
Lagrangian-averaged model for magnetohydrodynamic turbulence and the absence of bottlenecks

Jonathan Pietarila Graham,1 Pablo D. Mininni,2,3 and Annick Pouquet2
1Max-Planck-Institut für Sonnensystemforschung, 37191 Katlenburg-Lindau, Germany

2National Center for Atmospheric Research, P.O. Box 3000, Boulder, Colorado 80307, USA
3Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires,

Ciudad Universitaria, 1428 Buenos Aires, Argentina
�Received 12 June 2008; revised manuscript received 28 May 2009; published 22 July 2009�

We demonstrate that, for the case of quasiequipartition between the velocity and the magnetic field, the
Lagrangian-averaged magnetohydrodynamics �LAMHD� � model reproduces well both the large-scale and the
small-scale properties of turbulent flows; in particular, it displays no increased �superfilter� bottleneck effect
with its ensuing enhanced energy spectrum at the onset of the subfilter scales. This is in contrast to the case of
the neutral fluid in which the Lagrangian-averaged Navier-Stokes � model is somewhat limited in its applica-
tions because of the formation of spatial regions with no internal degrees of freedom and subsequent contami-
nation of superfilter-scale spectral properties. We argue that, as the Lorentz force breaks the conservation of
circulation and enables spectrally nonlocal energy transfer �associated with Alfvén waves�, it is responsible for
the absence of a viscous bottleneck in magnetohydrodynamics �MHD�, as compared to the fluid case. As
LAMHD preserves Alfvén waves and the circulation properties of MHD, there is also no �superfilter� bottle-
neck found in LAMHD, making this method capable of large reductions in required numerical degrees of
freedom; specifically, we find a reduction factor of �200 when compared to a direct numerical simulation on
a large grid of 15363 points at the same Reynolds number.
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I. INTRODUCTION

When large-scale numerical simulations of astrophysical
or geophysical magnetohydrodynamics �MHD� are desired,
all dynamical scales of the physical system are rarely, if ever,
resolved. For this reason, subgrid-scale �SGS� modeling of
MHD dynamics in the context of computations in the geo-
physical and astrophysical context is required. This modeling
can be achieved implicitly in the simplest example by em-
ploying a dissipative numerical scheme, or it can be done
explicitly by creating a large eddy simulation �LES� �see �1�
for a recent review�. Explicit methods for MHD are not as
pervasive as they are in engineering or for geophysical and
atmospheric flows. In fact, modeling for MHD is a relatively
new field �see �2,3��. One problem with extending the LES
methodology for hydrodynamic turbulence to MHD is that
most LES are based on eddy-viscosity concepts �1�, which
can be related to a known power law of the energy spectrum
�4� �although generalizations can be devised; see, e.g., �5��,
or on self-similarity. For MHD, the underlying assumption of
locality of interactions in Fourier space is not necessarily
valid �6,7� �a contradiction of self-similarity� and spectral
eddy-viscosity concepts �8� cannot be applied in a straight-
forward manner as neither kinetic nor magnetic energy is a
conserved quantity and the general expression of the energy
spectrum is not known at this time �9–15�. Purely dissipative
models �16,17� are inadequate as they ignore the exchange of
energy at subfilter scales between the velocity and the mag-
netic fields and such models have been shown to suppress
small-scale dynamo action �18� and any inverse cascade
from the subfilter scales �19�. A satisfactory LES for MHD
has been proposed for the case starting with some degree of
alignment between the velocity and the magnetic fields
�19,20�. Other restricted-case MHD-LES is applicable to low

magnetic Reynolds number �21–23�. Extensions of spectral
models to MHD based on two-point closure formulations of
the dynamical equations proposed recently look promising in
the analysis of turbulent flows and of the dynamo mechanism
�5�. Finally, although technically not an LES, there are also
hyper-resistive models for MHD which require rescaling of
the length �wave number� scales to a known direct numerical
simulation �DNS� �18�.

