
ar
X

iv
:0

90
9.

25
64

v1
  [

he
p-

th
] 

 1
4 

Se
p 

20
09

CECS-PHY-09/07

Microscopic entropy of the three-dimensional rotating black hole

of BHT massive gravity

Gaston Giribet1, Julio Oliva2,3, David Tempo2,4,5 and Ricardo Troncoso2,6

1Center for Cosmology and Particle Physics, New York University,

4 Washington Place NY10003, New York, USA.

2Centro de Estudios Cient́ıficos (CECS), Casilla 1469, Valdivia,

3Instituto de F́ısica, Facultad de Ciencias, Universidad Austral de Chile.

4Departamento de F́ısica, Universidad de Concepción, Casilla, 160-C, Concepción, Chile.
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Abstract

Asymptotically AdS rotating black holes for the Bergshoeff-Hohm-Townsend (BHT) massive

gravity theory in three dimensions are considered. In the special case when the theory admits a

unique maximally symmetric solution, apart from the mass and the angular momentum, the black

hole is described by an independent “gravitational hair” parameter, which provides a negative lower

bound for the mass. This bound is saturated at the extremal case and, since the temperature and

the semiclassical entropy vanish, it is naturally regarded as the ground state. The absence of a

global charge associated with the gravitational hair parameter reflects through the first law of

thermodynamics in the fact that the variation of this parameter can be consistently reabsorbed by

a shift of the global charges, giving further support to consider the extremal case as the ground

state. The rotating black hole fits within relaxed asymptotic conditions as compared with the ones

of Brown and Henneaux, such that they are invariant under the standard asymptotic symmetries

spanned by two copies of the Virasoro generators, and the algebra of the conserved charges acquires

a central extension. Then it is shown that Strominger’s holographic computation for general

relativity can also be extended to the BHT theory; i.e., assuming that the quantum theory could

be consistently described by a dual conformal field theory at the boundary, the black hole entropy

can be microscopically computed from the asymptotic growth of the number of states according

to Cardy’s formula, in exact agreement with the semiclassical result.
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I. INTRODUCTION

The new theory of massive gravity in three dimensions, recently proposed by Bergshoeff,

Hohm and Townsend (BHT) [1], has naturally earned a great deal of attention since it enjoys

many remarkable properties. The theory is described by the parity-invariant action

IBHT =
1

16πG

∫

d3x
√
−g

[

R − 2λ − 1

m2

(

RµνR
µν − 3

8
R2

)]

, (1)

which yields fourth order field equations for the metric. Noteworthy, since at the linearized

level they are equivalent to the Fierz-Pauli equations for a massive spin-2 field, ghosts are

“exorcized” from the theory [1, 2, 3]. As a consequence, the BHT theory appears to be

unitary [4] and renormalizable [5]. A variety of exact solutions has been found [3, 6, 7, 8,

9, 10], its locally supersymmetric extension is known [11], and further aspects have been

developed in [12].

In the special case, m2 = λ, the theory possesses a unique maximally symmetric solution

and it acquires additional interesting features, as it is the enhancement of gauge invariance

for the linearized theory, such that the graviton is described by a single degree of freedom

[3] being “partially massless” [13, 14, 15, 16]. For the nonlinear theory this is reflected

in the fact that the AdS waves propagate a single scalar degree of freedom whose mass

saturates the Breitenlohner-Freedman bound [7]. It is also known that in this case, the

Brown-Henneaux boundary conditions can be consistently relaxed, which enlarges the space

of admissible solutions so as to include rotating black holes, gravitational solitons, kinks and

wormholes [8].

In what follows we will focus on the asymptotically AdS rotating black hole found in [8].

