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Abstract

We show a physical realization of the Langlands duality in correlation functions of
H+

3 WZNW model. We derive a dual version of the Stoyanovky-Riabult-Teschner (SRT)
formula that relates the correlation function of the H+

3 WZNW and the dual Liouville
theory to investigate the level duality k−2 → (k−2)−1 in the WZNW correlation functions.
Then, we show that such a dual version of the H+

3 −Liouville relation can be interpreted
as a particular case of a biparametric family of non-rational CFTs based on the Liouville
correlation functions, which was recently proposed by Ribault. We study symmetries
of these new non-rational CFTs and compute correlation functions explicitly by using
the free field realization to see how a generalized Langlands duality manifests itself in
this framework. Finally, we suggest an interpretation of the SRT formula as realizing
the Drinfeld-Sokolov Hamiltonian reduction. Again, the Hamiltonian reduction reveals
the Langlands duality in the H+

3 WZNW model. Our new identity for the correlation
functions of H+

3 WZNW model may yield a first step to understand quantum geometric
Langlands correspondence yet to be formulated mathematically.

http://arXiv.org/abs/0805.1254v1


1 Introduction

Two-dimensional non-rational conformal field theories (CFTs) have many applications both
in physics and mathematics, from quantum (stringy) black hole in physics to the geometric
Langlands program in mathematics. Most of what we currently know about these theories,
however, is based on our understanding of Liouville field theory (LFT) [1]. In fact, LFT is by far
the best understood theory among non-rational CFTs, which turns out to be the prototypical
model to establish their exact quantization. A clear example is the H+

3 = SL(2, C)/SU(2)
Wess-Zumino-Novikov-Witten (WZNW) theory, whose structure was actually understood by
resorting to the analogy with LFT [2, 3, 4].

The story took a new direction three years ago when S. Ribault and J. Teschner showed
that the relation between LFT and WZNW model could be pushed forward, beyond the level of
a mere analogy, to the level of correspondence in correlation functions. In [5], they proved that
arbitrary correlation functions of the H+

3 WZNW model admit simple expressions in terms of
correlation functions of LFT. More precisely, any n-point function of the H+

3 WZNW theory
on the topology of the sphere can be written in terms of a 2n− 2-point functions of LFT. This
correspondence between observables of these two non-rational CFTs follows from a previous
result of A. Stoyanovky, who proved in [6] a surprising functional relation between solutions to
the Knizhnik-Zamolodchikov (KZ) equation and to the Belavin-Polyakov-Zamolodchikov (BPZ)
equation. In this paper, we refer to the formula that connects WZNW correlation functions
and Liouville correlation functions as Stoyanovsky-Ribault-Teschner (SRT) formula.

The primary aim of this paper is to further investigate the SRT H+
3 −Liouville correspon-

dence and its generalizations, especially in order to understand the Langlands level duality in
correlation functions of H+

3 WZNW model and study its physical applications. We, thus, begin
with the review of recent development in this direction.

1.1 The H+
3 −Liouville correspondence

The H+
3 −Liouville correspondence has several interesting applications in string theory. For ex-

ample, it can be straightforwardly adapted to describe the SL(2, R)k/U(1) coset model, so that
string amplitudes in the two-dimensional black hole background can be described by Liouville
correlation functions [7]. This correspondence is also relevant to study string theory in three-
dimensional Anti-de Sitter space (AdS3), the dynamics of inhomogeneous tachyon condensation
in closed string theory, the six-dimensional little string theory, and many other scenarios (see
[8, 9, 10, 11, 12] and references therein). Some of these applications were investigated in [13],
where it was pointed out that in order to fully describe the tree-level string amplitudes in AdS3,
the result of [5] needed to be generalized to include the spectral flowed sectors1 of SL(2, R)k.
In [15], S. Ribault achieved to incorporate such spectral flowed sectors by extending the results
of [5]. The key point was to generalize the KZ equation to the case of WZNW correlation func-
tions that involve spectral flowed fields. In particular, it was shown that if in a given WZNW

1In this paper, we do not make a clear distinction between the SL(2, R) WZNW model and H+
3 model

because we assume that the analytic continuation of correlation functions describes the former from the latter.
See for instance [14] for a similar treatment.
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correlation function the conservation of the spectral flow number is violated in ∆ω units, then
such a correlation function can always be written in terms of a 2n − 2 − ∆ω-point correlation
function of LFT. This new correspondence increased the set of WZNW correlation functions
that admit a representation in terms of LFT (see formula (59) of Appendix B).

After the formulation of the SRT H+
3 −Liouville correspondence on the worldsheet sphere,

further generalizations were accomplished. First, its extension to the case of worldsheet geom-
etry with boundaries was worked out in [16, 17, 18, 19], which can be regarded as a worldsheet
description of the D-brane in the string theory context.

The second generalization was the extension to the case of higher genus correlation func-
tions: in [20] Y. Hikida and V. Schomerus proved that any n-point correlation functions of
the H+

3 WZNW model at genus g can be written in terms of 2n + 2g − 2-point functions of
LFT. This higher genus generalization was done by employing a path integral derivation of the
H+

3 −Liouville correspondence (see also [21]).
Very recently, following the path integral approach of [20], S. Ribault proposed a novel

generalization of H+
3 −Liouville correspondence, arguing that LFT may provide a representation

of observables of a wider set of CFTs [22]. According to this proposal, SRT H+
3 −Liouville

correspondence could be merely a particular example of a more general correspondence. The
statement [22] is that 2n− 2-point correlation functions of LFT on the sphere can be regarded
as generators of n-point correlation functions of a biparametric family of non-rational CFTs.
Each member of this family of theories is characterized by two continuous parameters, b and m,
and the parameterization is such that LFT corresponds to the particular case m = 0, having
central charge cL = 1 + 6(b + b−1)2.

We here make a following preliminary observation, on which we elaborate more in this
paper. On one hand, among members of the above biparametric family, the H+

3 WZNW model
corresponds to the case m = 1, where the WZNW level is given by k = b−2 + 2 and its central
charge by cSL(2) = 3+6b2. On the other hand, as we will show, the case m = b2 also corresponds
to the H+

3 WZNW theory whose central charge cSL(2) = 3 + 6b−2, but with level k = b2 + 2.
This implies that the H+

3 model is represented by two curves in the space of parameters (m, b)
of [22]. Fixing the level k then corresponds to fixing a point on each curve, where the one curve
turns out to be related to the other by the Langlands level duality k − 2 → (k − 2)−1. In this
paper, we try to reveal the manifestation of Langlands duality in the H+

3 WZNW model, and
we will also argue that this could be seen as an example the more general duality. Specifically,
more members of the biparametric family of CFTs proposed in [22] could actually appear twice
in the space of parameters defined by the (m, b) plane. This idea is suggested by the structure
of the conformal Ward identities and it appears naturally when discussing the current algebra
that generates the symmetries of the theories.

1.2 Langlands duality and WZNW theory

The relation between the H+
3 WZNW model (or SL(2, R)k WZNW model) and LFT reveals its

significance not only in physics, but also in mathematics. Long before the advent of the SRT
relation, the connection between these two CFTs had been studied within the context of the
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geometric Langlands correspondence2 (see e.g. [25, 26, 28, 29]). It turns out that CFTs with
affine Kac-Moody symmetry (let us call the corresponding algebra ĝ) give a natural realization
of the geometric Langlands program, as they provide a natural way of realizing the so-called
Hecke eigensheaves. In this context, Hecke eigensheaf is an object closely related to the chiral
conformal blocks of the Gk WZNW model, and they are D-modules on the moduli space of the
G-bundle on the worldsheet that are attached to the LG-bundle with holomorphic connection
on the worldsheet, being LG the Langlands dual of the Lie group G associated to the Lie algebra
g; see [25].

One of the simplest but still highly nontrivial examples of the geometric Langlands cor-
respondence appears in the case of ĝ = sl(2)k at the critical level k → 2 (i.e. where the
level k takes the value of the Coxeter number). On one hand, we have the sheaf of coinvari-
ants3 (roughly speaking, D-modules associated to the chiral correlation functions or conformal
blocks) of the sl(2)k=2 over the moduli space of holomorphic SL(2)-bundle on the worldsheet.
On the other hand, we have a flat holomorphic LSL(2)-bundle on the worldsheet, which gen-
erates a classical Virasoro algebra as its Poisson structure (upon Hamiltonian reduction). The
Langlands correspondence predicts a correspondence between these two notions.

To study this connection, one first investigates the sl(2)k current algebra at its critical point
k → 2. First of all, the structure of chiral correlation functions depends on the SL(2)-bundle
by varying background SL(2) gauge field in the action. In the Langlands correspondence, we
identify this deformation of correlation functions with another deformation induced by changing
the center of the sl(2)k=2 current algebra which leads to a center-dependent representation of
primary vertex operators. It turns out that the center of the affine algebra is generated by
the un-normalized Sugawara current which yields the classical Virasoro algebra4 corresponding
to a holomorphic LSL(2) = SL(2)/Z2 connection on the worldsheet with the structure of an
Lsl(2)-oper (i.e. modulo gauge equivalence by its Borel subalgebra).

The geometric Langlands correspondence formulated on the sl(2)k current algebra in this
way has an intimate connection with the Drinfeld-Sokolov (DS) Hamiltonian reduction, which
reduces the SL(2, R)k WZNW model to LFT, [31, 32]. In the framework of geometric Lang-
lands correspondence, the isomorphism between the center of the sl(2)k current algebra at the
critical level and the classical Virasoro algebra can also be seen as a corollary of the quantum
Hamiltonian reduction, namely, the isomorphism between the representations of Hamiltonian
reduced chiral algebra and those of the Virasoro algebra at the quantum level5. Beyond the

2In physics literature, the terminology “Langlands duality” is often used to refer to the geometric Langlands
correspondence [24] we are mentioning here. However, we would like to save the terminology “Langlands
duality” to refer to a more specific duality; namely the duality under level transformation k − 2 → (k − 2)−1

of the ŝl(2)k current algebra. The reason why this duality is referred to as “Langlands duality” is that it
corresponds to the W-algebra (Virasoro) duality isomorphism which plays an important role in the geometric
Langlands correspondence (see section 8 of Ref. [25] and section 6 of Ref. [23] for discussions).

