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Successful combination of computationally inexpensive
GIAO 13C NMR calculations and artificial neural
network pattern recognition: a new strategy for simple
and rapid detection of structural misassignments†

Ariel M. Sarotti*

GIAO NMR chemical shift calculations coupled with trained artificial neural networks (ANNs) have been

shown to provide a powerful strategy for simple, rapid and reliable identification of structural misassign-

ments of organic compounds using only one set of both computational and experimental data. The geo-

metry optimization, usually the most time-consuming step in the overall procedure, was carried out using

computationally inexpensive methods (MM+, AM1 or HF/3-21G) and the NMR shielding constants at the

affordable mPW1PW91/6-31G(d) level of theory. As low quality NMR prediction is typically obtained

with such protocols, the decision making was foreseen as a problem of pattern recognition. Thus, given a

set of statistical parameters computed after correlation between experimental and calculated chemical

shifts the classification was done using the knowledge derived from trained ANNs. The training process

was carried out with a set of 200 molecules chosen to provide a wide array of chemical functionalities

and molecular complexity, and the results were validated with a set of 26 natural products that had been

incorrectly assigned along with their 26 revised structures. The high prediction effectiveness observed

makes this method a suitable test for rapid identification of structural misassignments, preventing not

only the publication of wrong structures but also avoiding the consequences of such a mistake.

Introduction

The role of modern NMR techniques in structure elucidation
is indisputable, allowing the characterization of complex mole-
cular architectures in milligram quantities. Nevertheless,
despite a steady advancement in complex multidimensional
NMR experiments and more powerful spectrometers has been
achieved over the course of the last few decades, several
examples of structural and stereochemical misassignments are
still appearing in the literature.1 As pointed out by Nicolaou,
incorrectly assigned natural products complicate the assess-
ment of biosynthetic schemes and can also have profound con-
sequences both in terms of time and money if a research
group is willing to venture into their total synthesis.1a The

accurate calculation of NMR chemical shifts with quantum
chemical methods has laid a solid foundation to solve, at least
in part, some of these problems.2–5 The typical approach
involves the calculation of the chemical shifts for all the candi-
date structures to identify the molecular arrangement that best
matches the experimental data.6,7

This useful technique often has the geometry optimization
as the most time-consuming step in the overall NMR
calculations procedure, therefore much effort has been made
to identify computational methods that afford good geome-
tries for further high quality NMR predictions at minimal com-
putational cost. It has been established that the use of DFT
functionals (such as B3LYP or similar) coupled with the
6-31G(d) basis set (or superior) performs reasonably well for
common organic compounds.4 Even though these levels of
theory are nowadays affordable for most small to medium
sized molecular systems, the CPU time might be found to be
prohibitively long for many situations in which quickness is
an essential requirement. This is particularly important when
dealing with conformationally flexible compounds, from
which an extensive conformational search must be done to
determine the relative contribution of each conformer by
Boltzmann analysis.4
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Recently, Smith and Goodman introduced sophisticated
statistical methods for the stereochemical assignment of dia-
stereoisomeric compounds using computationally inexpensive
molecular mechanics for the geometry optimization step. As
depicted in Fig. 1, the CP3 parameter was designed to assign
two sets of experimental data to two possible structures,8 while
the DP4 applies to the more difficult case of assigning a pair of
isomers with only one set of experimental data.9

According to the trend depicted in Fig. 1, having access to a
method that could be applied to only one set of both experi-
mental and computational data (situation often found in struc-
tural validation, that is, confirm or reject a given putative
structure) seemed a valid next step. It would not be trivial to
point out that in all current approaches at least two candidate
structures are inevitably needed to assess which best matches
the experimental data, which is the reason why any method
envisaged to solve this problem should require a change in the
paradigm.

Although NMR calculations can be employed to aid a struc-
tural hypothesis validation,10 the main drawback comes from
the intrinsic absence of any other plausible molecular architec-
ture. As a result, the decision making is a difficult task
because it is unclear what level of correlation between experi-
mental and calculated data should be expected for a particular
structure to be classified as correct or incorrect. This issue is
of critical importance when computationally inexpensive
methods are used, where even for a correct match the agree-
ment might be poor.

