
Waiting-time distributions of magnetic discontinuities: Clustering or Poisson process?

A. Greco*
Dipartimento di Fisica, Universita’ della Calabria, I-87036 Cosenza, Italy

W. H. Matthaeus and S. Servidio†

Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA

P. Dmitruk
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina

�Received 4 July 2009; published 12 October 2009�

Using solar wind data from the Advanced Composition Explorer spacecraft, with the support of Hall mag-
netohydrodynamic simulations, the waiting-time distributions of magnetic discontinuities have been analyzed.
A possible phenomenon of clusterization of these discontinuities is studied in detail. We perform a local
Poisson’s analysis in order to establish if these intermittent events are randomly distributed or not. Possible
implications about the nature of solar wind discontinuities are discussed.
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I. INTRODUCTION

The statistical distribution of waiting time �WT� between
“bursty” events is a powerful tool to investigate temporal
pointlike processes such as, for example, solar flares, earth-
quakes, polarity reversals of geomagnetic field, stock market
indexes, and lasing emissions in nematic liquid crystals
�1–4�. Indeed, the shape of the probability distribution func-
tion for waiting times can give useful information about the
physics of the underlying process. Another interesting case to
study is the solar wind. This turbulent medium is character-
ized by the presence of strong small-scale magnetic fluctua-
tions that behave as intermittent events �5–8�. There is still
debate regarding the relative frequency and the nature of
these intermittent signals. Some authors �9� have shown that
the waiting times �interarrival times� between magnetic
structures in the inner solar wind, measured by the Helios II
satellite in interplanetary space at a distance R=0.9 AU
from the sun, are distributed with a power law, extended over
several decades. In fact, as turbulence may be viewed as a
fragmentation process that carries energy from large to small
scales, there exists a strong correlation between structures
generated at different scales. This suggests that an underlying
complex dynamics with long correlation times or “memory”
is present �10�.

There is also evidence that the probability density func-
tions �PDFs� of waiting times are well described by expo-
nential functions �5,6,11�. This exponential distribution is
what would be expected if discontinuities occur with Pois-
son’s statistics. Binomial or Poisson distributions �trivial sta-
tistics�, in fact, imply no correlations between successive
events, that is “lack of memory.” In another recent work �8�,
the distribution of separations between successive disconti-
nuities has been described with a log-normal function. It has

been concluded that the results are potentially consistent
with the exponential behavior even if the log-normal shape
better characterizes the interarrival times over greater ranges.
A log-normal distribution may indicate that turbulence in
solar wind, which in principle can locally generate disconti-
nuities �12�, behaves like a multiplicative random cascade
�8�. Indeed, the presence in the interplanetary magnetic field
fluctuation spectrum of so-called “1 / f” noise at low frequen-
cies has been explained by appeal to a multiplicative process
lower in the corona �13�. Based on these considerations, one
cannot rule out the possibility that correlations between suc-
cessive bursty events are present.

In a comparative study on the waiting-time statistics gov-
erning the magnetohydrodynamic �MHD� fluctuations of the
z component of the interplanetary magnetic field �14�, it has
been shown that the solar activity phase strongly influences
the statistics which vary from quasi-Poisson to power law.
Indeed, by comparing the obtained results, they found that
the power-law behavior extends to longer time intervals at
solar maximum than at minimum.

In situ solar wind measurements provide time series data
at the position of the space craft. For MHD-scale fluctuations
with velocities much smaller than the plasma bulk velocity
V, the Taylor hypothesis is valid: the observed variations on
a time scale �t correspond to variations on the spatial scale
�s=V�t. Therefore the observations provide information
about spatial structure. This allows meaningful comparisons
of simulation and solar wind data sets. Recently �15�, it was
found through the analysis of Hall MHD simulations that
distribution of WT between discontinuities for s��c is well
described by a power law, while exponential functions work
better for s��c, where �c is the correlation length and s is
the separation between suitably defined extreme events.
Analysis of solar wind Advanced Composition Explorer
�ACE� data �16� verified that power laws describe the distri-
bution of WT for periods up to �3000 s �50 min�, which is
on the order of the correlation length of magnetic fluctua-
tions in the solar wind �17�.