3They can be shown to be the Hecke eigensheaves.
4Notice that at the critical point k = 2 the Virasoro current (the stress-tensor T (z) with appropriate

normalization) commutes with the Kac-Moody currents Ja(z).
5By using the Wakimoto free field construction, one can show that the BRST cohomology of the quantum

Hamiltonian reduction is the center of the sl(2)k current algebra at the critical level, which completes the
argument (see for instance [31]).
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classical correspondence, the quantum Hamiltonian reduction also suggests a further mysteri-
ous duality (Langlands duality [32]) for the sl(2)k current algebra with k 6= 2. The quantum
version of Hamiltonian reduction connects the sl(2)k current algebra of level k and the Vi-
rasoro algebra with the central charge c = 1 + 6(b + b−1), where b−2 = k − 2. Notice that
this is actually the point where the Langlands correspondence relates the SL(2, R)k WZNW
model at the critical level (k → 2) with the classical LFT (b → ∞). The crucial observation
is that the same Virasoro algebra is obtained with the Langlands dual sl(2)k̃ algebra at the
dual level k̃, where b2 = k̃ − 2. Thus, under Hamiltonian reduction, the sl(2)k current algebra
manifests the intriguing level duality k − 2 → k̃ − 2 = (k − 2)−1. From the viewpoint the
Virasoro algebra the duality is nothing but the Liouville self-duality under b → b−1. However,
from the viewpoint of the sl(2)k current algebra, it is quite mysterious: not only it relates the
strongly coupled system with the weakly coupled system, but it also changes the central charge
as c

SL(2)
= 3 + 6b2 → 3 + 6b−2.

In this paper, we attempt to shed more light on this level duality. More precisely, we would
like to investigate a possible connection among the following three notions: the Langlands
level duality k − 2 → k̃ − 2, the SRT H+

3 −Liouville correspondence, and the DS Hamiltonian
reduction from the viewpoint of the correlation functions. To do this, we will begin by deriving
a generalization of the SRT relation that will manifest the level duality. Indeed, one can
reformulate the SRT formula by essentially changing b with b−1 in the LFT side, and then we
show that it leads to a surprising relation between the correlation functions in the H+

3 WZNW
theory with level k and those with the dual level k̃. Such a duality relation at finite values of
k is actually envisaged also by mathematicians, as somehow it encodes the quantum version
of the geometric Langlands correspondence. Mathematical understanding of the Langlands
correspondence at the off-critical level is under lively investigation (e.g. [33], see also [34, 35]
from a physical account). In this sense, our dual version of SRT formula can be seen as a
physical intuition of quantum Langlands correspondence yet to be formulated mathematically
at the level of the full correlation functions6.

In [20], Hikida and Schomerus discussed the relevance of the SRT H+
3 −Liouville correspon-

dence in the context of classical geometric Langlands correspondence on higher genus curves as
it precisely gives the appropriate basis of the WZNW conformal blocks that can be expressed
directly in terms of the conformal blocks of the Virasoro algebra (corresponding to the same
Virasoro algebra obtained through DS Hamiltonian reduction). Our version of the quantum
Langlands duality for the correlation functions can be straightforwardly generalized to higher
genus correspondence by virtue of their results, so it will give more insight about the quantum
Langlands duality on higher genus.

Before closing the introduction, a final word about the notation is in order. As mentioned,
understanding of the Langlands level duality beyond the critical value is of significance both in
physics and mathematics. Nevertheless, our motivations are entirely based on physical grounds,
and consequently, our discussion will be in the language usually employed within the physics
context.

6We emphasize that our approach only gives a relation between the full correlation functions and not between
the chiral correlation functions.
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1.3 Overview

The rest of the paper is organized as follows. In section 2, we derive the dual version of
the H+

3 −Liouville correspondence formula of [5]. We do this by using both the algebraic
method and the path integral approach. In section 3, we show that the dual version of the
H+

3 −Liouville formula can be interpreted as a particular case of the Lagrangian representation
of a biparametric family of non-rational CFTs recently proposed in [22]. We also compute
the correlation functions in these CFTs by using the free field theory representations to give
explicit expression for the three-point functions. Through the discussion, a generalization of
the Langlands level duality will be manifested among these new non-rational CFTs. In section
4, we study the DS Hamiltonian reduction at the level of correlation functions and its relation
to the SRT H+

3 −Liouville correspondence. The Hamiltonian reduction interpretation of the
(dual) SRT formula yields a surprising identity realizing the quantum Langlands duality. We
conclude in section 5 with some remarks and open questions. In Appendix A, we collect some
information of special functions used in the main text. In Appendix B, we generalize our
discussion in the case of winding number violating correlation functions.

2 Dual version of SRT formula

Our first goal is to derive the dual version of the H+
3 −Liouville correspondence of [5]. The

formula relates n-point functions of H+
3 WZNW model in the so-called µ basis (see section 2-2

for more details) and (2n−2)-point functions of LFT. More precisely, we would like to propose
the following dual version of SRT formula7

〈

∏n

i=1
Φji

(µi|zi)
〉

H+
3

=
π

2b̃
(−π)nδ(2)

(

∑n

i=1
µi

)

|Θn|2
〈

∏n

i=1
Vαi

(zi)
∏n−2

t=1
V− b̃

2

(yt)
〉

LFT
,

(1)
where the correlation function on the right hand side corresponds to a 2n− 2-point function of
LFT, which involves 2n − 2 exponential primary fields Vα(z) = e

√
2αϕ(z). The central charge of

LFT is given in terms of b̃ as cL = 1+6Q2, Q = b̃+ b̃−1. We define LFT by the classical action

SLFT =
1

2π

∫

d2z
(

∂ϕ∂̄ϕ + 2πµLe
√

2b̃ϕ
)

.

The interpolating function Θn is given by

Θn(z1, · · · , zn|y1, · · · , yn−2|u) =
u
∏

r<s≤n(zr − zs)
b̃2

2

∏

t<l≤n−2(yt − yl)
b̃2

2

∏n
r=1

∏n−2
t=1 (zr − yt)

b̃2

2

, (2)

where yi are related to µi and u (so-called Sklyanin’s separation of variables) as follows:

u =
∑n

i=1
µizi,

n
∑

i=1

µi

t − zi

= u

∏n−2
j=1 (t − yj)
∏n

i=1(t − zi)
. (3)

7To avoid a confusion, we use the notation b̃ for the Liouville exponent to emphasize we are discussing the
dual SRT formula, while we eventually identify b̃ with b when we study the Langlands duality.
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The Liouville momenta αi is related to the SL(2, R)-spin variables ji as

αi = b̃−1 (ji + 1) + b̃/2 , (4)

while the Liouville parameter b̃ is related to the WZNW level k by8

b̃2 = k − 2 , (5)

which implies the relation between conformal dimensions as ∆α + ∆−b̃/2 + b̃2/2 = ∆α − k/4 =

−b̃−2j(j + 1) = ∆j .
Expression (1) represents a dual version of the SRT formula, as it was presented in [5]. In

fact, the original version of the formula in [5] is obtained from (1) by replacing b̃ → b−1. This is
actually the key point here: the fact that such a dual expression exists implies that the formula
(1) and the one in [5], considered together, induce the duality under b−2 = k − 2 → (k − 2)−1

at the level of WZNW correlation functions, provided the self-dually under b → b̃ of Liouville
theory holds and a suitable transformation of the SL(2, R)-spin variables as b(j +1+ b−2/2) →
b̃(ji + 1 + b̃−2/2) is introduced. We return to this point in section 4.

Now, let us prove (1) by reviewing the analysis of [5] and [20].

2.1 Knizhnik-Zamolodchikov equation

Let us begin with the relation between reflection coefficients of both LFT and WZNW model.
First, consider the Liouville two-point function

RL(α) = −(πµLγ(b̃2))
Q−2α

b̃
Γ(1 + b̃(2α − Q))

Γ(1 − b̃(2α − Q))

Γ(1 + b̃−1(2α − Q))

Γ(1 − b̃−1(2α − Q)
. (6)

and the SL(2, R)k two-point function

RH(j) = −
(

γ( 1
k−2

)

π(k − 2)

)−2j−1
Γ(2j + 1)

Γ(−2j − 1)

Γ(2j+1
k−2

)

Γ(−2j+1
k−2

)
, (7)

where γ(x) = Γ(x)/Γ(1 − x). It is straightforward to verify that reflection coefficients (6) and
(7) are related as

RL(b̃−1(j + 1) + b̃/2) = RH(j) , (8)

as long as
(

πµLγ(b̃2)
)b̃−2

=
γ( 1

k−2
)

π(k − 2)
, or µ̃L =

1

π2b̃2
. (9)

for the prefactor to match.9 This shows how the dual relation (1) holds for the simple case of
the two-point function.

8Note that in the original formula, we have b2 = (k − 2)−2.
9Recall the Liouville duality relation [37]:

(

πµ̃Lγ(b−2)
)b

=
(

πµLγ(b2)
)1/b

. In [5] the convention µ = b2/π2

was used.
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To go further, let us consider the Liouville four-point function,

F L(α1, α2,−b̃/2, α3) =
〈

Vα1(z1)Vα2(z2)V− b̃
2

(y1)Vα3(z3)
〉

LFT
, (10)

which is given by

F L(α1, α2,−b̃/2, α3) = |z32|2(∆α1−∆α2−∆α3+∆
−b̃/2)|z31|2(∆α2−∆α1−∆α3+∆

−b̃/2) ×
×|z21|2(∆α3−∆α1−∆α2−∆

−b̃/2)|z3 − y1|−4∆
−b̃/2 |1 − z|2(j1+1)+b̃2 ×

×
∑

η=±

(

|z|2(∆α3−ηb̃/2−∆α3+∆ηb̃/2)C̃L
η (α3)C

L(α2, α1, α3 − ηb̃/2) ×

× 2F1(−jη
3 + j1 + j2 + 1,−jη

3 + j1 − j2,−2jη
3 , z) ) , (11)

where

zab = za − zb , z =
(z1 − z2)(y1 − z3)

(z1 − z3)(y1 − z2)
,

and j− = j, j+ = −j−1. In (11), the function CL(α3, α2, α1) corresponds to Liouville structure
constant

CL(α3, α2, α1) = (πµLγ(b̃2)b̃2−2b̃2)s Υ′(0)

Υ(α1 + α2 + α3 − Q)

∏3

i=1

Υ(2αi)

Υ(α1 + α2 + α3 − 2αi)
,

where s = 1 + b̃−2 − b̃−1(α1 + α2 + α3). See Appendix A for the definition and properties of
Υ(x). The special structure constants C̃L

η (α) in (11) are given by

C̃L
−(α) = (πµLγ(b̃2))b̃2 γ(2b̃α − 1 − b̃2)

γ(2b̃α)
, C̃L

+(α) = 1 .