Bagno pointed out the low probability of two different
molecules having the same NMR spectrum.11 Clearly, this
scenario offers an outstanding opportunity to solve the struc-
tural validation problem if only the current ab initio or DFT
methods had the ability to predict NMR data with perfect accu-
racy. Unfortunately, no such method is available (at least, not
with an affordable computational cost). This provides a large
limitation considering that different molecules often display
similar NMR data (particularly in the cases of stereoisomer-
ism). As a result, assessing the correctness of a putative struc-
ture using only one set of inexpensive computational data
remains an unsolved task. Fortunately, this restriction cannot
prevent the determination of the incorrect nature of a given
structural proposal.

The main goal of this work was the development of a
simple procedure to be used as a test for rapid and straight-
forward detection of structural misassignments. The approach

herein proposed is to perform the geometry optimization step
using computationally inexpensive methods (such as mole-
cular mechanics, semiempirical or low level ab initio
methods), followed by calculation of the NMR properties at the
affordable mPW1PW91/6-31G(d) level of theory. As high
quality NMR prediction with such protocols was not expected,
the decision making was considered as a problem of pattern
recognition. Thus, given a set of statistical parameters com-
puted after correlation between the calculated and experi-
mental 13C values for a candidate structure, the classification
might be done using the knowledge derived from analysis of
the patterns corresponding to known correct and incorrect
structures.12

An artificial neural network (ANN) is a mathematical model
in which a number of interconnected artificial neurons mimic
the behavior of a biological brain. One of the most relevant
properties of the ANNs is their ability to learn from the data,
which has many applications in pattern recognition, classifi-
cation, clustering and more,13 making them ideally suited to
be used in this work. The successful combination of quantum
chemical calculations with ANNs to tackle different issues has
been reported,14 though this work represents the first appli-
cation of such an approach for structural validation using
NMR chemical shift calculations.

Computational methods

All molecular mechanics calculations were performed using
Hyperchem15 with the MM+ force field16 and the quantum
mechanical calculations were performed using Gaussian 09.17

In the case of conformationally flexible compounds, the con-
formational search was done in the gas phase using the MM+
force field, with the number of steps large enough to find all
low-energy conformers at least 10 times. All conformers within
5 kcal mol−1 of the lowest energy conformer were subjected to
further reoptimization at the AM118 and HF/3-21G levels
of theory. With the most stable conformers in hand (up to
5 kcal mol−1 of the lowest energy conformer) the next step was
the shielding constants single point calculation using the
GIAO (gauge including atomic orbitals) method,19 with the
mPW1PW91 functional20 (one of the most reliable DFT func-
tionals for NMR calculations)4,5g,6a,7 and the 6-31G(d) basis
set. To simplify the process and reduce the computational cost
all calculations were carried out in the gas phase.7–9

The NMR shielding constants were subjected to Boltzmann
averaging over all conformers according to:4,7–9

σx ¼
P

iσxi expð�Ei=RTÞP
i expð�Ei=RTÞ ð1Þ

where σx is the Boltzmann-averaged shielding constant for
nucleus x, σxi is the shielding constant for nucleus x in confor-
mer i, R is the molar gas constant (8.3145 J K−1 mol−1), T is
the temperature (298 K), and Ei is the gas phase single point
mPW1PW91/6-31G(d) energy of conformer i (relative to the
lowest energy conformer).

Fig. 1 Target method proposed in this work.
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Once the shielding constants were computed, the chemical
shifts were calculated according to:7

δxcalc ¼ σref � σ x þ δref ð2Þ
where σref is the NMR isotropic magnetic shielding value for
the reference compound, and δref is the experimental chemical
shift of the reference compound in deuterated chloroform. In
this study two different methods to calculate the NMR chemi-
cal shifts were used, namely TMS and MSTD. In the TMS
method, all chemical shifts are calculated using TMS as
the reference standard (δref = 0.00 ppm), while in the multi-
standard approach (MSTD), methanol (δref = 50.41 ppm) and
benzene (δref = 128.37) were used as reference standards for
sp3 and sp–sp2 hybridized carbon atoms, respectively.21 Sarotti
and Pellegrinet have recently found that this simple modifi-
cation allowed much better accuracy and lower dependence on
the theory level employed, both for 13C and 1H NMR shift
calculation procedures.7

The ANN training was done using the Neural Network
Toolbox incorporated in MATLAB 7.0.22

Results and discussion

ANNs are computational algorithms that can be used to
examine data and develop models to identify patterns in the
data (known as the training process), which in turn can be
used to make further predictions.13 Among the two main
approaches for network training (supervised and unsuper-
vised), the first is most commonly used for a variety of appli-
cations. In supervised training, both the inputs and outputs
are given to train the ANN to perform a particular job. The set
of data which enables the training is called “training set”,
which in this study was a set of data derived from known
correct and incorrect structures. For the former, 100 small-to-
medium sized compounds (Fig. 2) were selected to provide a
wide array of chemical functionalities and molecular complex-
ity and also because their 13C NMR spectra are well-known.23

To create the test set of incorrect structures, some of the com-
pounds shown in Fig. 2 were deliberately modified to create
100 additional molecular architectures (Fig. 3), and the calcu-
lated NMR shifts were correlated with the experimental data
corresponding to its parent structure.