The solution is described in terms of two global charges, being the mass and the angular

momentum, as well as by an additional ”gravitational hair” parameter, which provides a

negative lower bound for the mass. This bound is saturated at the extremal case and, since

the temperature and the semiclassical entropy vanish, it is naturally regarded as the ground

state. As revisited in the next Section, this sort of extremality is due to the gravitational

hair and it turns out to be stronger than extremality due to rotation. In Section III it is

shown that the absence of a global charge associated with the gravitational hair parameter

is reflected in the first law of thermodynamics through the fact that the variation of this

parameter can be consistently reabsorbed by a shift of the global charges, giving a remarkably

strong support to consider the extremal case as the ground state. Since the rotating black
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hole fits within relaxed asymptotic conditions as compared with the ones of Brown and

Henneaux [17], such that they are invariant under the standard asymptotic symmetries

spanned by two copies of the Virasoro generators, and the algebra of the conserved charges

acquires a central extension, Section IV is devoted to show that Strominger’s holographic

result for general relativity [18] can also be extended to the BHT theory; i.e., assuming

that the quantum theory could be consistently described by a dual conformal field theory at

the boundary, the black hole entropy can be microscopically computed from the asymptotic

growth of the number of states according to Cardy’s formula, in exact agreement with the

semiclassical result. Ending remarks are made in Section V.

II. ROTATING BLACK HOLE

The BHT theory (1) for the special case, m2 = λ = − 1

2l2
, admits the following rotating

black hole solution [8]

ds2 = −NFdt2 +
dr2

F
+ r2

(

dφ + Nφdt
)2

, (2)

where N , Nφ and F are functions of the radial coordinate r, given by

N =

[

1 +
bl2

4H

(

1 − Ξ
1

2

)

]2

,

Nφ = − a

2r2
(4GM − bH) , (3)

F =
H2

r2

[

H2

l2
+

b

2

(

1 + Ξ
1

2

)

H +
b2l2

16

(

1 − Ξ
1

2

)2

− 4GM Ξ
1

2

]

,

and

H =

[

r2 − 2GMl2
(

1 − Ξ
1

2

)

− b2l4

16

(

1 − Ξ
1

2

)2
]

1

2

. (4)

Here Ξ := 1 − a2/l2, and the rotation parameter a is bounded in terms of the AdS radius

according to −l ≤ a ≤ l. The solution is then described by two global charges, where M is

the mass and J = Ma is the angular momentum, as well as by an additional1 ”gravitational

hair” parameter b.

The rotating black hole is a conformally flat asymptotically AdS spacetime, and depend-

ing on the range of the parameters M , a and b, the solution possesses an ergosphere and

1 For simplicity, here the gravitational hair parameter b has been redefined making b → bΞ1/2 in [8].
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a singularity that can be surrounded by event and inner horizons. In the case of b = 0,

the solution reduces to the BTZ black hole [19, 20], while when the gravitational hair pa-

rameter is switched on (b 6= 0), the spacetime is no longer of constant curvature and the

solutions splits in two branches according to the sign of b. The event horizon radius, the

temperature and the entropy are given by r+ = γr̄+, T = γ−1T̄ , and S = γS̄, respectively,

where γ2 = 1

2

(

1 + Ξ−1/2
)

, and r̄+,T̄ , S̄ correspond to the radius of the event horizon, the

temperature and the entropy for the static case. Thus, the angular velocity of the horizon

turns out to be

Ω+ =
1

a

(

Ξ
1

2 − 1
)

, (5)

and the Hawking temperature and the Entropy can be explicitly expressed as

T =
1

πl
Ξ

1

2

√

2G∆M
(

1 + Ξ
1

2

)−1

, (6)

S = πl

√

2

G
∆M

(

1 + Ξ
1

2

)

, (7)

where

∆M := M − M0 = M +
b2l2

16G
. (8)

Note that the rotating BTZ black hole (b = 0) possesses twice the entropy obtained from

general relativity, i.e., S = A+

2G
.

The black hole described by (2) fulfills

M2 ≥ J2

l2
. (9)

This bound is saturated when the rotation parameter is given by a2 = l2, so that the angular

velocity of the horizon is Ω2
+ = 1

l2
and the temperature (6) vanishes. This is an extremal case

since the event and inner horizons coincide, and for b 6= 0 they are on top of the singularity

which become null and it is located at

r2

+ = r2

−
= r2

s = 2Gl2∆M . (10)

Note that for a2 = l2 the entropy (7) reduces to S = πl
√

2

G
∆M .