It is relatively easy to show that (10) becomes

F L(α1, α2,−b̃/2, α3) = |z32|2(∆α1−∆α2−∆α3−∆
−b̃/2)|z31|2(∆α2−∆α1−∆α3−∆

−b̃/2) ×
×|z21|2(∆α3−∆α1−∆α2−∆

−b̃/2)|u|4∆−b̃/2 |µ1|b̃
2|µ2|b̃

2 |µ3|b̃
2 ×

×(−2π2b̃)CH(j3, j2, j1)D
H [j, µ] (12)

with CH(j3, j2, j1)D
H [j, µ] being the H+

3 WZNW structure constants found in [2, 38, 39] written
in terms of the so-called µ-basis introduced in [5]. Then, if one multiplies (12) by Θ3, one finds
the expected agreement, as stated in (1).

To complete the proof, we have to study higher-point functions. For this purpose, we first
show the relation between the BPZ equation and the KZ equation, corresponding to the right
and the left hand side of (1) respectively. The BPZ equation satisfied by LFT correlation
functions that involve degenerate field V−b̃/2 is given by

[

1

b̃2

∂2

∂y2
r

+
∑

s 6=r

(

1

yr − ys

∂

∂ys
+

∆−b̃/2

(yr − ys)2

)

+
∑

s

(

1

yr − zs

∂

∂zs
+

∆αs

(yr − zs)2

)

]

ΩL
2n−2 = 0 ,

7



where ΩL
2n−2 denotes the Liouville correlation function appearing in (1). On the other hand,

the Sklyanin separation of variable yields the following form for the KZ equation
[

1

b̃2

∂2

∂y2
a

+
n
∑

r=1

1

ya − zr

(

∂

∂zr
+

∂

∂ya

)

−
∑

b6=a

1

ya − yb

(

∂

∂ya
− ∂

∂yb

)

+
n
∑

r=1

∆jr

(ya − zr)2

]

ΩH
n = 0 ,

where ΩH
n denotes the H+

3 correlation function in (1).
Crucial observation is that these two equations agree with each other after twisting by

Θn. Now, since the correlation functions of both theories satisfy the same linear differential
equation, one can show (1) by taking a particular limit z12 → 0 and following the same induction
argument used in [5].

In summary, the same argument employed in [5] leads to the derivation of the dual relation
(1). Our dual formulation clearly implies the close relation between the Liouville self duality
under b̃ → b̃−1(= b) and the Langlands level duality under k − 2 → (k − 2)−1 in SL(2, R)k

WZNW correlation functions. Generalization to the winding violating correlation functions
and disk one-point functions should be straightforward (see Appendix B).

We stress that although our dual formula looks as if it were a mere rewriting of the original
formula with the dual variable, it is not. It is rather a consequence of the Liouville duality
under b → b−1. For example, we had to set the dual cosmological constant to a particular value
and this relation is different from the original SRT formula, whose origin will be clarified further
when we discuss the path integral derivation. Alternatively speaking, the inductive proof of
the equivalence between the original SRT formulation and the dual formulation presented here
can be thought of as a derivation of the self-duality of LFT at the level of n-point correlation
functions. Because the Liouville self-duality is not trivial10 and not proven in general, our dual
formula is indeed non-trivial. We will see that the existence of such a dual formula leads to a
far-reaching consequence of the Langlands duality in the H3

+-correlation functions.
In the next subsection, we present an alternative derivation of (1) by using the path integral

approach.

2.2 Path integral derivation

Dual SRT formula (1) can be obtained also from the path integral approach by using the so-
called dual screening operator. The possibility was already mentioned in [20]. The starting
point is the H+

3 WZNW model represented by the free field action

S0 =
1

2π

∫

d2z
(

∂φ∂̄φ + β∂̄γ + β̄∂γ̄
)

, (13)

where φ field has a background charge11 Q̂ = 1/
√

k − 2 = b̃−1(= b), and by the addition of the
dual screening operator

Ss =
1

2π

∫

d2z
(

−ββ̄
)b̃2

e
√

2b̃φ . (14)

10For instance, it is known to break down in the spherical partition function [40].
11We formulate the path integral on the flat Euclidean space. A careful treatment of the curvature coupling

can be found in [20].
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The sl(2)k vertex operators in the so-called µ-basis can be realized as

Φj(µ|z) = |µ|2j+2eµγ−µ̄γ̄e
√

2b̃−1(j+1)φ ,

whose conformal dimensions are ∆j = −b̃−2j(j + 1).
To compute the left hand side of (1) and explicitly connect it with the right hand side, we

would like to evaluate the path integral

〈

∏n

i=1
Φji

(µi|zi)
〉

H+
3

=

∫

DφDγDγ̄DβDβ̄ e−S0−Ss
∏n

i=1
Φji

(µi|zi) .

The integration over field γ (with a suitable contour modification) yields the delta function
constraint

∂̄β(w) = 2π

n
∑

i=1

µiδ(w − zi) ,

or, equivalently, the integrated condition

β(w) =
n
∑

i=1

µi

w − zi

with
∑n

i=1 µi = 0. Then, we can introduce yj and u such that

β(w) = u

∏n−2
j=1 (w − yj)
∏n

i=1(w − zi)
.

Integrating over field β gives

|u|2δ
(

∑n

i=1
µi

)

∫

Dφe
− 1

2π

R

d2w

„

∂φ∂̄φ+|u|2b̃2 |Qn−2
t=1 (w−yt)

Qn
i=1(w−zi)

−1|2b̃2

e
√

2b̃φ

«

×

×
∏n

i=1
|µi|2(ji+1)e

√
2b̃−1(ji+1)φ .

Now, to remove the prefactor in front of the interaction, we define the new field

ϕ(w) = φ(w) +
√

2b̃ log |u|2 +
√

2b̃

(

n−2
∑

j=1

log |w − yj|2 −
n
∑

i=1

log |w − zi|2
)

.

This yields the path integral representation

〈

∏n

i=1
Φji

(µi|zi)
〉

H+
3

= |Θn|2δ
(

∑n

i=1
µi

)

∫

Dϕe−
1
2π

R

d2w( 1
2
∂ϕ∂̄ϕ+e

√

2b̃ϕ) ×

×
∏n

i=1
e(

√
2b̃−1(ji+1)+

√

2b̃
2

)ϕ(zi)
∏n−2

l=1
e−

√

2b̃
2

ϕ(yl) ,

where the background charge of ϕ is given by Q = b̃ + b̃−1. The shift Q̂ = b̃−1 → Q = b̃ + b̃−1

of the background charge could be understood by keeping track of the curvature coupling as
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in [20]. Notice that the right hand side of the equation above corresponds to the expected
2n− 2-point function of LFT. In this way, we have obtained the path integral derivation of the
dual SRT formula.

In retrospect of the path integral derivation, we could interpret the dual formula from the
original variable b instead of b̃. If we did this, we would end up with the Liouville action with the
dual Liouville interaction e

√
2b−1φ. This is the reason why we have to set the dual cosmological

constant (and not the original cosmological constant) to a particular value in (9). This clearly
shows that the dual screening charge in H+

3 model corresponds to the dual Liouville interaction.

3 A biparametric family of CFTs

In this section, we will study relation (1) in the context of the generalization of SRT correspon-
dence recently proposed in [22]. We will analyze the biparametric family of non-rational CFTs
there to show that the dual version of the SRT H+

3 −Liouville formula discussed in section 2
can be interpreted as a particular case of the theories described [22].

Let us consider the following quantity [22]

Ω(m)
n = δ(2)

(

∑n

i=1
µi

)

|Θ(m)
n |2m2

〈

∏n

i=1
Vαi

(zi)
∏n−2

t=1
V−m

2b
(yt)
〉

LFT
, (15)

where m and b are two (real-valued) continuous parameters. The coordinates u, zi, yr and µi

are related through the Sklyanin change of variable (3), and the function Θ
(m)
n is defined by

Θ(m)
n (z1, · · · , zn|y1, · · · , yn−2|u) =

u( 1
m

+b−2( 1
m
−1))

∏

r<s≤n (zr − zs)
1

2b2
∏

t<l≤n−2 (yt − yl)
1

2b2

∏n
r=1

∏n−2
t=1 (zr − yt)

1
2b2

.

(16)
In (15), as in (1), the correlation function in the right hand side corresponds to a 2n − 2-
point function in LFT. This correlation function involves 2n − 2 exponential primary fields
Vα(z) = e

√
2αϕ(z), with n − 2 of these fields having momentum α = −m/2b.

In [22], it was argued that Ω
(m)
n defined as in (15) could be interpreted as a correlation

function of a certain CFT, which is characterized by m and b. This means that Ω
(m)
n could be

written as
Ω(m)

n =
〈

∏n

i=1
Φji

(µi|zi)
〉

CFT
, (17)

where Φj(µ|z) would correspond to primary operators of a CFT. This CFT is conjectured
to exist, and it is considered “solvable” in the sense that its correlation functions are known
provided the LFT representation (15) is given. In turn, (15) is thought of as a definition of
a biparametric family of new non-rational CFTs. The H+

3 WZNW theory corresponds to the
particular case m = 1 as (15) reduces to the H+

3 −Liouville correspondence of [5]. On the other
hand, LFT is obtained in the trivial case m = 0. It is worth noticing that the dual version of
the SRT formula we derived in section 2 is obtained at m = b2 in (15). In fact, in this case,
the right hand side of (15) coincides with the right hand side of (1).
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3.1 Free field realization

In [22], a Lagrangian representation of this family of CFTs was given by generalizing the path
integral approach of [20]. The Lagrangian for the CFT of which (17) are its correlation functions
is given by the action

S[λ] =
1

2π

∫

d2z

(

∂φ∂̄φ + β∂̄γ + β̄∂γ̄ +
Qm

2
√

2
Rφ + 2πλ(−ββ̄)me

√
2bφ

)

(18)

with the background charge Qm = b + b−1(1− m). Here, λ represents a real coupling constant
whose specific value is controlled by the zero mode of φ. It is easy to verify that the interaction
term (−ββ̄)me

√
2bφ has a conformal dimension (1, 1). Realization (18) is actually reminiscent

of the Lagrangian representation of the SL(2, R)k WZNW model. In fact, (18) does agree with
the Wakimoto free field representation of the SL(2, R)k model in the particular case(s) m = 1
(and m = b2(= b̃2 = k−2)), where the WZNW level k is given by k = b−2 +2 (resp. k = b2 +2).