Once the NMR shifts of the 200 compounds of the training
set were computed at the three levels of theory under study,
the next step was the calculation of statistical parameters com-
monly used to quantify the agreement between experimental
and computational NMR shifts. To do so, it would be necess-
ary to know which experimental shift corresponds to which
calculated shift, which in turn requires having the experi-
mental data fully assigned (that is, having all resonances
assigned to all the corresponding nuclei in the proposed struc-
ture). However, even with 2D NMR data available, it is not
uncommon to misassign at least some of the signals leading
to serious consequences when correlating with the calculated
data. On the other hand, if the candidate structure is wrong,

any assignment would have to be inevitably incorrect. To sort
these potential problems, the corresponding δexp and δcalc were
sorted in descending order of size and the resulting values
were paired, providing an additional simplification as un-
assigned data can be used (e.g. from the 1D NMR spectrum).

Finally, systematic errors during the shift calculation were
removed by empirical scaling according to:4

δscaled ¼ ðδcalc � bÞ=m ð3Þ
where m and b are the slope and the intercept, respectively,
resulting from a linear regression calculation on a plot of δcalc
against δexp. The scaling factors (b and m) can be determined
in two ways: (a) using the data from large databases4,5b,k,6a (for
example, at http://cheshirenmr.info) or (b) from a plot of δcalc
against δexp for each particular compound under study. This
procedure has been extensively used,4,5i,j,6c,7–9 and was the
method of choice in this study. In a perfect correlation, b, m
and R2 (the correlation coefficient) would be 0, 1 and 1,
respectively. In addition, six other statistical descriptors were
used to quantify the agreement between experimental and calcu-
lated data: the mean absolute error (MAE, defined as Σn|δcalc −
δexp|/n), the corrected mean absolute error (CMAE, defined as
Σn|δscaled − δexp|/n), the standard deviation (σ, defined as
[Σn(|δcalc − δexp| − MAE)2/(n − 1)]1/2), the corrected standard
deviation (Cσ, defined as [Σn(|δscaled − δexp| − CMAE)2/(n − 1)]1/2),
the maximum error (MaxErr, defined as max|δcalc − δexp|) and
the corrected maximum error (CMaxErr, defined as max|δscaled
− δexp|). Therefore, for each reference standard used in the
chemical shift calculation (TMS and MSTD), a total number of
9 statistical parameters are computed: MAE, CMAE, σ, Cσ,
MaxErr, CMaxErr, m, b and R2. In Table 1 are shown two repre-
sentative examples to clarify the process.

At this point, it would be important to recall that the main
goal of this work was the development of a method that could
determine if a putative structure is right or wrong using only
one set of both computational and experimental data. For that
reason, any attempt to directly compare any pair of correct and
incorrect compounds shown in Fig. 2 and 3 must be avoided.
For instance, after a simple glance of the data presented in
Table 1 for both 1 and 101, it would be easy to affirm that the
last one should be the incorrect one, but the decision making
is based on a direct comparison between two candidates. On
the other hand, this method was thought to achieve the same
conclusion using only the data computed for 101.

Construction of the network

In this study, two-layer feed-forward networks were used. A
schematic representation of such ANNs is given in Fig. 4, in
which are highlighted the three main components of the
network architecture: the input layer, the hidden layer and the
output layer.

These types of ANNs are said to be fully connected, that is,
each node is connected to every node in the preceding layer. In
the biological neuron, the synapse permits a neuron to
transfer an electrical signal to another neuron, allowing the
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Fig. 2 Molecules used in the correct test set.
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Fig. 3 Molecules used in the incorrect test set. In parentheses are shown the parent compounds from which experimental NMR data were taken.
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interconnection between them and providing the strength of
the connection. In a similar fashion, in an artificial neuron
the synapse is represented by a weight number (w). Each

neuron receives the signal from the previous neuron, and each
connection carries an assigned weight (that is, the synapse).
All inputs are summed altogether and modified by the
weights. Finally, an activation function (also known as the
transfer function, f ) controls the amplitude of the output.13