One needs to be cautious in concluding that the underly-
ing process of cascade is non-Poissonian. Strong and signifi-
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cant time variations have been found in the rate of occur-
rence of discontinuities from hour to hour, from day to day,
and from solar rotation to solar rotation �5–8�. Regarding the
solar rotation �6�, it has been already pointed out that there is
a high degree of persistence in the time variations: when
high rates occur in a period of the solar activity, they are
likely to be preceded and followed by high rates. A similar
statement can be made about the low rates. Such variations
can be shown to lie well outside the range permitted by
simple Gaussian statistics. This may suggest that, although
the rate of occurrence apparently obeys Poisson statistics on
average, the rate is nonstationary and changes with time.

Several authors have suggested that a Poisson process
with a variable rate, also called a nonstationary or time-
varying Poisson process, can lead a power law for the WT
distributions �see �1� for a more detailed explanation�. In
those cases, it is difficult to determine the Poisson character
of events from the shape of the WT distribution and so is not
easy to give a definite physical interpretation of the phenom-
enon �18�. To further clarify these issues, additional detailed
analysis of temporal solar wind signals is warranted. We
carry out such analysis here without any a priori assump-
tions on the Poisson’s nature of the events.

The outline of the paper is as follows. We explain the
method used as a zeroth-order test for the local Poisson hy-
pothesis in Sec. II. In Sec. III, we show the WT distributions
obtained through the analysis of ACE solar wind and Hall
MHD simulation data. In Sec. IV, we apply the local Pois-
son’s analysis directly on these time series. Finally, conclu-
sions and possible implications for the nature of solar wind
discontinuities will be discussed in Sec. V.

II. LOCAL POISSON HYPOTHESIS

Consider a physical process that occurs randomly in na-
ture producing a stochastic temporal signal. Suppose now
that we select “events” from the signal defined as values that
exceed a specified threshold. The threshold is chosen arbi-
trarily, can vary with different methods, and depends on the
physical problem. Each event has its own temporal duration;
the waiting time �t can be defined as the time interval be-
tween the end of an event and the beginning of the next one
or between the beginnings of two successive events. If on
average the durations of events are much shorter than the
waiting times, it is possible to discard the duration of the
single events and consider the signal as a pointlike process.
This is equivalent to reducing each event to a single narrow
peak, where the beginning and the ending of an event coin-
cide and the waiting time between two consecutive events is
simply the time difference between two peaks. The proce-
dure mentioned above can reduce, for example, the time se-
ries of the magnetic discontinuities in the solar wind to a
sequence of Dirac �-function “events.”

A sequence of events that occurs randomly in time at a
given mean rate � follows Poisson statistics. The probability
distribution of waiting times �t is given by the exponential
law

P��t� = �e−��t, �1�

typical of singular events that are “memoryless.” This means
that, for 0� t�� t, P��t� t ��t� t��= P��t� t− t��. In other

words, if �t is equal to t�, the conditional probability of
waiting for an event until a later time t is just the probability
of waiting for a period of length t− t�. In this case, the pro-
cess does not remember that it has already been running for
a time t�. In contrast, if the probability distribution follows a
power law, correlations are present �19�.

Unfortunately, due to the limited size and the poor statis-
tics of certain data set, sometimes it is not possible to obtain
any useful information about the physics of the process from
the PDFs of WT because they might suffer of some uncer-
tainties. Moreover, the rate of appearance of isolated and
intermittent events could be variable for several unknown
reasons. When the occurrence rate is not constant, a situation
often obtained in nature, these processes can be modeled as a
realization of renewal Poisson processes with a variable rate,
even if the distribution of separations cannot be used as a test
to discriminate if the processes are Poissonian or not. For
these reasons, without any a priori assumptions, a further
analysis, less sensitive to the sample size and to the nonsta-
tionary character, can be performed. Such a method was in-
troduced in cosmology by Bi et al. �20� in order to test the
local Poisson hypothesis on Ly� clouds in the absorption
spectra of quasars. This method to test for local Poisson’s
statistics can be summarized as follows.

