40].

The result (4.5) for the case m2 = −1/(2l2) is in contrast with what happens in

Topologically Massive Gravity, where none of the logarithmic solutions that appear at

µ = ±1/l (see eqs. (5.19) and (5.22) below) satisfy the Klein-Gordon equation. The

analogy with Topologically Massive Gravity is thus manifested at the other critical point,

m2 = +1/(2l2). At this point, the wave profile (3.9) does not satisfy a Klein-Gordon

equation, and, as mentioned before, this is precisely the point of the space of parameters

where the asymptotically AdS3 spaces admit logarithmic branches [6] similar to those

appearing for Topologically Massive Gravity at the chiral point µ = −1/l, [11, 12].3 Also, it

is interesting to notice that the New Massive Gravity profile (3.9) is exactly a superposition

of the critical profiles (5.19) and (5.22) of Topologically Massive Gravity

F = FTMG|µ=−1/l + FTMG|µ=+1/l . (4.6)

We remark that, despite the fact the profile function F in Topologically Massive Gravity

at the points µ = ±1/l do not obey the Klein-Gordon equation, it can be used to generate

the following scalar modes,

l

y
FTMG|µ=−1/l , and

y

l
FTMG|µ=+1/l , (4.7)

which do satisfy the Klein-Gordon equation (4.5) saturating the Breitenlohner-Freedman

bound. That is, one can interpret the profile (3.9) of New Massive Gravity at the critical

point m2 = +1/(2l2) as a local superposition

F =
y

l

[

l

y
F |F2=0

]

+
l

y

[

y

l
F |F1=0

]

, (4.8)

of exact massive scalar modes (those between brackets) which saturate the Breitenlohner-

Freedman bound.
3Our definition of the topological mass is minus the one of those references, where the chiral point occurs

for µ = +1/l.
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So far, we have discussed the analogies between New Massive Gravity and Topologically

Massive Gravity. Now, let us move to analyze what happens when these two theories are

brought together.

5 Turning on a topological contribution

In this section, we analyze the effect of turning on the Chern-Simons topological term in

the gravitational action (3.1), and see how it affects the existence and properties of AdS-

wave configurations we discussed so far. The inclusion of the topologically massive term

in the action amounts to add the Cotton tensor4 [2, 3]

Cµν = ηµαβ∇α

(

R ν
β − 1

4
R δ ν

β

)

, (5.1)

to the equations of motion (3.2). The resulting field equations read [1]

Gµν + λgµν − 1

2m2
Kµν +

1

µ
Cµν = 0, (5.2)

where the coupling constant µ stands for the topological mass. It is known that the Cotton

tensor vanishes for constant curvature configurations. Therefore, in order for the AdS3

metric (2.2) to be a solution of the generalized equations (5.2), the constraint between the

cosmological constant λ, the AdS radius l, and the mass m, must be exactly the same as

in eq. (3.4).

For an AdS-wave (2.3), the only nonvanishing component of the Cotton tensor is Cuu,

and it is proportional to the third derivative of the wave profile with respect to the wave-

front coordinate y. The resulting single equation is again of the Euler-Fuchs type; namely
[

y4∂4
yF +

(

2 − lm2

µ

)

y3∂3
yF

− (1 + 2l2m2)

2

(

y2∂2
yF − y∂yF

)

]

δu
µδu

ν

2l2m2y2
= 0. (5.3)

The characteristic polynomial is now given by

α(α − 2)

[

(

α − 1 − lm2

2µ

)2

− 1 + 2l2m2

2
− l2m4

4µ2

]

= 0. (5.4)

Below, we will analyze all the possible solutions.

5.1 Topological mass splitting

According to (5.4), the generic solution is given by

F (u, y) = F+(u)
(y

l

)1+ lm2

2µ
+

r

1+2l2m2

2
+ l2m4

4µ2

+ F−(u)
(y

l

)1+ lm2

2µ
−

r

1+2l2m2

2
+ l2m4

4µ2

. (5.5)

4Here, ηµαβ corresponds to the volume 3-form, with ηuvy =
√
−g (ηuvy = −1/

√
−g).
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This generalizes the generic profile of New Massive gravity (3.7). It represents the super-

position of two exact scalar modes, both satisfying a Klein-Gordon equation (4.3). These

modes are given by F− = 0 (resp. F+ = 0) with effective masses given respectively by

m2
eff± =

(

m2

2µ
±
√

m4

4µ2
+ m2 +

1

2l2

)2

− 1

l2
. (5.6)

From this we observe that the physical effect of including the topological term is that of

breaking the degeneracy in the mass spectrum (4.4) for the two scalar modes of pure New

Massive Gravity (3.7). In other words, the topological term produces the following mass

splitting between the two generic gravitational states

∆m2
eff =

2m2

µ

√

m4

4µ2
+ m2 +

1

2l2
. (5.7)

It is interesting that one has access to this fine structure effect beyond the perturbative level.