Among several transfer functions, the hard-limit (or step), the
linear and the sigmoid are the most commonly used for a
variety of applications. For example, ANNs with sigmoid trans-
fer functions for the first layer and linear transfer function for
the second layer are typically used to fit multi-dimensional
problems.14a,e In this study, two-layer feed-forward networks,
with sigmoid hidden and output neurons, were used because
it is known that this net architecture can classify vectors arbi-
trarily well.13,22

The input vector is constituted by the statistical descriptors
(MAE, CMAE, MaxErr, etc.), denoted as xi. Since the output
values are in the range of 0 and 1, the input values must be
scaled in the [−1, 1] region, according to:

xscaled ¼ ½2ðxi � xminÞ=ðxmax � xminÞ� � 1 ð4Þ
where xmax and xmin are the maximum and minimum values
of the ith input parameter, respectively. Each neuron of the
hidden layer receives the scaled values from the input layer
and produces the output value according to:

y j ¼ tanhðnet jÞ

net j ¼
Xn

i¼1

wjixi þ b j
ð5Þ

where n is the number of neurons in the input layer, wji is
the connection weight of the ith neuron in the input layer to
the jth neuron of the hidden layer, xi is the scaled value of the
ith neuron of the input layer, and bj is the bias value of the
jth neuron. The output of the first layer (yj) is then used as
an input value for the second layer (the output layer)
according to:

zk ¼ tanhðnetkÞ

netk ¼
Xm

j¼1

wkjy j þ bk
ð6Þ

where m is the number of neurons in the hidden layer, wkj

is the connection weight of the jth neuron in the hidden layer
to the kth neuron of the output layer, and yj is the output from
the hidden layer, and bk is the bias value of the kth neuron. zk
is the output value of the output layer, which is finally scaled
in the [0, 1] region according to:

zscaled ¼ ðzi þ 1Þ=2 ð7Þ
Once the net architecture was established, the question

arose on the size of the input, hidden and output layers to
afford optimal results. Regarding the size of the input layer,
three different sets of statistical descriptors were used as input
vectors: (a) the 9 parameters obtained from using TMS as the
reference standard, (b) the 9 parameters obtained using MSTD
as the reference standard, and (c) the 18 parameters obtained

Table 1 Statistical parameters calculated after matching the calculated chemi-
cal shifts for compounds 1 (correct structure) and 101 (incorrect structure) with
the experimental chemical shifts of 1 at the mPW1PW91/6-31G(d)//HF/3-21G
level of theory

σx δexp δcalc,MSTD δscaled,MSTD δcalc,TMS δscaled,TMS

Compound 1
13.9991 188.6 188.3 189.4 180.8 191.3
57.2862 148.1 145.0 145.3 137.5 143.5
72.7391 126.5 129.6 129.6 122.0 126.5
94.5418 101.4 100.2 99.7 100.2 102.4
121.2435 71.5 73.5 72.6 73.5 73.0
127.9196 66.3 66.8 65.8 66.8 65.6

MAE 1.70 4.45
CMAE 1.65 1.74
σ 1.22 4.04
Cσ 1.08 1.65
MaxErr 3.08 10.62
CMaxErr 3.10 4.56
m 0.98 0.91
b 2.18 7.34
R2 0.9980 0.9971

Compound 101
8.3253 188.6 194.0 190.9 186.4 192.9
53.7939 148.1 148.6 146.3 141.0 144.7
73.7452 126.5 128.6 126.7 121.0 123.5
97.5324 101.4 97.2 96.0 97.2 98.3
114.7059 71.5 80.1 79.2 80.1 80.1
130.9038 66.3 63.9 63.3 63.9 62.9

MAE 3.83 4.99
CMAE 3.40 4.29
σ 2.88 2.56
Cσ 2.69 2.16
MaxErr 8.55 8.56
CMaxErr 7.67 8.60
m 1.02 0.94
b −0.66 4.51
R2 0.9906 0.9881

Fig. 4 Schematic illustration of a two-layer feed-forward ANN used in this
study.
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combining the 9 parameters obtained from using TMS with
the 9 parameters obtained from using MSTD (referred to as
TMS + MSTD). On the other hand, two categories were chosen
for the output layer: category 1 for correct structures and
category 2 for incorrect structures. The training pattern for cat-
egory 1 is (1 0), whereas the training pattern for category 2 is
(0 1). Finally, after preliminary investigation the hidden layer
was set to a number of 20 neurons since increasing this value
did not afford improved results.