Lagrangian realization (18) enabled us to study the symmetry algebra underlying the solv-
able CFT [22], which is generated by the stress tensor

T (z) = −β(z)∂γ(z) − 1

2
(∂φ(z))2 + (b + b−1(1 − m))∂2φ(z) (19)

and the Borel subalgebra of the following representation of the affine algebra ŝl(2)k

J+(z) = β(z) , (20)

J−(z) = β(z)γ2(z) −
√

2mb−1γ(z)∂φ(z) + (m2b−2 + 2)∂γ(z) , (21)

J3(z) = −β(z)γ(z) +
1√
2
mb−1∂φ(z) . (22)

Here, as usual, fields β and γ form a commuting ghost system, while field φ is a free boson
with background charge Qm = (b + b−1(1 − m)). These fields have non-vanishing propagators
given by

〈β(z)γ(w)〉 = (z − w)−1 , 〈φ(z, z̄)φ(w, w̄)〉 = − log |z − w|2 .

The central charge associated to stress tensor (19) is given by c = 3 + 6Q2
m. It is worth

noticing that interaction term (−ββ̄)me
√

2bφ in (18) commutes with (19) for any value of m but
it commutes with the currents (20)-(22) only for m = 1 and m = b2. In particular, the operator
product expansion (OPE) with J−(z) yields

J−
(z)β

m
(w)e

√
2bφ(w) ∼ m

(z − w)2

(

(m2b−2 − m + 1)βm−1e
√

2bφ+

+(z − w)(
√

2mb−1∂φβ + (m − 1)∂β)βm−2e
√

2bφ
)

+ ... ,

which in the cases m = 1 and m = b2 yields total derivatives

J−
(z)β(w)e

√
2bφ(w) ∼ b−2∂w

e
√

2bφ(w)

(z − w)
+ ...

J−
(z)β

b2

(w)e
√

2bφ(w) ∼ b+2∂w

βb2−1
(w) e

√
2bφ(w)

(z − w)
+ ...

11



respectively. As a result, for generic values of m and b, the symmetries of theory (18) turns
out to be generated by the Virasoro current T (z) and the subalgebra generated by J+(z) and
J3(z).

Lagrangian realization (18) also provides the explicit form of the primary operators Φj(µ|z),
which read

Φj(µ|z) = |µ|2m(j+1)eµγ(z)−µ̄γ̄(z̄)e
√

2b(j+1)φ(z,z̄) .

These are Virasoro primary fields of dimension

∆j = −(j + 1)(b2j + m − 1) (23)

with respect to the stress tensor (19). Notice that momenta ji and Liouville momenta αi in
(15) are related by αi = b(ji + 1 + mb−2/2).

It is natural to consider the following representation for the vertex operators,

Φj,p,p̄(z) ∼ γ
p−m(j+1)
(z) γ̄

p̄−m(j+1)
(z̄) e

√
2b(j+1)φ(z,z̄) . (24)

Again, this is reminiscent of the Wakimoto free field representation of the SL(2, R)k WZNW
model, and yields the relation

Φj,p,p̄(z) =
Γ(1 + p − m(j + 1))

Γ(m(j + 1) − p̄)

∫

d2µ µ−p−1 µ̄−p̄−1 Φj(µ|z) . (25)

The relation between basis Φj,p,p̄(z) and Φj(µ|z) follows from the functional relations Γ(n)Γ(1−
n) = (−)nΓ(0) and

∫

ds e−stsx−1 = t−xΓ(x). Operators (24) obey the following OPE with
respect to the current algebra (20)-(22)

J±(z)Φj,p,p̄(w) ∼ pi ∓ m(ji + 1)

(z − w)
Φj,p∓1,p̄(w) + ...

J3(z)Φj,p,p̄(w) ∼ −pi

(z − w)
Φj,p,p̄(w) + ...

so that, in particular, these are Kac-Moody primaries under the Borel subalgebra generated by
J+(z) and J3(z), which are symmetry of the system.

In the next subsection, we will compute three-point functions of vertex operators (24) by
employing the Lagrangian realization (18) for a generic member of the biparametric family of
CFTs, but, first, let us discuss a particular case: note that if we specify m = b2(= b̃2 = k − 2)
in (16), and compare it with the definition (2), we get the relation12

|Θ(b2)
n |2b4 = |Θn|2 . (26)

This implies that m = b2 in (18) yields an alternative representation of the H+
3 WZNW theory.

We note that this representation was the one employed in [36] to explicitly compute WZNW
three-point functions. When m = b2 the interaction term in (18) corresponds to the dual

12In particular, in the case m = 1 function Θ
(1)
n coincides with the function Θn of [5].
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screening charge (14), namely Ss ∼
∫

d2zβk−2β̄k−2e
√

2k−4φ, where the relation with the WZNW
level is now m = b2 = k − 2. This has to be compared with the case m = 1 in (18), which

corresponds to the standard Wakimoto representation with the screening Ss ∼
∫

d2zββ̄e
√

2
k−2

φ,
with b2 = (k − 2)−1. Notice that the relation between the Liouville parameter b and the
WZNW level k in each case is different; one is related to each other by k− 2 → (k− 2)−1. This
shows that in the framework of H+

3 −Liouville correspondence Langlands duality turns out to
be induced by the Liouville self-duality under b → b−1.

In summary, the dual version of the H+
3 −Liouville correspondence we discussed in section 2

corresponds to a particular case of the Lagrangian representation (18), that with m = b2 = k−2.
This implies the H+

3 WZNW theory turns out to be double-represented within the family of
CFTs proposed in [22]. The H+

3 model is represented by two different curves in the space of
parameters, and fixing the level k corresponds to fixing a point on each curve. One curve is
related to the other by the level duality k − 2 → (k − 2)−1, and this agrees with free field
realizations considered in the literature. The idea we would like to suggest is that, presumably,
this double-representation of CFTs within the biparametric family of [22] is a more general
feature, and not only happens to the H+

3 WZNW theory. In fact, the structure of the conformal
Ward identities suggests that the CFT corresponding to the case m = n (for a positive integer
number n ∈ Z>0) coincides with that corresponding to the case m = nb2. Moreover, notice that

function |Θ(m)
n |2m2

in (15) is such that the change m → mb2 can be always reinterpreted as the
inversion b → b−1 but keeping m fixed; and the same happens with the auxiliary fields V−m/2b

in the right hand side of (15). Thus, assuming Liouville self-duality, one is led to conclude that
both cases m = n and m = nb2 do correspond to the same CFT. It would be interesting to
explore this aspect, as it would yield a generalization of what Langlands level duality is for the
WZNW theory.

Before going into the explicit computation of correlation functions, we would like to men-
tion one open question about the CFTs described by (18). This is the question of identifying
such CFTs. These theories likely correspond to actual CFTs; but, which CFTs are those? We
have just commented that the particular case m = b2 also corresponds to the H+

3 WZNW;
however, analyzing in detail other particular cases seems to be a more difficult problem. What
we certainly know about the CFTs proposed in [22] is that they likely exist, and that a subset
of their observables are given by (15). Nevertheless, it remains a hard task to attempt a classi-
fication, or to identify more particular cases. We could also ask whether additional correlation
functions other than those in (15)-(17) are required to fully characterize the set of observables.
For instance, we know that this is actually the case for m = 1 and m = b2, where the spectral
flowed sectors require a different amount of Liouville fields on the right hand side of (15). Since
spectral flow symmetry is still an automorphism of the remnant algebra generated by J3,−(z)
and T (z), it is likely that a different amount of Liouville insertions in (15) would also correspond
to well-defined correlation functions of the theories described by (18). This certainly deserves
further analysis. In the next subsection, we study the explicit form of correlation functions to
reveal some features of these hypothetical CFTs.
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3.2 Correlation functions

Let us compute correlation functions of the CFTs defined by (18). We study the n-point
correlation functions (17) in the p-basis

Ω(m)
n =

〈

∏n

i=1
Φji,pi,p̄i

(zi)
〉

CFT
, (27)

which are defined by

Ω(m)
n =

∫

DφDγDγ̄DβDβ̄ e−S[λ]
∏n

i=1
γ

pi−m(ji+1)
(zi)

γ̄
p̄i−m(ji+1)
(z̄i)

e
√

2b(ji+1)φ(zi,z̄i) .

After integrating out the zero-modes, the correlation function can be written as

Ω(m)
n = (−1)msλsb−1Γ(−s)δ

(

∑n

i=1
ji + n + s − 1 − b−2(1 − m)

)

×

×
∫

∏s

r=1
d2wr

∫

D̃φDγDγ̄DβDβ̄ e−S[λ=0]
∏s

r=1
βm

(wr)e
√

2bφ(wr) ×

×
∏n

i=1
γ

pi−m(ji+1)
(zi)

e
√

2b(ji+1)φ(zi) × c.c. , (28)

where c.c. refers to the complex conjugate contribution, and the path integral measure D̃φ in
the second line has to be understood as excluding the zero mode. The integration over the zero
mode of φ yields the first line in (28), implying the condition

n
∑

r=1

jr + n + s = 1 + b−2(1 − m) , (29)

which, combined with the Riemann-Roch theorem, yields

n
∑

r=1

p̄r =

n
∑

r=1

pr = (mb−2 − 1)(1 − m) . (30)

As usually happens in non-rational theories, expression (28) has to be understood just
formally: since the kinematical configurations in (29) can yield non-integer values s of screening
charges, the integrals and products in (28) (and consequently the Wick contractions, see also
[41]) generally do not seem to be well-defined. Nevertheless, these are usual features in non-
rational CFTs and fortunately the analytic continuation of such expressions is under control.
Besides, for positive integer values of s, the overall factor Γ(−s) in (28) diverges. This divergence
is interpreted as due to the non-compactness of the target space as in the case of LFT [42].