One model which can be written as an LES is the
Lagrangian-averaged MHD �LAMHD� equations �24–26�. It
has been shown to reproduce a number of features of DNS.
In two dimensions for Taylor Reynolds numbers �R�� up to
�5000, it has been shown to reproduce selective decay, the
inverse cascade of mean-square vector potential, and dy-
namic alignment between the velocity and the magnetic
fields �27� as well as the statistics of small-scale cancellation
�28� and intermittency �29�. In three dimensions at Reynolds
numbers �Re� of �500, LAMHD reproduced the inverse cas-
cade of magnetic helicity �associated with the development
of force-free magnetic field� and the helical dynamo effect
�30�. It has also been tested �up to kinetic Re�3000 and
magnetic Re�300� for its ability to predict the critical mag-
netic Reynolds number for a nonhelical dynamo at low mag-
netic Prandtl number �31�. LAMHD performed well in all
these tests. Its equivalent hydrodynamic model, the
Lagrangian-averaged Navier-Stokes �LANS� equations, also
performed well in tests at R��300 �see �32� and references
in �33��. However, above Re�3000 �R��800�, it was
shown that placing the filter width in the inertial range leads
to contamination of the superfilter-scale properties �such as
the spectra� for LANS. We refer here to this effect as the
superfilter-scale bottleneck, which may be different in nature
from the viscous bottleneck observed in some DNSs of the
Navier-Stokes equations. The contamination may be linked
to the formation of spatial regions in the flow with no inter-
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nal degrees of freedom �the so-called “rigid bodies”� �33�,
which also correspond to the development of a secondary
inertial range of the LANS equations at subfilter scales. This
superfilter-scale contamination provides an effective con-
straint on the filter size and, hence, on the available reduction
in the total number of the �numerical� degrees of freedom
�Ndof� needed to reproduce the large-scale dynamics of the
flow at a given Reynolds number; a factor of �10 can be
achieved. This limitation is not apparent in low and moderate
Reynolds number �resolution� simulations �e.g., 643 LANS
compared with 2563 DNS� as the scale separation is not
enough for the above-mentioned phenomenon of contamina-
tion of small-scale spectra because of rigid-body regions in
the flow to appear. The bottleneck �and superfilter-scale con-
tamination� was not studied as such but neither was it ob-
served in two-dimensional �2D� LAMHD for high Reynolds
number �27–29�. Three-dimensional �3D� LAMHD has only
been tested at more moderate Reynolds number �30� �see
also �34� for a recent review�. The aim of the present work is,
thus, to determine if LAMHD in three space dimensions for
higher Reynolds number develops problems similar to that of
LANS. Specifically, we test for the existence of spatial re-
gions with no available internal degrees of freedom. We
show in the following that LAMHD behaves better in this
respect than LANS and, thus, continues to appear as a prom-
ising model for MHD flows.

II. EQUATIONS OF MOTION

We consider the incompressible MHD equations for a
fluid with constant density,

�tv + � � v = j � b − �p + ��2v ,

�tb = � � �v � b� + ��2b ,

� · v = � · b = 0, �1�

where v and b denote, respectively, the velocity and the mag-
netic fields, p denotes the pressure divided by the density, �
denotes the kinematic viscosity, and � denotes the magnetic
diffusivity. As is well known, in incompressible MHD,
Alfvén waves will travel along a uniform background field,
b0. From linear perturbation analysis the dispersion relation
between wave number, k, and frequency, �, is

�� + i�k2��� + i�k2� = k2b0
2. �2�

The wave speed is �b0� and, assuming �=�, the amplification
factor is given by exp�−�k2t�. The ideal ��=�=0� quadratic
invariants for MHD are in the L2 norm. For example, the
total energy is given by

ET =
1

2
��v�2 + �b�2� �

1

2

1

D
	

D

��v�2 + �b�2�d3x . �3�

The LAMHD equations �25� are given by

�tv + � � u = j � b − �� + ��2v ,

�tb = � � �u � b� + ��2b ,

� · v = � · u = � · b = � · b = 0, �4�

where u �b� denotes the filtered component of the velocity
�magnetic� field and � denotes the modified pressure. Filter-
ing is accomplished by the application of a normalized con-

volution filter L : f � f̄ , where f is any scalar or vector field.
By convention, we define u�v. LAMHD in the form given
in Eqs. �4� is both computationally efficient and makes clear
that Alfvén’s theorem is preserved by the model: the
smoothed magnetic field is advected by the smoothed veloc-
ity. In the remainder of this paper, we take �=� �unit mag-
netic Prandtl number� and, thus, it is sufficient to introduce
the same filtering for the velocity and the magnetic fields in
this case. This allows us to write LAMHD in the LES form,

�tu + � � u = j � b − ��̄ + ��2v − � · �̄ ,

�tb = � � �u � b� + ��2b − � · �̄b,

� · v = � · u = � · b = � · b = 0. �5�

We choose as our filter the inverse of a Helmholtz operator,
L=H−1= �1−�2�2�−1. Therefore, u=g� � v, where g� is the
Green’s function for the Helmholtz operator, g��r�
=exp�−r /�� / �4	�2r� �i.e., the Yukawa potential�, or in Fou-
rier space, û�k�= v̂�k� / �1+�2k2�. The effective filter width is,
thus, approximately �. With this choice, the Reynolds �tur-
bulent� SGS stress tensor is given by

�̄ = �2��u · �uT + �u · �u − �uT · �u − �b · �bT − �b · �b

+ �bT · �b� �6�

and the divergence of the electromotive-force �emf� SGS
stress tensor is given by

� · �̄b = ��2�4b . �7�

In this form, the expression of the SGS tensors makes ex-
plicit the fact that u= 
b Alfvén waves are preserved even
in the subgrid scales. These u= 
b waves travel along b0
�the smoothed and the unsmoothed fields are identical for
uniform b0� and the dispersion relation is