In the training process, a scaled conjugate gradient back-
propagation learning algorithm was used to determine the
optimal values of the weights and bias values for each connec-
tion between neurons.13,22 In this procedure, the error
between the calculated and experimental output vector is
calculated, and the weights are corrected throughout all the
network from the last layer to the first layer, until an accepta-
ble error is reached. Each iteration is called “epoch”, and in
this work a maximum of 1000 epochs was used to achieve con-
vergence criteria. For the purpose of the training, the input
data were randomly divided into three subsets: 80% of the
data were used for the training (used to adjust the weights and
bias), 15% for the validation (used to decide when to stop the
training process, avoiding overfitting) and 5% for testing the
net (used to measure the performance of the trained network).
The results obtained after training the ANNs are given in
Table 2, and all weights and biases corresponding to each
trained network can be found in the ESI.†

From the data presented in Table 2 it can be seen that all
methods performed well in terms of pattern classification (as
determined by the percentage of the 200 molecules of the
training set that were correctly classified after training of the
ANN). Not unexpectedly, the overall performance of the ANNs
increased with the computational cost of the method
employed in the geometry optimization step (HF/3-21G > AM1
> MM+). Moreover, even though the use of TMS and MSTD as
reference standards afforded similar results, the combination
of both (18 parameters) slightly increased the ability of the
ANNs to differentiate between correct and incorrect structures.

To clarify the outstanding capability of the ANNs to explore
and identify patterns in the data, Table 3 shows the minimum
and maximum values for the 9 statistical parameters com-
puted using MSTD as the reference standard for the 100 com-
pounds depicted in Fig. 2,24 along with the percentage of the
100 misassigned compounds (Fig. 3) whose calculated para-
meters fall within the corresponding range. In view of these
results, it can be seen that none of the statistical parameters
taken alone can be used to classify the data with the same
level of accuracy found for the ANNs after the training process.
For example, the R2 parameter of 89%, 78% and 86% of all
incorrect structures (computed at the MM+, AM1 and HF/3-
21G levels, respectively) were located within the range corres-
ponding to known correct structures, meaning that only 11%,
22% and 14% of wrong structures could have been correctly
classified using only this statistical parameter. Naturally, a
more sophisticated algorithm could be found to achieve a
better classification process combining some of these para-
meters, with the ANNs being ideal to tackle this issue in a
simple and straightforward fashion.

In a more comprehensive example on the real usefulness of
trained ANNs in structural validation, Table 4 shows the stat-
istical parameters that are typically used to quantify the agree-
ment between experimental and computational data (and
therefore, to assess whether the proposed structure is wrong or
right), of 6 of the 200 compounds shown in Fig. 1 and 2 com-
puted at the mPW1PW91/6-31G(d)//MM+ level of theory using
the MSTD approach.25

Even with the information provided in Table 3, any assign-
ment on the correct or incorrect nature of compounds A–F

Table 2 Percentage of correct classification of the nine ANNs used in this study

ANN

Geometry
optimization
method

Reference
standard

No. of
neurons in the
input layer

% of correct
classification

MM-9a MM+ TMS 9 92%
MM-9b MM+ MSTD 9 92%
MM-18 MM+ TMS + MSTD 18 94%
AM1-9a AM1 TMS 9 94%
AM1-9b AM1 MSTD 9 92%
AM1-18 AM1 TMS + MSTD 18 97%
HF-9a HF/3-21G TMS 9 97%
HF-9b HF/3-21G MSTD 9 97%
HF-18 HF/3-21G TMS + MSTD 18 100%

Table 3 Minimum and maximum values of the 9 statistical parameters computed using MSTD for the 100 compounds shown in Fig. 2, and percentage of the 100
incorrect compounds shown in Fig. 3 whose calculated parameters fall within the range