Suppose now that the pointlike process described before
has a mean event rate ��t� that is neither constant nor known.
Thus, we want to built up a test that is independent of �
�20,21�. This can be done through a measure that is nothing
but the suitably normalized local time interval between
events. Every event i has two nearest- and two next-nearest-
neighbor events. We introduce the minimum local waiting
time

�ti = min�ti+1 − ti,ti − ti−1� , �2�

while the next closest waiting time is given by

��i = 	ti+2 − ti+1 if �ti = ti+1 − ti

ti−1 − ti−2 if �ti = ti − ti−1.

 �3�

In our specific case, �ti and ��i can be two inter-event times
before or after a magnetic discontinuity. We introduce now
the stochastic variable H, that simply represents a normalized
local time between bursty events, as

H��ti,��i� =
�ti

�ti +
1

2
��i

. �4�

According to the local Poisson hypothesis, if �ti and ��i are
randomly distributed, the probability densities are, respec-
tively,

P��ti� = 2�ie
−2�i�ti, �5�

P���i� = �ie
−�i��i, �6�

where �i is the local event rate. In this case, it can be easily
shown that the stochastic variable H has a cumulative distri-
bution F�H� that is independent of �,
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F�H� = �
0

H

P�h�dh = �
0

�

dx2�e−2�x�
0

2x��1/H�−1�

dy�e−�y

= 1 − H , �7�

where x=�ti, y=��i, and �2x�1 /H�−1� is the y value derived
from Eq. �4�. This implies that, under the hypothesis that
events are locally distributed with a Poisson statistic, the
variable H is uniformly distributed between 0 and 1. In a
process where ��i are systematically smaller than 2�ti, clus-
ters are present and the average value of H is greater than
1/2. On the contrary, when the process is characterized by the
presence of voids, H�1 /2 �21�.

As an example, consider a situation where �ti=ai��i, one
then can easily obtain

H =
2ai

2ai + 1
. �8�

If a�1, events tend to cluster as i increases and limi→� H
=1, that is, H values are very close to 1. Conversely, if a
�1, events tend to separate as i increases and limi→� H=0,
which means that the great majority of H values are close to
0. If a=1, that is, in a regular pattern where the magnetic
discontinuities are placed with a constant average separation,
H assumes the value 2/3. The two situations, a�1 and a
�1, are represented in Fig. 1.

Using Eq. �7� as a reference, this method can be used as a
zeroth-order test for local Poisson hypothesis. For a pointlike
process, given a sequence of observed events, the values of
the variable H can be easily calculated and the probability
P�H	h� to find a value H	h for a fixed h �F�H� in the Eq.
�7�� can be computed and compared to the Poisson behavior
1−h.

III. DISCONTINUITIES IN TURBULENCE: SOLAR WIND
AND SIMULATION DATA

In this section, we review briefly the methods used to
identify magnetic discontinuities, defined by large changes in
the magnitude of the magnetic field vector increments
���sB�= �B�s+�s�−B�s�� at the scale �s �6�. We will employ
solar wind data from the ACE spacecraft �16�, as well as data
from three-dimensional �3D� Hall MHD numerical simula-
tions �15�.

The compressible Hall MHD equations are given by

�


�t
+ ��
v� = 0, �9�

�v

�t
+ �v · ��v = −

1


�Ms
2 � p +

j � b




+
1

R
��2v +

1

3
� �� · v� , �10�

�b

�t
= � � �v � b� − � � � j � b



� +

1

R�

�2b , �11�

where p is the pressure and j=��b. For the pressure, we
assume a polytropic case p= p0� 



0
��, where 
0 and p0 are

initial density and pressure, respectively. The adiabatic index
�=5 /3. The above equations are written in the usual
Alfvénic dimensionless form based on a characteristic
plasma Alfvén speed va=brms /�4�
0, where brms= �B2�1/2 is
the root-mean-square �rms� magnetic field, a characteristic
length scale L0 �the simulation box is set to be 2�L0�, and a
unit time scale ta=L0 /va. The dimensionless numbers that
appear here are the Mach number Ms=va /cs, where cs

=��p0 /
0 is the sound speed, the Reynolds number R

=vaL0 /nu � is the viscosity�, and the magnetic Reynolds
number R�=vaL0 /�, with c2� / �4�� the magnetic diffusivity.
The Hall parameter �=
ii /L0, with 
ii=c /�pi the ion skin
depth �or ion inertial length� and �pi the plasma frequency.
The coefficient � appears in front of the Hall term in the
normalized equations, expressing the fact that the Hall term
becomes important at scales smaller than the ion skin depth

ii. 3D Hall MHD simulations are carried out using a Fourier
pseudospectral method in a periodic box of side 2�L0 and
2563 spatial grid points. More details on the code and the
simulations are given in Refs. �15,16�.