The case b < 0 is particularly interesting since the black hole mass is allowed to be

negative up to certain extent, and it is bounded in terms of the gravitational hair parameter

according to

M ≥ M0 , (11)
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with

M0 = − b2l2

16G
. (12)

This opens the possibility of having a different kind of stronger extremality. Indeed, the

bound (11) is saturated in the case of M = M0, so that the metric describes an extremal

black hole for which the event and the inner horizons coincide

r2

+ = r2

−
=

b2l4

8
Ξ

1

2

(

1 + Ξ
1

2

)

,

always enclosing a timelike singularity located at

r2

s =
b2l4

8
Ξ

1

2

(

Ξ
1

2 − 1
)

. (13)

Remarkably, for M = M0, not only the temperature but also the entropy vanishes, as it is

shown by Eqs. (6) and (7). Thus, it is natural to regard the case of M = M0 as the ground

state, not only because it is the lower bound for the mass allowed by cosmic censorship,

but also because, since the entropy vanishes, it would correspond to a single nondegenerate

microscopic state.

Note than this kind extremality is due to the existence of the gravitational hair parameter

and it can be attained for any value of the rotation parameter a within its allowed range, so

that the angular momentum is J0 = M0a, and the extremal horizon has an angular velocity

given by (5).

As explained in Section IV, at the extremal case M = M0, not only the entropy, but

also both left and right temperatures vanish, while for the extremal case J2 = M2l2, only

one of this temperatures vanishes, let say the left, while neither the right temperature nor

the entropy do. Thus, also this sense, extremality due to gravitational hair is stronger than

extremality due to rotation.

III. GRAVITATIONAL HAIR, FIRST LAW OF THERMODYNAMICS AND THE

GROUND STATE

Following the Deser-Tekin approach [21], it was shown in [8] that the rotating black hole

(2) possesses only two global charges, the mass M and the angular momentum J = Ma,

where the massless BTZ black hole was chosen as the reference background. Thus, because
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of the absence of a global charge associated to b, it was dubbed as the gravitational hair

parameter.

The absence of a global charge associated with b is then reflected in the first law of

thermodynamics through the fact that no chemical potential can be associated to it, and

hence the variation of this parameter has to be consistently reabsorbed by a shift of the

global charges.

This can be explicitly seen as follows: According to Eqs. (6) and (7), the product of the

temperature and the variation of the entropy is given by

TdS = Ξ
1

2 dM +
bl2

8G
Ξ

1

2 db − 1

a

(

1 − Ξ
1

2

)

(

M +
b2l2

16G

)

da ,

and taking into account Eqs. (5) and (12), this equation reduces to

d (M − M0) = TdS − Ω+d (J − J0) , (14)

where M0 and J0 = M0a correspond to the mass and the angular momentum of the extremal

case, respectively.

As expected, the dependence on the gravitational hair parameter is entirely absorbed by

a shift of the global charges. Remarkably, Eq. (14) means that the shift is precisely such that

the first law is fulfilled provided the global charges (the mass and the angular momentum)

are measured with respect to the ones of the extremal case that saturates the bound (11).

This provides further strong support to consider the extremal case as the ground state.

Using this fact, in the next section it is shown that the entropy of the rotating black hole

(7) can be microscopically computed from the asymptotic growth of the number of states of

the dual theory.

IV. MICROSCOPIC ENTROPY OF THE ROTATING BLACK HOLE

As shown in [8], the rotating black hole (2) fits within a relaxed set of asymptotic con-

ditions as compared with the one of Brown and Henneaux [17], being such that they are

invariant under the standard asymptotic symmetries spanned by two copies of the Virasoro

generators. The algebra of the conserved charges also acquires a central extension being

twice the value found for general relativity, i.e.,

c± = c =
3l

G
. (15)
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Choosing the extremal case as the reference background, the only nonvanishing surface

integrals for the rotating black hole are then the ones associated with the left and right

Virasoro generators L±

0 , given by

∆± =
1

2
(l∆M ± ∆J) =

1

2
∆M (l ± a) . (16)

where ∆M = M − M0, and ∆J = ∆Ma, are mass and the angular momentum.