MM+ AM1 HF/3-21G

Min Max % Min Max % Min Max %

MAE 0.88 7.28 87 1.11 4.24 39 0.84 3.35 20
σ 0.67 3.59 44 0.56 3.25 39 0.51 2.98 31
MaxErr 2.31 15.31 56 1.88 12.64 42 1.71 13.13 53
R2 0.9494 0.9996 89 0.9719 0.9997 78 0.9592 0.9998 86
m 0.83 1.07 81 0.78 1.08 88 0.89 1.06 82
b −7.14 23.55 87 −9.82 12.18 82 −6.23 14.73 82
CMAE 0.46 3.77 60 0.45 4.16 63 0.35 3.11 34
Cσ 0.31 3.20 64 0.34 3.17 57 0.24 2.73 47
CMaxErr 1.21 12.45 63 1.21 12.18 63 0.97 10.60 55
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would not be a trivial task. Remember that the goal here is to
assess whether a putative structure is right or wrong based
only on the statistical parameters calculated for that particular
structure. Because there is not another plausible candidate,
any direct comparison is simply impossible. As seen in
Table 4, the highest R2 and lowest CMAE correspond to struc-
ture A, and the lowest MaxErr are found for structures B and C.
Structure D displays high MAE and MaxErr, but the R2 and
CMAE are relatively good. In the case of structures E and F
both MAE, CMAE and MaxErr are high, and the R2 parameters
are not among the highest. However, since all these para-
meters fall in the range corresponding to known correct struc-
tures (Table 3), the decision making remains an obstacle
difficult to overcome. Actually, A, B and C are the incorrect
compounds 110, 111 and 118, respectively (Fig. 2), while D, E
and F are the correctly assigned compounds 58, 89 and 70,
respectively (Fig. 1). All these compounds were successfully

classified by the trained ANN-MM-18, proving further utility of
the herein proposed methodology.

Testing the trained ANNs

The capability of the trained ANNs to successfully classify the
data corresponding to known correct and incorrect structures
of the training set indicated that the information provided in
the input layer was enough. However, it is important to recall
that the ANNs were trained using a “virtual” set of incorrect
structures. For that reason, the evaluation of the performance
of the ANNs in real cases of structural misassignment was con-
sidered a fundamental stage in this study. Accordingly, a set of
26 natural products that were incorrectly assigned based on
NMR data (Fig. 5) was selected to test the overall performance
of the optimal trained ANNs (ANN-MM-18, ANN-AM1-18 and
ANN-HF-18). The collected results are given in Table 5.

Fortunately, even with the large variety of chemical func-
tionalities and molecular complexity of compounds 201–226
the overall performance of the trained ANNs was excellent. As
expected from the training process, the ANN-HF-18 could
successfully classify all structures in category 2 (incorrect),
while the ANN-MM-18 failed in two cases (compounds 216 and
219) and the ANN-AM1-18 in only one case (compound 219).
These results not only provided further evidence on the ability
of the trained ANNs to correctly identify structural misassign-
ments on compounds that were not used in the training set,
but also validated the choice of using “virtual” incorrect struc-
tures in it.

Table 4 Selected statistical parameters computed for 6 of the 200 compounds
shown in Fig. 1 and 2 at the mPW1PW91/6-31G(d)//MM+ level of theory using
the MSTD approach

Compound

A B C D E F

MAE 3.50 3.20 3.59 7.30 3.91 3.82
MaxErr 10.48 5.02 6.88 11.51 11.62 10.65
R2 0.9979 0.9947 0.9936 0.9972 0.9940 0.9936
CMAE 1.70 2.51 3.52 1.98 2.60 3.05

Fig. 5 Natural products that were originally misassigned based on NMR data.
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Finally, to reject the possibility of an excessive tendency of
the ANNs to classify structures in category 2, the revised struc-
tures of the compounds 201–221 (Fig. 6) were next computed
(Table 6). On the other hand, compounds 222–226 are natural
products whose putative structures were found to be incorrect
by total synthesis, even though their correct structures have
not been revised yet. In these cases, the calculated chemical
shifts were correlated with the experimental chemical shifts of
the synthesized structures.45b,46b,47b,48b,49b

Here again, the ANN-HF-18 correctly classified all structures
in category 1 (correct), while the ANN-MM-18 and ANN-AM1-18
failed in two (compounds 232 and 244) and three cases (com-
pounds 232, 242 and 244), respectively.

These results clearly proved that the ANNs performed well
when dealing with correct structures which were not used
during the training stage, although a slight tendency of
ANN-AM1-18 to overclassify structures in category 2 (incorrect)
was observed.

Case study

Finally, to give a further example on the utility of the proposed
methodology to solve structural elucidation problems, a recent
case study of the structural revision of aquatolide by Shaw,
Tantillo and co-workers6a is presented. This sesquiterpenoid
was originally assigned as compound 221 (Fig. 5)44 and further
revised as 247 (Fig. 6). In one of the key steps to identify the
correct structure of aquatolide, the authors made a combi-
nation of rational and arbitrary changes of the originally pro-
posed structure 221, followed by calculation of NMR shifts of
all candidate structures considered at the SCRF-B3LYP/6-31+G-
(d,p)//B3LYP/6-31G(d) level of theory. After this in silico

Fig. 6 Revised structures of compounds 201–221.