The available solar wind data set includes 16 s averages
of the magnetic field vector. The time interval spanned 135
days �five Bartels rotation� during 2001. In a previous work
�for more details, see Ref. �15��, in an analysis of Hall MHD
simulation data, we examined the relationship between dis-
continuities, identified by a classical method �5,6�, called the
Tsurutani and Smith �TS� method, and coherent structures
identified by intermittency statistics, called the partial vari-

FIG. 1. Results of the test for local Poisson distribution performed on a process where �ti=ai��i �see Eq. �8��, with a=1.03 �left panel�
and a=0.97 �right panel�. The dash-dotted line represents the curve P�H	h�=1−h for a Poisson process. See Ref. �1� for more details.
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ance of increments �PVI� method. An example of time series
of these intermittent events is shown in Fig. 2, computed
from numerical simulations at �s=0.006 25�c �the most in-
termittent scale of the simulation� and from solar wind data
at �s=4 min, and selected according the PVI technique. It
has been found that the two methods produce remarkably
similar distributions of waiting times. For the simulation, a
spatial sampling along a line was employed. For the solar
wind, a time series of data was employed. There is a direct
analogy between these simulation and solar wind cases. A
spacecraft time series that satisfies Taylor’s hypothesis—the
sampling time of solar wind fluctuations is much less than
the time scale on which they vary—can be considered a spa-
tial “snapshot” of the plasma. The distance between consecu-
tive events s has been normalized to the correlation length of
the turbulent field �c in the simulation and analogously for
the solar wind, we normalize time to the correlation time tc
�50 min.

In Fig. 2, we compare the solar wind signal and the simu-
lation for the same number of correlation lengths. It can be
seen that the two signals have some similar features, but also
differences. The dissimilarities between simulations and real
solar wind data can be associated with many factors: time
dependency, finite Reynolds number, limits of the fluid ap-
proximation, different driving, anisotropy, and so on. On the
other hand, as described in an earlier work �16�, both signals
are bursty, suggesting that some features of these intermittent
events can be captured by models of fully developed MHD
turbulence.

Some results on the distribution of waiting times are sum-
marized in Fig. 3. For s��c, the distributions are both well
described by a power law �s−0.92, while the exponential
works well for s��c. A similar analysis has been performed
on the solar wind turbulent magnetic field �16� with similar
results. We computed waiting-time distributions of large
changes in the magnitude of the magnetic field vector incre-
ment at separations lying in the inertial range for ACE solar
wind data. Using the intermittency �PVI� and discontinuity
�TS� analyses, we found that the performance of the two

methods is comparable for solar wind data as well as for
simulation data. In Fig. 4, the PDFs of WT between the
events identified by the implementation of TS and PVI meth-
ods are shown. The technique gives very similar results up to
�1000 s. Their respective fits show that, for both cases, the
power laws break at �1000–3000 s �14�. These power-law
waiting times could be clear evidence that long-range corre-
lations are present in the underlying MHD turbulent cascade
process. To gain insight regarding this apparent clusteriza-
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FIG. 2. �Color online� �a� Spatial distribution of magnetic dis-
continuities computed from simulation vs distance s /�c at �s
=0.006 25�c �solid-thin red line�. �b� Time series �normalized to
correlation time tc� of discontinuities computed from ACE data.
Events are selected according the PVI method �15,16� and the thick
dashed blue lines are the values of the thresholds. We show only a
portion of the entire data set.
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FIG. 3. Distribution of waiting times in the Hall MHD simula-
tion �squares�, detected by a classical analysis �TS method� at �s
=0.006 25�c. The power-law axb �solid line� and the exponential
ce−dx �dash-dotted line� fits are also shown. The parameters and the
errors of the fits are a=0.34�0.01 and b=−0.92�0.03; c
=1.1�0.1 and d=1.18�0.06. Vertical dashed line is placed at one
correlation length.