Regarding this as the starting point, one can see that Strominger’s result for general

relativity [18] works also for the BHT theory described by (1). Strominger holographic

computation relies on an observation pushed forward more than twenty years ago by Brown

and Henneaux [17], who suggested that since asymptotic symmetry group of general rela-

tivity with negative cosmological constant in three dimensions is generated by two copies

of the Virasoro algebra, a consistent quantum theory of gravity should be described terms

of a two-dimensional conformal field theory. This is currently interpreted in terms of the

AdS/CFT correspondence [22].

Hence, assuming that quantum theory for BHT massive gravity exists and it is consis-

tently described by a dual conformal field theory at the boundary, the physical states must

form a representation of the algebra with a central charge given by (15), and if the CFT

fulfills some physically sensible properties, the asymptotic growth of the number of states is

given by Cardy’s formula.

Therefore, as explained above, since the black hole (2) can be regarded as excitations

of the ground state, which corresponds to the extremal case M = M0, the entropy can be

computed in the microcanonical ensemble as the logarithm of the density of states, given by

S = 2π

√

c+

6
∆+ + 2π

√

c−
6

∆− , (17)

where c± is given by (15), and ∆± in Eq. (16) correspond to the eigenvalues of L±

0 . Thus,

Eq. (17) reduces to

S = πl

√

∆M

G

(
√

1 +
a

l
+

√

1 − a

l

)

, (18)

= πl

√

2

G

(

1 + Ξ
1

2

)

∆M , (19)

which exactly agrees with the semiclassical result in Eq. (7).
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Note that since left and right movers are decoupled, they can be at equilibrium at different

temperatures T±. In the canonical ensemble, the entropy acquires the form

S =
π2l

3
(c+T+ + c−T−) , (20)

and since the free energy is given by

F = (β+∆+ + β−∆−) l−1 − S = β∆M + βΩ+∆J − S , (21)

the left and right temperatures turn out to be

T± =
T

1 ± lΩ+

=
1

2πl
(1 ∓ lΩ+)

√

2G∆M
(

1 + Ξ
1

2

)

. (22)

Then, by virtue of Eqs. (15) and (22) it is simple to verify that formula (20) exactly

reproduces the black hole entropy (7) as well.

Note that for extremal black holes case due to rotation, J2 = Ml2, for which Ω2
+ = 1

l2
,

only one of this temperatures vanishes, let say the left, while the right temperature is given

by T+ = 1

πl

√

2G∆M
(

1 + Ξ
1

2

)

and they have a nonvanishing entropy S = πl
√

2

G
∆M . It

is reassuring then to verify that for the extremal case due to gravitational hair, M = M0,

not only the entropy, but also both left and right temperatures vanish, as it has to be for a

suitable ground state.

V. DISCUSSION AND COMMENTS

It was shown that the semiclassical entropy of the rotating black hole (2) can be micro-

scopically reproduced from Cardy’s formula (17), where the ground state turns out to be

given by the extremal case M = M0. It is worth pointing out that the computations can be

extended perfectly well even for a case that they were not intended for, b > 0. The subtlety

is related to the fact that for b > 0, the black hole configuration with M = M0 suffers

certain pathologies. Nevertheless, as it was shown in [8], in this case the theory also admits

a gravitational soliton for M = M0. Thus, since the spacetime is regular everywhere, the

soliton provide a suitable nondegenerate state that can be naturally regarded as the ground

state. This point is left for future detailed discussion.

Since the rotating black hole (2) is conformally flat, it solves the BHT field equations for

the special case, m2 = λ, even in presence of the topological mass term, and it is simple
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to verify that our results extend to this case. The vanishing of the Cotton tensor should

also imply that the rotating black hole is conformally related to the matching of different

solutions of constant curvature by means of an improper conformal transformation, as it

occurs for the static case [23].
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