Table 5 Output patterns obtained after testing the optimally trained ANNs
with the 26 molecules shown in Fig. 5a

Structure ANN-MM-18 ANN-AM1-18 ANN-HF-18

201 0.0071; 0.9957 0.0016; 0.9992 0.0021; 0.9977
202 0.0208; 0.9851 0.0008; 0.9998 0.0000; 1.0000
203 0.0001; 0.9999 0.0000; 1.0000 0.0000; 1.0000
204 0.0166; 0.9882 0.0000; 1.0000 0.0000; 1.0000
205 0.0002; 0.9998 0.0209; 0.9905 0.0000; 1.0000
206 0.0000; 1.0000 0.0000; 1.0000 0.0000; 1.0000
207 0.0000; 1.0000 0.0000; 1.0000 0.0000; 1.0000
208 0.0329; 0.9784 0.0120; 0.9917 0.0000; 0.9999
209 0.0366; 0.9723 0.0000; 1.0000 0.0000; 1.0000
210 0.2646; 0.7788 0.0019; 0.9992 0.0003; 0.9994
211 0.0000; 1.0000 0.0000; 1.0000 0.0000; 1.0000
212 0.0541; 0.9818 0.0017; 0.9992 0.0000; 1.0000
213 0.0000; 1.0000 0.0000; 1.0000 0.0000; 1.0000
214 0.1161; 0.9299 0.0237; 0.9846 0.0125; 0.9790
215 0.0000; 1.0000 0.0000; 1.0000 0.0000; 1.0000
216 0.7458; 0.2998 0.0733; 0.9103 0.0009; 0.9993
217 0.0003; 0.9998 0.0006; 1.0000 0.0000; 1.0000
218 0.2749; 0.7289 0.0000; 1.0000 0.1221; 0.7964
219 0.6705; 0.3565 0.9886; 0.0063 0.2353; 0.6994
220 0.0431; 0.9700 0.0001; 1.0000 0.1102; 0.8307
221 0.0000; 1.0000 0.0000; 1.0000 0.0000; 1.0000
222 0.4957; 0.5667 0.2523; 0.7674 0.0602; 0.8814
223 0.0004; 0.9999 0.0000; 1.0000 0.0000; 1.0000
224 0.0020; 0.9990 0.0000; 1.0000 0.0000; 1.0000
225 0.0054; 0.9948 0.0000; 1.0000 0.0000; 1.0000
226 0.0607; 0.9591 0.1582; 0.9084 0.0000; 1.0000

a The output values of the ANNs were required to assume discrete
values 0 or 1 in the training process. However, in general the final
output patterns show continuous values between 0 and 1. This is a
limitation of the resolution ability of the network, and should not be
taken as probability distribution. Nevertheless, an output pattern
closer to (1 0) than to (0 1) corresponds to category 1 (correct).
Otherwise, corresponds to category 2 (incorrect).
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screening the authors were able to propose an alternative
structure (247), which was experimentally verified after reisola-
tion, and extensive experimental NMR and X-ray crystallo-
graphic analysis.6a

To analyze whether the methodology proposed in the
present study could have been useful in such computational
screening process, 45 of the many alternative (incorrect) struc-
tures for aquatolide were randomly selected (see the ESI†). All
these compounds, along with 221 and 247, were optimized at
the MM+, AM1 and HF/3-21G levels of theory (after extensive
conformational searches), and the NMR shielding tensors
calculated at the proposed mPW1PW91/6-31G(d) level. Once
the statistical parameters were computed, the performance of
the trained ANN-MM-18, ANN-AM1-18 and ANN-HF-18 was
evaluated. In all cases, the trained ANNs could successfully
classify all candidate structures as incorrect with the only
exception of compound 247, which is precisely the correct
structure of aquatolide.

Final considerations

The results described herein clearly supported the initial goal
of this work: developing a test method that could detect cases
of structural misassignments in a simple, rapid and confident
fashion. However, since care must be taken on hasty con-
clusions, some final considerations must be pointed out. A
“category 1” classification means that the proposed structure
has calculated NMR shifts that correlate with the experimental
data in a similar manner to the correct structures of the

training samples, it does not mean that the structure is actu-
ally correct. This situation, often found in cases of stereo-
isomerism, represents the main limitation of this method.
As a consequence, the stereoassignment by computational
methods needs to be done using procedures based on the
comparison between all candidate structures, with the CP3
and DP4 methods being developed by Goodman highly rec-
ommended.8,9 On the other hand, a “category 2” classification
indicates that the candidate structure is probably wrong and
should be conveniently revised.