The spacetime configurations (5.5) also contain sectors enjoying the partial Schrödinger

isometry as in eq. (4.1), while the full Schrödinger symmetry is exhibited this time for

m2 =
17µ

2l2 (µ − 3/l)
. (5.8)

Notice that the generic formulas of section 3 are obtained from the previous ones in

the limit µ → ±∞. It is also remarkable that the critical value for which the AdS-waves

solutions of Topologically Massive Gravity are Schrödinger invariant, i.e. µ = 3/l, is also

recovered from the mass (5.8) in the limit m2 → ±∞. Actually, in this limit, one of

the two modes in eq. (5.5) diverges/vanishes and has no analogue in Topologically Massive

Gravity, while the other mode corresponds precisely to the single generic mode that appears

in Topologically Massive Gravity [13, 14]; namely

FTMG(u, y) = F1(u)
(y

l

)1−lµ
. (5.9)

This two-to-one correspondence between the modes of both theories is a common

feature of this transition and is easily understood by taking into account that, unlike in

New Massive Gravity, parity is broken in Topologically Massive Gravity, and this fact forces

the latter theory to select only one of the two modes arising in the former.

5.2 Logarithmic branches

Now, let us discuss the cases allowing multiplicities in the roots of the characteristic poly-

nomial (5.4). These cases are those where logarithmic branches arise.

The roots corresponding to the generic solution (5.5) reduce to a single one for the two

following families of mass values

m2 = 2µ2

(

−1 ±
√

1 − 1

2l2µ2

)

. (5.10)
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This double multiplicity leads to two new families of solutions; namely

F (u, y) =
(y

l

)1+lµ
h

−1±
√

1−1/(2l2µ2)
i

×
[

F1(u) ln
(y

l

)

+ F2(u)
]

. (5.11)

For the upper sign, and taking the limit µ → ±∞, the mass goes like

m2 = − 1

2l2
+ O

(

1

µ2

)

, (5.12)

and then one recovers the first critical solution (3.8), studied in section 3. The same limit

is divergent for the lower-sign since

m2 = −4µ2 +
1

2l2
+ O

(

1

µ2

)

, (5.13)

Actually, this describes the transition to the standard AdS3 Einstein gravity instead of

to pure New Massive Gravity. It is known that AdS waves are locally trivial in this

context [14], and consequently, one mode vanishes and the other diverges in the above limit.

For the lower-sign family, and for the topological mass taking the value µ = 3/(4l)

(resp. µ = −3/(4l)), the root α = 0 (resp. α = 2) becomes triple and then the solutions in

these cases respectively read

F (u, y) = ln
(y

l

) [

F1(u) ln
(y

l

)

+ F2(u)
]

, (5.14)

and

F (u, y) =
(y

l

)2
ln
(y

l

) [

F1(u) ln
(y

l

)

+ F2(u)
]

. (5.15)

Another critical value for the mass is given by

m2 =
µ

2l2(µ − 1/l)
, (5.16)

where the value α = 0 turns out to be a double root. The solution, for a generic value of

the topological mass µ 6= 3/(4l),5 is

F (u, y) = F1(u)
(y

l

)(4lµ−3)/[2(lµ−1)]
+ F2(u) ln

(y

l

)

. (5.17)

In the limit µ → ±∞, the exponent in the first term above takes the value 2 and the associ-

ated mode can be eliminated by coordinate transformations. Besides, since the associated

mass (5.16) behaves like

m2 =
1

2l2
+ O

(

1

µ

)

, (5.18)

one recovers just one of the two modes of the critical solution (3.9). Moreover, from the

mass expression (5.16), we notice that the Topologically Massive Gravity limit, m2 → ±∞,

5In what follows we exclude the cases µ = ±3/(4l) since they have triple multiplicity and were already

considered, see eqs. (5.14) and (5.15).
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is achieved for µ → 1/l. In this limit, the mode associated to the power law in (5.17)

diverges/vanishes and has no analogue in Topologically Massive Gravity. In contrast, the

logarithmic mode survives and then one recovers the single critical mode of Topologically

Massive Gravity with µ = 1/l [13, 14]

FTMG(u, y)|µ=+1/l = F2(u) ln
(y

l

)

. (5.19)

The last example for which double multiplicity arises is the point

m2 =
µ

2l2(µ + 1/l)
, (5.20)

where the root α = 2 becomes double. The corresponding solution for a generic value of

the topological mass, as long as µ 6= −3/(4l), is expressed by

F (u, y) = F1(u)
(y

l

)2
ln
(y

l

)