Performing the Wick contractions in (28), we find the following expression

Ω(m)
n = (−1)msλsb−1Γ(−s)δ

(

∑n

i=1
ji + n + s − 1 − b−2(1 − m)

)

×

×
∏

a<b≤n
|zab|−4b2(ja+1)(jb+1)

∫

∏s

r=1
d2wr

∏

r<t≤s
|wr − wt|−4b2 ×

×
∏s

r=1

∏n

a=1
|za − wr|−4b2(ja+1) ×

∑

(i,r)

∏s

r=1

∏n

i=1
wr

i (zi − wr)
−cr

i × c.c. ,
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where the sum
∑

(i,r) runs over the different ways of choosing pairs (i, r) among ms − 1, and
with i = 1, ...n while r = 1, ...s. Such contributions correspond to the different combinations
when performing the Wick contractions of β-γ fields, and coefficients wr

i are the multiplicity
factors that count the different ways of contracting cr

i fields, piking those up among r ≤ s and
i ≤ pi − m(ji + 1).

Now, let us focus on the three-point functions, which generically take the form

〈

∏n=3

i=1
Φji,pi,p̄i

(zi)
〉

CFT
= |z12|2(∆j3

−∆j1
−∆j2

)|z13|2(∆j2
−∆j3

−∆j1
)|z23|2(∆j1

−∆j2
−∆j3

)C
(m)
(j1,j2,j3|p1,p2,p3)

,

where C
(m)
(j1,j2,j3|p1,p2,p3)

represent the structure constants. Here, we will concentrate on the case

p2 = p̄2 = m(1+j2) because the computation becomes drastically simpler: the Wick contraction
of the γ-β system can be carried out without resorting to abstruse combinatorics. Nevertheless,
the computation for the generic case can be done by a suitable adaptation of the results of [44].
See for instance Eq. (2.15) of [44], and cf. Eq. (3.20) in [45]. We will not address the case
p2 6= m(1 + j2) here.

Let us compute C
(m)
(j1,j2,j3|p1,m(1+j2),p3)

. To do this, first we need to compute the Wick con-
tractions

W
(m)
(j1,j2,j3|p1,m(1+j2),p3)

=

∫

∏s

r=1
d2wr

〈

e
√

2b(j1+1)φ(0)e
√

2b(j2+1)φ(1)e
√

2b(j3+1)φ(∞)
∏s

r=1
e
√

2bφ(wr ,w̄r)
〉

λ=0

×
〈

γ
p1−m(j1+1)
(0) γ

p3−m(j3+1)
(∞)

∏s

r=1
βm

(wr)

〉

λ=0

〈

γ̄
p̄1−m(j1+1)
(0) γ̄

p̄3−m(j3+1)
(∞)

∏s

r=1
β̄m

(w̄r)

〉

λ=0
, (31)

where the subscript λ = 0 refers to the fact that these correlation functions are defined in terms
of the free action S[λ = 0]. Standard free field techniques enable us to write

W
(m)
(j1,j2,j3|p1,m(1+j2),p3)

=
Γ(1 − m(j1 + 1) + p̄1)Γ(1 − m(j3 + 1) + p3)

Γ(m(j1 + 1) − p1)Γ(m(j3 + 1) − p̄3)
×

×
∫

∏s

r=1
d2wr

∏s

r=1
|wr|−4b2(j1+1)−2m|1 − wr|−4b2(j2+1)

∏

r<t≤s
|wr − wt|−4b2 . (32)

The Γ-functions in the first line come from the multiplicity factor when contracting the
fields of β-γ system. This contribution can be obtained as in [36] by generalizing the procedure
in [45]. This yields

〈

γ
p1−m(j1+1)
(0) γ

p3−m(j3+1)
(∞)

∏s

r=1
βm

(wr)

〉

= lim
w

(t)
i →w

(1)
i =wi

P−1 ∂msP
∂w

(1)
1 ...∂w

(m)
1 ...∂w

(1)
s ...∂w

(m)
s

(33)

with
P =

∏s

r=1

∏m

t=1
(w(t)

r )m(j1+1)−p1

∏

r<l

(w(t)
r − w

(t)
l ) . (34)

Here, we regulate the correlation function by point-splitting method for the insertion points
of the screening operators, as βm

(wr) → ∏m
t=1 β

(w
(t)
r )

, taking ms different points as w
(t)
r , with
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r = 1, ..., s and t = 1, ..., m, and then taking the coincidence limit w
(t)
r → w

(t−1)
r → ...w

(2)
r →

w
(1)
r = wr. Accordingly, for a particular case pi = p̄i, one obtains

∣

∣

∣

〈

γ
p1−m(j1+1)
(0) γ

p3−m(j3+1)
(∞)

∏s

r=1
βm

(wr)

〉
∣

∣

∣

2

= (−1)msγ(1 − m(j1 + 1) + p1) ×

×γ(1 − m(j3 + 1) + p3)
∏s

r=1
|wr|−2m .

On the other hand, the generalized Selberg integral in the second line of (32) can be com-
puted by using the formula (58) of Appendix A, developed by Dotsenko and Fateev in [43].
The result takes the form

C
(m)
(j1,j2,j3|p1,m(1+j2),p3)

= b−1λsπsΓ(−s)Γ(s+1)γs
(

1 + b2
)

δ
(

∑n

i=1
ji + n + s − 1 − b−2(1 − m)

)

×

× Γ(1 − m(j1 + 1) + p̄1)Γ(1 − m(j3 + 1) + p3)

Γ(m(j1 + 1) − p1)Γ(m(j3 + 1) − p̄3)

s−1
∏

r=0

γ (−(r + 1)b2) γ (b2 (j1 − j3 + j2 + 1 + r))

γ (b2(2j1 + 2 + r) + m) γ (b2(2j2 + 2 + r))
.

(35)
Now, analytic continuation of this expression is needed in order to find the general result,

incorporating also the configurations yielding non-integer s. Such analytic continuation is done
by requiring the residue of the exact expression evaluated at s = −2 + b−2(1 − m) − j1 − j2 −
j3∈ Z≥0 to coincide with (35). The analytic continuation yields

C
(m)
(j1,j2,j3|p1,m(1+j2),p3)

=
(

πλb−2γ(b2)
)s Γ(1 − m(j1 + 1) + p̄1)Γ(1 − m(j3 + 1) + p3)

b Γ(m(j1 + 1) − p1)Γ(m(j3 + 1) − p̄3)
×

×G (1 + j1 + j2 + j3 + (m − 2)b−2)G (j1 − j2 + j3 + (m − 1)b−2)

G (2j1 + 1 + (m − 1)b−2) G (2j3 + 1 + (m − 1)b−2)
×

×G (−j1 + j2 + j3 − b−2) G (j1 + j2 − j3 − b−2)

G(−1)G (2j2 + 1 − b−2)
, (36)

where s = −2− j1 − j2 − j3 + (1−m)b−2, and the definition of the G-function can be found in
Appendix A. To derive this expression one can uses the functional relation

γ(−rb2) =
Γ(−rb−2)

Γ(1 + rb−2)
=

G(r)

G(r − 1)
. (37)

Expression (36) gives the three-point function for the case13 p2 = p̄2 = m(j2 +1), for generic
values of m and b. Of course, when m = 1 this expression coincides with that for the SL(2, R)k

WZNW model for the case where one of the vertex operators is given by the highest-weight
representation of SL(2, R) (with the identification k = b−2 + 2). In [36], it was shown how
it reproduces the Melin transform of the three-point functions of [2, 38, 39]. More precisely,
considering m = 1 in (36) and the functional relation G(x) = γ(−x)(k − 2)(2x+1)G(x + 2 − k),
one finds Eqs. (60)-(62) of [36], which yields the expected result. More remarkably, the same

13Understanding the kinematic configuration pi = m(ji + 1) in general would require the analysis of the
spectrum of the CFT corresponding to generic values of m and b.
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result is obtained for the case m = b2 = k − 2, as it was discussed in [36], see Eq. (50) there.
As a simpler consistency check, one can also verify that m = 0 in (36) yields the correlation

function of three exponential fields e
√

2αiϕ(zi) of Liouville field theory, with αi = b(ji+1); namely

C
(m=0)
(j1,j2,j3)

= CL(α1, α2, α3) by writing G(x) in terms of Υ(x) by using (54) of Appendix A (upon

neglecting β-γ contribution).
The pole structure of (36) can be analyzed as follows: the function G(x) develops single

poles at
x = p + q b−2, x = −(p + 1) − (q + 1) b−2 (38)

for any pair of positive integers p ∈ Z≥0 and q ∈ Z≥0. This implies that expression (36) presents
poles at

−j1 + j2 + j3 = p + (q + 1) b−2 − j1 + j2 + j3 = −(p + 1) − q b−2

j1 + j2 − j3 = p + (q + 1) b−2 j1 + j2 − j3 = −(p + 1) − q b−2

and at

j1 − j2 + j3 = p + (q + 1 − m) b−2, j1 − j2 + j3 = −(p + 1) − (q + m) b−2

j1 + j2 + j3 = p − 1 + (q + 2 − m) b−2 j1 + j2 + j3 = −(p + 2) − (q + m − 1) b−2 .

It is worth noticing that these pole conditions remain unchanged if one first performs the
changes m → −mb2, ji → −b−2ji, and then replaces b2 by b−2. This is actually a manifestation
of the level duality under k−2 → (k−2)−1. The properties of the three-point function under the
level duality can be understood by introducing the dual function G̃(x), see (57) of Appendix
A, which presents poles at x = p + q b2 and at x = −(p + 1) − (q + 1) b2, instead of (38).
Thus, taking into account the functional relation G̃(xb2) = b2b2x(x+b−2+1)G(x), one finds that
expression (36) can be written in terms of the analogous quantity but for the inverse parameter
b−1 with an appropriate redefinition of the spin variables ji.

On the other hand, the pole contributions coming from the Γ-functions in the first line of
(36) are of a different sort, since these depend on momenta pi. The pi-dependent pole conditions
depend on the specific power of fields γ in the functional form of the vertex operators (24), while
the pole conditions written down above do not depend on those specific powers pi −m(ji + 1).