FIG. 4. Distributions of waiting times between discontinuities
detected in solar wind �open squares� using �a� the PVI method and
�b� the TS classical technique. Solid lines represent the power-law
fits. The parameters and the errors of the fits are a=0.64�0.08 and
b=−1.23�0.03; c=1.8�0.06 and d=−1.4�0.04. Vertical lines in-
dicate the correlation time of 50 min.
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tion, in the next section we examine the local Poisson hy-
pothesis for both Hall MHD and solar wind discontinuities.

IV. LOCAL POISSON HYPOTHESIS FOR THE
DISCONTINUITIES OCCURRENCE

We can test, as a zeroth-order hypothesis �say, H0�,
whether an approach based on the occurrence of a local Pois-
son process, given by Eq. �7�, is appropriate or not. In other
words, it can be conjectured that an underlying time-varying
Poisson process produces discontinuities in a magnetofluid
turbulence and, analogously, in solar wind plasma. This can
be done by using the method introduced in Sec. II.

We analyze the same time sequence used for the WT-
diagnostic performed before. We verified that, on average,
the duration times of bursts are much smaller than the wait-
ing times between the bursts. With this assumption, we can
consider the discontinuities as pointlike events. The values of
H have been calculated from these data sets. In Fig. 5, we
show the PDFs P�H� calculated with the discontinuities de-
tected from ACE using the PVI method. Three different
cases are shown: waiting times with all the data, the case in
which we exclude waiting times that last less than �100 s
�small intervals�, and the case in which we filter out discon-
tinuities with a delay �103 s �large intervals�. It is clear that
the statistics are sensitive to which types of events we con-
sider: when all duration waiting times are taken into account
�H��1 /2, indicating a weak attenuation of the discontinui-
ties with time �or distance�. On the contrary, when “small” or
“large” scale WTs are discarded, clusters are present ��H�
�1 /2�. When we use TS method, the P�H� is also sensitive
to temporal scale of the included WTs, but at a lesser extent.
As it can be seen from Fig. 5, in every case, P�H� is very
different from the uniform distribution. This supports the

hypothesis that the statistical behavior of the events depar-
tures from a Poisson’s expectation.

From P�H�, we computed the cumulative probability den-
sity function �CPDF� P�H	h� which we compare to the
linear law 1−h �in Eq. �7�� expected under the hypothesis
H0. The results, for the three cases mentioned above, are
shown in Fig. 6. Note that all three lines cross the dotted line
1−h that describes a Poisson process close to the value h
=2 /3. As explained in Sec. II, h=2 /3 divides events that
tend to cluster from events that tend to separate as the time
increases. This crossing at h=2 /3 is observable for all the
CPDFs displayed in the following figures. A Kolmogorov-
Smirnov �KS� test applied to the cumulative distributions
confirms that the assumed hypothesis H0 is not reliable for
the cases in which we exclude waiting times that last less
than �100 s and in which we filter out discontinuities with
a delay �103 s �the probabilities that the processes are Pois-
sonian being 10% and 28%, respectively�. When we consider
the case of waiting times of all duration, the KS test gives a
significance level of 37%, meaning that an underlying Pois-
son process could be still possible. We compare the PVI and
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FIG. 7. �Color online� Left: CPDFs form the test for local Pois-
son distribution for both PVI �solid red line and circles� and TS
�dashed green line and triangles�. As in Fig. 6, the dotted �black�
line represents the Poisson expectation 1−h. Right: P�H� for the
PVI �solid red line� and TS �dashed green line� methods, together
with the uniform probability in �0,1� �dotted black line�.
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FIG. 5. �Color online� P�H� for the local Poissonian test, per-
formed on solar wind data �ACE data set�. Data are selected with
the PVI method with different criteria, namely, all the events are
taken into account �full red line�, WTs with �t�103 s �dotted blue
line�, and �t�100 s �dashed green line�. The uniform probability
in �0,1� �thin dotted black line�, expected under a Poisson statistics,
is also shown and the average values of the stochastic variable �H�
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lected with the PVI method. As in Fig. 5, we filter out different
waiting-time ranges: all the events �full red line and squares�, WTs
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TS methods in Fig. 7, where P�H� and P�H	h� are both
shown. The agreement is good when we neglect waiting
times between discontinuities that are greater than �103 s
�where the power laws break, as shown in Fig. 4�. The KS
test applied to the CPDF for solar wind data, selected with
the TS method, rejects the hypothesis H0 because the prob-
ability for an underlying Poissonian process is equal to 3%.