+ F2(u)
(y

l

)1/[2(lµ+1)]
. (5.21)

In the limit µ → ±∞, the power-law contribution in the second term of (5.21) can be

eliminated by coordinate transformations and the associated mass (5.20) behaves as in

eq. (5.18). This limiting case allows to recover the remaining mode of the critical solu-

tion (3.9) which was absent in the previous solution. Taking a look at the Topologically

Massive Gravity limit (m2 → ±∞) in (5.20) one notices that it is in correspondence with

the limit µ → −1/l. Here again, the mode associated to the power-law dependence in

eq. (5.21) diverges/vanishes and has no analogue in Topologically Massive Gravity. The

logarithmic mode remains untouched and it becomes exactly the single critical mode al-

lowed for µ = −1/l [13, 14]; namely

FTMG(u, y)|µ=−1/l = F1(u)
(y

l

)2
ln
(y

l

)

. (5.22)

These cases exhaust all the AdS-wave solutions (2.3) one finds for the theory (5.2).

6 Conclusions

In this paper, we have studied AdS-wave configurations in three-dimensional massive grav-

ities.

The first model we considered was the New Massive Gravity recently proposed by

Bergshoeff, Hohm, and Townsend, in ref. [1]. In addition to the cosmological constant,

this model has a mass parameter m, which is the coupling constant of the higher-curvature

terms that supplement the Einstein-Hilbert action. For this theory, we considered AdS-

wave configurations, which correspond to exact solutions that can be thought of as waves

propagating on AdS3 spacetime of radius l. These AdS-wave solutions are characterized

by a function F (u, y), which describes the profile of the wave, and depends on the retarded

time u and on the front-wave coordinate y.

We have exhaustively explored the space of solutions of this kind and, in particular, we

have shown that special features occur at the critical values m2 = ±1/(2l2). At these points,
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solutions with logarithmic fall-off in the Poincaré radial coordinate y arise. This resembles

what happens in the case of Topologically Massive Gravity at the chiral point µ = ±1/l [14].

At m2 = +1/(2l2), one finds that asymptotically AdS3 exact solutions obeying the weak-

ened fall-off proposed in [11, 12] for Topologically Massive Gravity appear; a fact that is

suggested by the linearized analysis performed in ref. [6] for New Massive Gravity. This

special mass coincides with the point of the space of parameters at which the central charge

of the dual CFT2 vanishes. This naturally leads one to the conjecture that, likely, the New

Massive Gravity of [1] at the point m2 = 1/(2l2) is dual to a two-dimensional non-unitary

conformal field theory if sufficiently weakened AdS3 asymptotic conditions are considered.

For the range of parameters m2 > 1/(2l2), however, asymptotically AdS3 solutions obeying

stronger Brown-Henneaux boundary conditions arise, and the theory is likely unitary.

We also found solutions whose isometry corresponds to the Schrödinger symmetry

group. These geometries exist for m2 > 1/(2l2), and are analogous to those that were

recently considered in the context of the non-relativistic version of the AdS/CFT dual-

ity [34, 35]. In particular, the full Schrödinger symmetry is achieved for m2 = 17/(2l2).

For all the values m2 6= 1/(2l2) the profile function F behaves as a massive scalar

excitation, as it satisfies the Klein-Gordon equation with effective mass m2
eff = m2−1/(2l2).

In fact, the profiles describe two exact scalar modes sharing the same mass. In particular,

for the case m2 = −1/(2l2) these modes saturates the Breitenlohner-Freedman bound for

a massive particle on the AdS3 space where the wave is propagating on.

We also considered the New Massive theory of Gravity coupled to Topologically Mas-

sive Gravity. This introduces a second mass scale µ in the theory. For this model, we have

exhaustively explored the space of AdS-wave solutions, and we have shown that different

branches with different asymptotic behaviors arise. We discussed the effects of turning on

the gravitational Chern-Simons term: This induces a mass splitting that breaks the mass

degeneracy present in the generic modes of the New Massive Gravity waves. Additionally,

several generalization of the previous results are obtained, for example, full Schrödinger

invariant backgrounds are obtained now for m2 = 17µ/[2l2(µ − 3/l)]. We also analyze

the different limits both to New Massive Gravity and to Topologically Massive Gravity

obtaining consistent results. The interplay between the parity preserving and the parity

violating Lagrangians is also discussed.

A recent paper [41] studies the linearized solutions of New Massive Gravity coupled to

Topologically Massive Gravity in AdS3. The asymptotic behaviors of the exact solutions

we have found here realize some of the linearized solutions of ref. [41].
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