The two-point function can be also obtained from (36) by using the functional relation

lim
j2→−1

G (−j1 + j3 + j2 − b−2)G (j1 − j3 + j2 − b−2)

G(−1)G (2j2 + 1 − b−2)
= 2πb−2δ(j1 − j3) . (39)

In the limit j2 → −1, operator Φj2,p2,p2(z2) approaches the identity operator, and so we can
write

〈Φj1,p1,p̄1(z1)Φj3,p3,p̄3(z3)〉CFT ∼ |z13|−2∆j1

(

πλb2γ(b2)
)s

γ(−s)γ(1 + b2s) δ(j1 − j3)×

× Γ(1 − m(j1 + 1) + p̄1)Γ(mb−2(1 − m) − mj1 − p1)

Γ(m(j1 + 1) − p1)Γ(1 + mb−2(m − 1) + mj1 + p̄1)
, (40)
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where now s = −1−2j1+b−2(1−m), and, according to (30), we have p3 = (mb−2−1)(1−m)−p1.
The limit j2 → −1 of the three-point function is known to agree with the two-point function up
to a b-dependent (j-independent) factor [45, 36, 40]. Besides, notice that we could also take the
limit j2 → b−2(1−m) in (36), and this would also yields a two-point function. This is because
operator Φj2=b−2(1−m) also corresponds to a dimension-zero operator that can be considered
as a (Weyl reflected) conjugate representation of the identity operator. This is analogous to
what happens in the SL(2, R)k WZNW model with the operators Φj2=0 and Φj2=−1; while
inserting one of these operators in the three-point function leads to the reflection coefficient
∼ RH(j1)δ (j1 − j2), inserting the other leads14 to the “unreflected term” ∼ δ (j1 + j2 + 1). In
the general case (namely generic m), the generalization of SL(2, R) Weyl reflection is given by
j → −1 − j − b−2(m − 1), which leaves the conformal dimension (23) unchanged. Thus, the
limit j2 → b−2(1 − m) gives s = 0 and consequently yields the expression

〈Φj1,p1,p̄1(z1)Φj3,p3,p̄3(z3)〉CFT ∼ |z13|−2∆j1 δ(j1 + j3 + 1 + b−2(m − 1)) . (41)

This expression can be obtained from (40) by replacing j3 → −1 − j3 − b−2(m − 1) before
evaluating the δ-function δ(j1 − j3). Summarizing, (40) and (41) give all the contributions to
the two-point function.

To conclude this section, let us comment on an alternative free field representation. Pre-
sumably, some of the CFTs corresponding to certain values of m and b could also be re-
alized by coupling Liouville theory in a non-minimal way to a free boson η plus a linear
dilaton theory for a field χ with background charge Q

(m)
χ = (mb−2(m − 2) − 2m)1/2, and

then perturbing the whole theory by introducing an operator Φκ = eκχ with κ satisfying
κ(Qχ − κ) + ∆α=−m/2b = −κ2 + Q

(m)
χ κ − m/2 − mb−2(1 + m/2)/2 = 1, and eventually dress-

ing Φκ with the appropriate Liouville field V−m/2b = e−mϕ/
√

2b. For the case m = 1, this was
done in [12]. For this case, as well as for m = b2, the background charge corresponds to

Q
(1)
χ = Q

(b2)
χ = −i

√
k. In particular, this realization reproduces the correct value of the central

charge as c
CF T

= cL + 2 + 6(Q
(m)
χ )2 = 3 + 6(b + b−1(1−m))2. Correlation functions in terms of

such a Coulomb-gas representation could be computed by similar means.

4 Relation to Hamiltonian reduction

In this section, we discuss the relation between Hamiltonian reduction and SRT formula. Even-
tually, this relation gives us a concrete realization of the Langlands duality in correlation func-
tions of H+

3 WZNW model.

4.1 Reviewing Drinfeld-Sokolov Hamiltonian reduction

Hamiltonian reduction yields a way of reducing SL(2, R)k WZNW model to LFT. This can
be regraded as a reduction of the degrees of freedom of WZNW by imposing constraints on
SL(2, R) momenta. This results in LFT that governs the remnant dynamics.

14After the Melin-Fourier transform of expression (36) we also have the same contribution in the x-basis as
well; see for instance [36] and references therein.
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The procedure is as follows: first, impose the gauge

J+(z) = k , (42)

and its anti-holomorphic partner. This is implemented by means of the BRST method: we
introduce a b-c ghost system with central charge cg = −2 and define the BRST charge as15

Q
BRST

=
1

2πi

∮

dw
(

J+(w) − k
)

c(w) .

This is analogous to the BRST implementation of the SL(2, R)k/U(1) WZNW coset construc-
tion, see for instance [45] and references therein.

Current J+(z) originally corresponds to a primary field of conformal dimension +1 with
respect to the Sugawara stress tensor. Therefore, in order to impose (42) in a coordinate
invariant way, one has to perform a change in the stress tensor to turn J+ into a dimension-
zero operator. This change in the stress tensor is usually referred to as an improvement or
topological twist, which is defined by the shifting

T (z) → T̂ (z) = T (z) − ∂J3(z) .

Taking into account Wakimoto representation

T (z) = −β(z)∂γ(z) − 1

2
(∂φ)2 − 1√

2k − 4
∂2φ(z) ,

J3(z) = −β(z)γ(z) +

√

k − 2

2
∂φ(z) ,

the improved stress tensor takes the form

T̂ (z) = −1

2
(∂φ)2 − 1

√

2(k − 2)
∂2φ(z) + ∂β(z)γ(z) −

√

k − 2

2
∂2φ(z) . (43)

One can verify that the OPE T̂ (z)β(w) is consistent with treating J+(z) as a zero-dimension
field

T̂ (z)β(w) ∼ ∂β(z)

(z − w)
+ ... .

Besides, from the Wakimoto realization J+(z) = β(z) the implementation of constraint
J+(z) = k yields ∂β(z) = 0 in (43); namely

T̂ (z) = −1

2
(∂φ)2 +

Q√
2
∂2φ(z) , (44)

where Q = b + b−1 and b−2 = k − 2. This actually corresponds to the Liouville stress-tensor.
Thus, we see how the WZNW theory reduces to LFT by implementing constraint (42). Com-
puting the OPE T̂ (z)T̂ (w) one also verifies that the central charge of LFT is given by

ĉ = 1 + 6Q2 = c
SL(2)

+ 6k − 2 ,

15See also [46] for a very interesting discussion.
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where c
SL(2)

= 3 + 6/(k − 2) is the central charge of the SL(2, R)k WZNW theory.
Now, we should specify how the spectrum of WZNW theory relates to the spectrum of

LFT, which are represented by the exponential primary fields Va(z) = e
√

2αφ(z). First, recall
the formula for the conformal dimension of these fields:

∆α = α(Q − α) . (45)

On the other hand, in the WZNW side it is convenient to focus on the fields belonging to
highest-weight representations of SL(2, R), namely those fields satisfying j = −p = −p̄ (or
its Weyl reflected counterpart j + 1 = p = p̄). These are primary fields with respect to the
improved stress-tensor T̂ (z), as it can be checked by computing the OPE T̂ (z)Φj,p,p̄(w), whose
conformal dimension is

∆̂j = −j(j + 1)

k − 2
− j = −bj(Q − (−bj)) . (46)

Thus, comparing (45) with (46) we see that it is natural to identify the Liouville momentum
α and the WZNW momentum j by the simple relation

α = −bj , (47)

or its Weyl reflected counterpart α = b (j + 1), depending on the conventions. Namely, Hamil-
tonian reduction induces the following identification Vα=−bj(z) ↔ Φj,−j,−j(z) between vertex
operators of both theories. According to this correspondence, we expect that the Hamiltonian
reduction would be realized at the level of correlation functions through the form

〈

∏n

i=1
V−bji

(zi)
〉

LFT
∼ f(b)

〈

∏n

i=1
Φ

(0)
ji

(zi)
〉

H+
3

(48)

with the notation
Φ

(0)
j (z) = N (j, b) Φj,p=−j,p̄=−j(z) ,

where pi + ji = p̄i + ji = 0, f(b) is some b-dependent numerical factor, and N (j, b) is some
normalization of the vertex operators. In the following, we will discuss a realization of (48) in
terms of SRT correspondence.

4.2 Implementing the reduction as the µi → 0 limit

We would like to attempt interpretation of the SRT formula from the viewpoint of the quantum
DS Hamiltonian reduction. As discussed above, the conventional way of implementing the
reduction is by imposing the gauge condition (42), which in the Wakimoto representation reads
β = k. On the other hand, in the path integral formulation discussed in section 2.2, integration
over γ has given the condition

∂̄β(w) = 2π

n
∑

i=1

µiδ(w − zi) ,
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or, equivalently,

β(w) = const +

n
∑

i=1

µi

w − zi
. (49)

As a 1-form, the constant should vanish in principle, but after the improvement of the energy
momentum tensor, the constant term would be allowed16.

Now, let us take the limit µi → 0 (while keeping
∑n

i=1 µi = 0) in the (dual) SRT formula.
More precisely, we first take µi → 0 for i = 2, 3, · · ·n − 1, and then we take the further limit
µ1 = −µn → 0. This limit is in harmony with the spirit of the Hamiltonian reduction because
(49) suggests that in order to fix β to be a constant number, µi → 0 limit seems unavoidable. In
this limit, the parameter yi appearing in the SRT formula becomes yi → zi+1 for i = 1 · · ·n− 2
through the relation

µi = u

∏n−2
j=1 (zi − yj)

∏

j 6=i(zi − zj)
.

The crucial observation is that in this limit we can essentially remove n − 2 extra vertex
operators17 in the Liouville side of the (dual) SRT formula (1). This is because we take the
limit yi → zi+1 and degenerate field V−b̃/2 collide with n−2 fields Vα in the Liouville correlation
functions. Since V−b̃/2 is a degenerate field, it takes the very simple OPE

Vα(z)V−b̃/2(w) =
Vα−b̃/2(w)

|z − w|−2αb̃
+ C̃L

−(α)
Vα+b̃/2(w)

|z − w|−2(Q−α)b̃
+ (descendants) .