We perform the local Poissonian test on the discontinui-
ties detected from the Hall MHD simulations considered in
�15� and compare P�H	h� and P�H� to those obtained from
the analysis on the solar wind discontinuities. The compari-
son is displayed in Fig. 8 for the PVI method �neglecting
large WTs�. In this case, the KS test gives a probability of
underlying Poisson processes in the Hall MHD simulation
equal to 4%. The results obtained with TS classical criteria
�not shown� are almost the same. It is clear that Poisson
statistics cannot account for the waiting-time distributions of
discontinuities either in the solar wind data set or in the
simulations. Long-range correlations between bursts could
be the origin of the power law for waiting times.

As a further test for the goodness of the procedure and in
order to measure the “non-Poissonianety” of the data set, we
make use of a randomization technique. We have built up a
sample through a randomization of the measured magnetic
field from ACE spacecraft with Gaussian distributions while
retaining the same �average� spectrum and then we have de-
tected a certain number of discontinuities by implementing,
e.g., the PVI method. That is, we consider a time interval that
covers the same duration as the experimental data set, with a
number of “random” discontinuities from a phase-
randomized reference magnetic field. This procedure is a
powerful tool that permits us to obtain from a sample of data
another similar data set, but one that lacks any clustering.
The analysis performed on the hybrid data set gives a Pois-
sonian curve P�H	h�=1−h �as shown in Fig. 9� with a
significance level equal to 85%. This result supports the pres-
ence of large scale correlations in the original unmodified
solar wind data set.

V. DISCUSSIONS AND CONCLUSIONS

Using solar wind data from the ACE spacecraft, along
with data from Hall MHD simulation, we have analyzed the
waiting times between suitably defined magnetic discontinui-
ties. With these discontinuities regarded as short �zero� time-
thickness events, we found, first, that the statistical results
are not strongly dependent on the method employed for the
identification of these events. Classical methods gave very
similar results to methods based on intermittency analysis
�15,16�. Second, we found that the distribution of waiting
times is better described as a power law for spatial separation
scales less than the correlation scale, while waiting times that
correspond to events separated by more than a correlation
scale were better described as an exponential �Poisson� dis-
tribution for both the Hall MHD simulations and the solar
wind data. For the waiting times between solar wind discon-
tinuities, we found that the power law breaks at the typical
correlation scale in the solar wind and is exponential at
longer waiting times. This conclusion appears to be unaf-
fected by the remnant low-frequency correlations associated
with coronal processes such as those that produce 1 / f noise
�13�.

The test for Poisson processes introduced by �20� was
employed to further examine the distribution of waiting time
for these events. The tests showed that the discontinuities are
not distributed without correlations, but rather that non-
Poisson correlations, possibly in the form of burstiness or
voids, are present in the data at least up to the typical corre-
lation scale. A similar conclusion emerges from Poisson
analysis of the simulation data set. Our tentative conclusion
is that Poisson’s random noise might well characterize the
very large scale solar wind fluctuations. However in the in-
ertial range �scales�a few hours in the spacecraft frame�,
the analysis suggests the presence of correlations and the
waiting times between events display an associated bursty
character. This supports the viewpoint that solar wind turbu-
lent fluctuations at least in part are related to the presence of
large structures of highly conducting plasma. The disconti-
nuities or bursty coherent structures represent in this view
the current sheets that form between magnetic-flux tubes
�22–24� which may be a signature of intermittent, aniso-
tropic, fully developed MHD turbulence.
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FIG. 8. �Color online� Comparison between the Hall MHD
simulation and the solar wind ACE data using the PVI method.
Left: CPDFs for ACE data �solid red line and circles� and for the
simulation �dashed green line and triangles�. Right: P�H� for the
solar wind �solid red line� and the simulation �dashed green line�.
See captions of Figs. 5–7 for more details.
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line and circles�. Dotted black line represents the Poisson expecta-
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