Another issue that is important to discuss represents
the well-known effect of higher than average errors obtained
when calculating NMR shifts of carbon atoms attached
to third row or greater elements (known as the heavy-atom
effect), which mainly derives from the neglection of spin–orbit
contributions from relativistic effects.4 Since the ANNs were
not trained to account for this effect, any carbon atom
attached to heavy atoms should be excluded to prevent
misclassification.

Practical aspects

This methodology was thought to help NMR spectroscopists in
their everyday work. Naturally, the user must have the proper
basic skills in computational chemistry but is not supposed to
be an expert in ANNs nor in using MATLAB or related software.
For that reason, an Excel file is provided as part of the ESI† to
considerably simplify the process. Filling the enabled cells
with the experimental NMR shifts and with the calculated
GIAO shielding tensors, the spreadsheet computes the
unscaled and scaled chemical shifts using TMS and MSTD,
along with the 18 statistical parameters that are automatically
introduced in the trained ANN (also provided in the same file)
to obtain the output value.

Conclusions

In this work it has been shown that the NMR shift calculations
using low theory levels in the geometry optimization, which
constitutes one of the most time-consuming steps, coupled
with trained ANNs represent a powerful test for simple, rapid
and reliable identification of structural misassignments. From
the results obtained, the method based on HF/3-21G geome-
tries proved to be the most reliable in terms of classification
ability, and should be used when computational resources are
not a problem. On the other hand, the methods based on
MM+ and AM1 geometries also displayed very good perform-
ances in terms of pattern recognition, having the advantage of
being much faster than the former one. For that reason, those
methods should be used if rapid and/or preliminary results
are needed. Properly used, the methodology presented in this
work could detect errors in early stages of structural assign-
ment, preventing the publication of wrong structures and
therefore lowering the probability of chasing molecules that
were never there.1a

Table 6 Output patterns obtained after testing the optimally trained ANNs
with the 21 molecules shown in Fig. 6, and with the new NMR data of com-
pounds 222–226

Structure ANN-MM-18 ANN-AM1-18 ANN-HF-18

227 0.5330; 0.4721 0.9680; 0.0207 0.9993; 0.0007
228 0.8726; 0.1289 0.6750; 0.3833 0.8903; 0.0805
229 0.9621; 0.0244 0.9913; 0.0064 0.9999; 0.0001
230 0.8338; 0.1589 0.9994; 0.0003 0.9997; 0.0003
231 0.7294; 0.2664 0.9919; 0.0056 0.9739; 0.0221
232 0.0008; 0.9995 0.0944; 0.9182 0.9998; 0.0002
233 0.7543; 0.2759 0.9996; 0.0002 0.9991; 0.0008
234 0.9474; 0.0478 0.9982; 0.0009 0.9990; 0.0008
235 0.9216; 0.0634 0.9286; 0.0652 0.9999; 0.0001
236 0.8853; 0.1313 0.9943; 0.0038 0.8813; 0.0873
237 0.9700; 0.0237 0.9998; 0.0001 0.9998; 0.0002
238 0.6833; 0.4091 0.9857; 0.0074 0.9851; 0.0121
239 0.9165; 0.0839 0.8847; 0.1296 0.9990; 0.0003
240 0.8628; 0.1506 0.9993; 0.0003 0.9976; 0.0021
241 0.9362; 0.0637 0.9672; 0.0230 0.9990; 0.0008
242 0.9766; 0.0173 0.0458; 0.9496 0.9996; 0.0003
243 0.9670; 0.0288 0.9998; 0.0001 1.0000; 0.0000
244 0.0092; 0.9929 0.0044; 0.9981 0.9278; 0.0425
245 0.9503; 0.0408 0.9964; 0.0018 0.9980; 0.0021
246 0.9678; 0.0236 0.9422; 0.0418 0.9990; 0.0007
247 0.7839; 0.2679 0.9788; 0.0171 0.9999; 0.0001
222 0.9890; 0.0064 0.9996; 0.0002 1.0000; 0.0000
223 0.9898; 0.0056 0.9999; 0.0000 1.0000; 0.0000
224 0.8424; 0.1718 0.6040; 0.4574 0.9753; 0.0146
225 0.9795; 0.0115 0.9975; 0.0012 0.9999; 0.0001
226 0.9674; 0.0269 0.9847; 0.0117 0.9997; 0.0004
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