Thus, for α < Q/2, which is in the so-called Seiberg bound (corresponding to j < −1/2), only
the first term in the OPE survives because it dominates over the second term in the w → z
limit, and the Liouville side of the SRT formula then is given by the n-point correlation function

〈

Vα1(z1)
∏n−1

i=2
Vα̃i

(zi)Vαn(zn)
〉

LFT
,

where αi = b̃−1(ji + 1 + b̃2/2) = b̃−1(ji + k/2) and α̃i = b̃−1(ji + 1). The factor Θn becomes
singular in the limit yi → zi+1, but it is not difficult to remove this singularity, and one can see
(up to some normalization constant C) that

〈

∏n

i=1
Φji

(0|zi)
〉

= C |Θ̃n|2
〈

Vα1(z1)
∏n−1

i=2
Vα̃i

(zi)Vαn(zn)
〉

LFT
, (50)

where Θ̃n =
∏

1<i<j<n−1(zi − zj)
2b̃2 is the regulated version of Θn in the SRT formula. A

similar singular normalization factor appeared in the earlier attempt of Hamiltonian reduction
by setting xi = zi [47].

16As mentioned, this improvement can be obtained by shifting the Sugawara stress-tensor T (z) as T (z) →
T (z)− ∂J3(z). Alternatively, one can add a piece ω̄J in the action, where ω is a worldsheet connection, which
leads to the equation of motion (∂̄ + ω̄)β(w) = 2π

∑n
i=1 µiδ(w − zi).

17The other two vertex operators seem special as in the H+
3 side. In the H+

3 side, we do not necessarily take
µ → 0 limit for two vertex operators. In the Liouville side, the relation between j and α is not modified. These
vertex operators can be put at 0 and ∞ and can be regarded as in and out vacua instead.
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Notice that the relation between α̃i and ji in (50) agrees with the Weyl reflected version of
(47), namely performing ji → −1−ji there. Besides, the relation between αi and ji corresponds
to performing the change ji → −k/2 − ji in (47). We further discuss this point in Appendix
B and argue this is consistent with what is expected from Hamiltonian reduction. We propose
that the formula (50) yields the Hamiltonian reduction interpretation of the SRT formula.

4.3 Realizing Langlands level duality

Now, let us make a remark on level duality in WZNW theory. As we did in (1), it is possible
to derive a dual version of formula of (50) by replacing b̃ and b−1. Since LFT does not have
any extra insertion in the particular limit we have considered (i.e. µi → 0), by equating the
two expressions (the one in the SRT formula and the other in the dual SRT formula) with the
crucial identification b = b̃, then we find the following surprising identity18

〈

∏n

i=1
Φji

(0|zi)
〉

k
= C̃

〈

∏n

i=1
Φj̃i

(0|zi)
〉

k̃
, (51)

where the levels of the WZNW model in the both side of this expression are related though the
Langlands duality

k̃ − 2 = (k − 2)−1, (52)

and we introduced a numerical coefficient C̃ that regularizes the µi → 0 limit. The spin of
the vertex operators on each side obey the relation j̃i = (j + 1)/(k − 2) − 1 for i = 1, n, and
j̃i = (j + 1) /(k − 2)− 1/2− (k − 2)−1/2 for i = 2, · · ·n− 1. One can explicitly check that this
identity is true for the two-point functions and the three-point functions (see Appendix A for
useful identities such as (57)).

This identity can be regarded as a manifestation of the quantum Langlands duality at the
level of correlation function. In physical applications, it shows a strong/weak coupling duality
between different CFTs even with different central charges. In the context of string theory, it
might relate the scattering amplitudes of the completely different string compactifications even
with different target space dimensionality. For example, if we embed the SL(2, R)/U(1) coset
model in the superstring compactification, the supersymmetric version of the Langlands duality
is given by k̂ → 1/k̂, where k̂ = k − 2 is the supersymmetric level of the current algebra. This
gives a non-trivial duality between the scattering amplitudes in the two-dimensional black hole
for k̂ = 1/2 and those in the A1 type singularity (Eguchi-Hanson space) for k̂ = 2. From the
viewpoint of the AdS3/CFT2 correspondence, it predicts a strong-weak duality in the boundary
conformal field theory as well, whose origin is rather mysterious.

From the mathematical point of view, an identity like (51) could give a clue to understand
the quantum version of the geometric Langlands correspondence, which is yet to be fully for-
mulated in precise mathematical language. See e.g. [33] for an interesting discussion on an
attempt.

18Strictly speaking, since the cosmological constant of the LFT is different between the original formula and
the dual formula, we have to adjust the screening parameter in H+

3 model (λ in the Wakimoto realization) so
that the both sides show the same scaling behavior.
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5 Discussion and outlook

In this paper, we have investigated the interrelationship among the following three notions: the
Langlands level duality k − 2 → k̃ − 2 = 1/(k − 2), the SRT H+

3 −Liouville correspondence,
and the DS Hamiltonian reduction. First, we have derived a dual version of H+

3 −Liouville
correspondence formula (1) induced by the Liouville self-duality under b → b−1. We have also
discussed how the dual formula can be interpreted as a particular case of the non-rational CFTs
recently proposed in [22]. By using the free field realization, we have confirmed that the H+

3

WZNW model is actually double-represented within the space of parameters (m, b). The free
field techniques have also enabled us to compute three-point functions for these non-rational
CFTs.

The dual formula (1), together with the original formula of [5], show how Langlands level
duality of H+

3 WZNW model manifests itself at the level of n-point correlation functions. This is
particularly realized in (51) (see also (65) of Appendix B). We have argued how such equations
can be regarded as a realization of Hamiltonian reduction at the level of correlation functions.
More precisely, we have proposed its realization in terms of a limit of the (dual) SRT relation.
This is represented in (50) derived in the limit µi → 0, which corresponds to the Hamiltonian
reduction in µ basis.

Studying the relation between the SRT H+
3 −Liouville correspondence and the DS Hamil-

tonian reduction could be relevant in the context of the geometric Langlands correspondence.
In fact, (50) (see also (62) in Appendix B) can be seen as a quantum non-chiral version of the
geometric Langlands correspondence, in the sense that this formula selects precise basis of the
WZNW n-point correlation functions that admit to be expressed in terms of n-point correlation
functions of the Virasoro algebra. We emphasize that the advantage of (50) (see also (62) in
Appendix B) over the other expressions is that it provides a map between n-point functions in
both sides, without involving additional degenerate fields.

Last but not least, we would like to advocate that understanding of the precise relation
between the quantum DS Hamiltonian reduction and the SRT H+

3 −Liouville correspondence
would be important for its higher rank generalization. It is commonly believed that an analo-
gous correspondence should exist between the SL(N, R)k WZNW model and the affine Toda19

field theory (corresponding to SRT formula for N = 2). Since the quantum version of the
Hamiltonian reduction admits a generalization to N > 2 [31], this approach could be a natural
way to tackle this open question to find its feasible extensions in higher ranks.
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A Special functions

Here we summarize some useful formulae on special functions.
The function Υ(x) was introduced by Zamolodchikov and Zamolodchikov in Ref. [37], and

it is defined by

Υ(x) = exp

(

∫ ∞

0

dt

t

[

(

Q

2
− x

)2

e−t − sinh2
(

Q
2
− x
)

t
2

sinh bt
2

sinh t
2b

])

(53)

for 0 < Re(x) < Q, and by its analytic continuation outside the strip. It satisfies the shift
equations

Υ(x + b) = γ(bx)b1−2xΥ(x) , Υ(x + b−1) = γ(xb−1)b2xb−1−1Υ(x) ,

where γ(x) = Γ(x)/Γ(1 − x), which obeys γ(x)γ(1 − x) = 1, γ(x)γ(−x) = −x−2. Notice also
that definition (53) is invariant under b → b−1, and this fact yields further interesting functional
relations.

On the other hand, the special function G(x) is defined in terms of Υ(x) by

G(x) = Υ−1(−bx)b−b2x2−(b2+1)x , (54)

and consequently satisfies the shift equations

G(x) = γ(−x)b−2(2x+1)G(x − b−2) , G(x + 1) = γ(−(1 + x)b2)G(x) . (55)

Function G(x) can be also defined in terms of Barnes’ Γ2-function, as follows

G(x) = bx(xb2−1−b2)Γ2(−x|1, b−2)Γ2(b
−2 − 1 + x|1, b−2) , (56)

with
log Γ2(x|1, y) = lim

ε→0
∂ε

(

∑

n,m
(x + n + my)−ε −

∑

n,m
(n + my)−ε

)

,

where the first sum runs over positive integers n ∈ Z≥0 and m ∈ Z≥0, while the second sum
excludes the step n = m = 0. Function G(x) develops single poles at

x = n + mb−2 , x = −(1 + n) − (m + 1)b−2 .

It is also useful to introduce the dual function G̃(x) that is defined as in (56) by replacing
b → b−1. A manifestation of the invariance of (53) under b → b−1 is the following identity

G(x) = (k − 2)(x2+(k−1)x)/(k−2) G̃(x/(k − 2)) , (57)

where b−2 = k − 2. Relation (57) can be seen from (54).
In the main text, we have also used the following integral formula, which is known as

Dotsenko-Fateev integral

1

m!

∫

d2zi

m
∏

i=1

|zi|2α|1 − zi|2β
m
∏

i<j

|zi − zj |4ρ = πm(γ(1 − ρ))m×

×
m
∏

i=1

γ(iρ)γ(1 + α + (i − 1)ρ)γ(1 + β + (i − 1)ρ)γ(−1 − α − β − (m − 2 + i)ρ) . (58)
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B Spectral flowed correlation functions

In this appendix, we discuss an alternative way of realizing the Hamiltonian reduction at the
level of correlation functions in terms of SRT formula. In particular, we will study the WZNW
correlation functions that involve spectral flowed states. That is, we will consider the correlation
functions that violate the so-called winding number, as defined in [15].

As mentioned in the introduction, the SRT formula of [5] was generalized in [15] to the case
with spectral flowed (winding) states of SL(2, R)k WZNW theory. The general result states
that n-point functions of the H+

3 WZNW theory that violate the winding conservation in ∆ω
units is given by a 2n − 2 − ∆ω-point functions in LFT (where n − 2 − ∆ω Liouville vertex
operators correspond degenerate fields V−1/2b). Explicitly, we have

〈

∏n

i=1
Φωi

ji,pi,p̄i
(zi)
〉

H+
3

=
2π3−2nbc∆ω

k

Γ(n − 1 − ∆ω)

∏n

i=1

Γ(−ji + pi)

Γ(ji + 1 − p̄i)
×

×
∏

1≤l<t≤n
(zl − zt)

k
2
− k

2
ωlωt+ωlpt+plωt+pl+pt (z̄l − z̄t)

k
2
− k

2
ωlωt+ωlp̄t+p̄lωt+p̄l+p̄t ×

×
∫

∏n−2−∆ω

t=1
d2yt

∏n

l=1

∏n−2−∆ω

t=1
(zl − yt)

k
2
−pl (z̄l − ȳt)

k
2
−p̄l ×

×
∏

1≤a<b≤n−2−∆ω
|ya − yb|k

〈

∏n

i=1
Vαi

(zi)
∏n−2−∆ω

t=1
V− 1

2b
(yt)
〉

LFT
, (59)

where b−2 = k − 2,
∑n

i=1 ωi = −∆ω, αi = b(ji + k/2),
∑n

i=1 pi =
∑n

i=1 p̄i = −k∆ω/2, and ck

is a k-dependent factor; see [15] for details. Expression (59) is the most general version of the
H+

3 −Liouville correspondence involving spectral flowed states Φω
j,p,p̄(z) of the WZNW theory.

In particular, for ∆ω = 0 one recovers the SRT relation between n-point WZNW functions and
2n − 2- point Liouville functions.

On the other hand, in the case of maximally violating amplitudes (i.e. ∆ω = n− 2), all the
degenerate field V−1/2b in (59) disappear and the formula actually yields the correspondence
between n-point WZNW functions and n-point LFT functions. In such a case, we have ∆ω =
−∑n

i=1 ωi = n − 2, and (59) takes the form

〈

∏n

i=1
Φωi

ji,pi,p̄i
(zi)
〉

H+
3

= 2π3−2nbcn−2
k

∏n

i=1

Γ(−ji + pi)

Γ(ji + 1 − p̄i)

〈

∏n

i=1
Vαi

(zi)
〉

LFT
×

×
∏

1≤l<t≤n
(zl − zt)

k
2
− k

2
ωlωt+ωlpt+plωt+pl+pt (z̄l − z̄t)

k
2
− k

2
ωlωt+ωlp̄t+p̄lωt+p̄l+p̄t , (60)

where
∑n

i=1 pi =
∑n

i=1 p̄i = k(n − 2)/2. Notice that the notation here is such that spectral
flowed fields Φωi

ji,pi,p̄i
have conformal dimension given by

∆ω,p
j = −b2j(j + 1) + pω − kω2/4 .

Now, let us investigate two particular cases of (60), which are relevant for the Hamiltonian
reduction.
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Case 1: Firstly, consider two states of spectral flow sector ω = 0, and n− 2 states of sector
ω = −1. Suppose ω1 = ωn = 0, p1 = p1 = ji, pn = pn = −jn, while ω2 = ω3 = ...ωn−1 = −1,
p2 = p3 = ...pn−1 = p̄2 = p̄3 = ...p̄n−1 = −k/2. In this case, (60) can be written as follows

〈

∏n

i=1
Vαi

(zi)
〉

LFT
=

π

2b
|z1 − zn|2j1+2jn−k

〈

Φ
(0)
j1

(z1)
∏n−1

i=2
Φ

(−)
ji

(zi)Φ
(0)
jn

(zn)
〉

H+
3

, (61)

where we have defined

Φ
(0)
j (z) =

1

γ(−2j)
Φω=0

j,−j,−j(z), Φ
(−)
j (z) =

ckπ
2

γ(k/2 − j)
Φω=−1

j,− k
2
,− k

2

(z) .

Expression (61) is certainly similar to (50). As in (50), it would be convenient to fix the
inserting points as z1 = 0 and zn = ∞ by using projective invariance. This would make
the overall factor |z1 − zn|2j1+2jn−k to disappear, yielding a correspondence between n-point
functions of both theories.

Case 2: Secondly, consider one state of the spectral flow sector ω = +1, and n − 1 states
of sector ω = −1. Now suppose ω1 = +1, p1 = p1 = +k/2, while ω2 = ω3 = ...ωn−1 = ωn = −1,
p2 = p3 = ...pn−1 = pn = p̄2 = p̄3 = ...p̄n−1 = p̄n = −k/2. In this case, we find

〈

∏n

i=1
V−bji

(zi)
〉

LFT
=

π

2b

〈

Φ
(+)

− k
2
−j1

(z1)
∏n

i=2
Φ

(−)

− k
2
−ji

(zi)
〉

H+
3

, (62)

where we have introduced

Φ
(−)

− k
2
−j

(z) =
ckπ

2

γ(j + k)
Φ−1

− k
2
−j,− k

2
,− k

2

(z), Φ
(+)

− k
2
−j

(z) =
1

ckπ2γ(j)
Φ+1

− k
2
−j,+ k

2
,+ k

2

(z) ,

and
α = b (j + k/2) . (63)

Remarkably, in expression (62), all the dependence on |zi − zj | dropped out without fixing
the insertion points zi. Consequently, this can be actually thought of as a direct correspondence
between n-point WZNW correlation functions an n-point LFT correlation functions. Operator
Φ

(+)
−k/2−j1

in (62) should be regarded as the one defining the out vacuum state, while operators

Φ
(−)
−k/2−ji>1

act on the in vacuum creating worldsheet string states. Also notice that field Φ
(+)
−k/2−j

has the following conformal dimension with respect to the stress tensor T (z),

∆
ω=−1,p=−k/2
−k/2−j =

(j + k/2)(−j − k/2 + 1)

k − 2
+

k

4
= −j(j + 1)

k − 2
− j ,

which certainly agrees with the formula (46) for the conformal dimension of fields Φ0
j,−j,−j with

respect to the improved stress tensor T̂ (z) = T (z) − ∂J3(z). In turn, we have

∆̂j = ∆
ω=±1,p=±k/2
−k/2−j .

Hence, fields Φ0
j,−j,−j and Φ±1

−k/2−j,±k/2,±k/2 have the same conformal dimension, and these

also represent same value of Liouville momentum α = −bj, as in (47). In this sense, we
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can associate fields as Φ
(0)
j (z) ↔ Φ

(±)
−k/2−j(z). This manifestly shows the parallelism between

realizations (48) and (62). Moreover, it is also consistent with the relation between (47) and
(63). We conclude that (62) can be thought of as a realization of Hamiltonian reduction at the
level of correlation functions.

To understand the emergence of spectral flowed sector ω = −1 in (62), one has to take
into account that implementing the condition J+ = β = k induces a shifting20 of the modes
J±,3

n of Kac-Moody currents J±,3
(z) =

∑

n J±,3
n z−n−1, and such shifting can be interpreted as

a spectral flow transformation with parameter ω = −1, which yields the flow J±
n → J±

n∓1,
J3

0 → J3
0 + k/2. Again, this is related to the fact that the conformal dimension of a field

Φ
(0)
j ∼ Φ

(ω=0)
j,j,j with respect to the improved stress tensor T (z) − ∂zJ

3(z) agrees with that of a

flowed field Φ
(−)
j ∼ Φ

(ω=−1)
−j−k/2,k/2,k/2 with respect to T (z).

Let us notice that, as in the case of the µ-basis, it turns out that performing the change
b → b̃−1 in (62) yields a dual version of such a formula. In fact, we can write down the dual
formula as

〈

∏n

t=1
Vαt(zt)

〉

LFT
=

b̃

2 π3

〈

Φ
(+)
j1

(z1)
∏n

r=2
Φ

(−)
jr

(zr)
〉

H+
3

, (64)

where now α = b̃−1(j + 1) + b/2, b̃2 = k − 2. Then, from (62) and (64) we obtain the duality
relation

〈

Φ
(+)
j1

(z1)
∏n

r=2
Φ

(−)
jr

(zr)
〉

k
= Ĉ

〈

Φ
(+)

j̃1
(z1)

∏n

r=2
Φ

(−)

j̃r
(zr)

〉

k̃
, (65)

where Ĉ = (k−2)−2, and j̃ = (k−2) (j + 1/2)−1/2 and k̃−2 = (k−2)−1. This identity again
can be regarded as a manifestation of the quantum Langlands duality at the level of correlation
functions by relating the strongly coupled system with the weakly coupled system.

To conclude this appendix, let us make a remark on the generalization of the formula
(59) to the case of higher genus correlation functions. In fact, it would be very interesting
to extend the H+

3 −Liouville correspondence to the case of higher-genus correlation functions
involving spectral flowed sectors (winding sectors of string theory in AdS3). An intriguing
result for SL(2, R)k WZNW correlation functions on the sphere is the existence of an upper
bound for the violation of the winding number conservation. It turns out that winding number
conservation in a given tree-level n-point function can be violated up to n − 2 units21.

In the context of the H+
3 −Liouville correspondence, this upper bound ∆ω ≤ n − 2 for the

winding violation is nicely realized as follows: according to (59) the n-point WZNW correlation
functions that violate the winding conservation in ∆ω units are related to 2n − 2 − ∆ω-point
functions of LFT, where n−2−∆ω Liouville vertex operators represent degenerate fields V−1/2b.
In other words, violating the winding conservation in ∆ω units on the WZNW side corresponds
to removing ∆ω degenerate fields on the Liouville side of the original formula in [5]. Then,
a natural question is how such a picture is generalized to the case of higher genus correlation
functions. Presumably, for a genus-g correlation function the general story remains the same,
and one could associate the units of winding violation to the amount of degenerate Liouville

20G.G. thanks M. Porrati for pointing it out.
21This bound can be understood in terms of the sl(2)k symmetry of the theory; see appendix D of [14] for a

discussion.
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fields V−1/2b. Actually, one is tempted to conjecture that the upper bound for the violation of the
winding number in a genus-g n-point correlation function is given by ∆ω ≤ n+2g− 2. On one
hand, this is the amount of Liouville degenerate fields in the case of winding number conserved
amplitudes [20]; on the other hand, it numerically matches with the expected number if one
thinks the maximally violating genus-g correlation function as factorized in terms of several
maximally violating genus-zero correlation functions. It would be very interesting to confirm
that such a bound is obeyed.
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