�� + i�k2��� + i�k2�1 + �M
2 k2�� = k2b̄0

21 + �M
2 k2

1 + �K
2 k2 , �8�

where �K and �M are the filter widths for the smoothing of
the velocity and the magnetic fields, respectively. For �
��K=�M and �=� �the case we study�, the wave speed is

given by b0�1− ��k�2k2 / b̄0�2 /8+O(��k�2k2 / b̄0�6)�, the
strength of the smoothed background magnetic field minus
an order �4k4 term. The amplification factor is given by

exp�−�k2t�1+�2k2 /2�� for both u=−b̄ waves and u= b̄
waves. Finally, the ideal quadratic invariants for LAMHD

are in the H�
1� f̄� norm. For example, the total energy is given

by a mixture of the smooth and the rough fields, namely,
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ET
� =

1

2
��u�2

� + �b̄�2
��

�
1

2

1

D
	

D

�u − �2�2u� · u + �b − �2�2b� · bd3x

=
1

2

1

D
	

D

v · u + b · bd3x . �9�

We solve both sets of equations, Eqs. �1� and �4�, for one
specific instance of a decaying MHD flow, using a parallel
pseudospectral code �35,36� in a 3D cube with periodic
boundary conditions. The initial conditions for the velocity
and the magnetic fields are constructed from a superposition
of three Beltrami �helical� ABC flows to which smaller-scale
random fluctuations are added with initial kinetic and mag-
netic energies EK=EM =0.5, magnetic helicity HM = 
a ·b�
�0.45 �b=��a, where a is the vector potential and the
angular brackets denote volume average�, and the initial
coalignment of the fields, 
v ·b�
�v��b��−1�10−4 �see �38,14�
for details�. A MHD DNS with a resolution N3=15363 �i.e.,
1536 grid points in real space in each direction� and �=�
=2�10−4 is used as our high Reynolds number test case for
the LAMHD model. The DNS computation is stopped when
the growth of the total dissipation begins to enter the satura-
tion phase �t=3.7�, at which time the Reynolds number
based on the mechanical integral scale is Re�9200 and the
Taylor Reynolds number �1100. The MHD flow resulting
from the initial conditions employed has previously been
analyzed for its spectral properties and for the spatial struc-
tures it develops �14,37,38�. In this paper, we perform a
simulation with similar initial conditions and parameters but
now using LAMHD at a resolution of 5123 grid points; we
also perform for comparison purposes a Navier-Stokes
LANS run with the same initial velocity field but with b
�0, on a grid of 5123 points. In both cases, the filter width is
�=2	 /18 �k�=18� and is, thus, large enough to preclude any
artifact of numerical resolution altering the results. Based on
previous analyses �33,39�, we estimate kmax /k�

��2.4 �where
kmax is the maximum wave number resolved in the simula-
tion and k�

� is the LAMHD dissipation scale� using compu-
tations conducted for �=�=6�10−4 with a Reynolds num-
ber of Re�2200. However, the main point of using such a
large filter is to test if LAMHD fails in the same way as
LANS. We finally perform a LES simulation in a 2563 grid
using the LAMHD equations with the same viscosity and
diffusivity as the 15363 DNS used for the comparison. In this
way, we extend the Re�9200 computation in time by a fac-
tor of 3.

III. RESULTS

A. Spectral contamination in LANS for an ABC flow
and its absence in the MHD case

One of the main findings of our preceding work with
LANS on the Navier-Stokes equations is that a k+1 scaling
develops in the �kinetic� energy spectrum at subfilter scales;
this leads to a contamination of superfilter scales because of
detailed energy conservation �per triadic interactions�. This

LANS k+1 spectrum �together with superfilter-scale spectral
contamination� has only recently been recognized, in the
case of one specific forcing function at large Reynolds num-
ber �33�, but such a spectral contamination has not yet been
generally demonstrated �although theoretical arguments for
the k+1 spectrum have been given in �33��. Thus, we first
confirm its presence in a LANS simulation with the same
viscosity and the �nearly� same initial conditions for the ve-
locity field as for the MHD DNS �and LAMHD runs� exam-
ined in this paper, and based on large-scale ABC flows with
superimposed random noise at small scale. Due to the pres-
ence of random noise and considering the differences in res-
olution and the presence of a filter in the LAMHD runs, the
initial conditions were not exactly reproduced, although the
same procedure was used to generate them. In the present
Navier-Stokes case, we find again what can be called an
enhanced �superfilter-scale� bottleneck: the positive-power-
law spectral contamination of the kinetic-energy spectrum
EK�k� in the LANS run is observed for times after the peak
of dissipation �see dotted line, Fig. 1�a��. The fitted spectrum
is k+0.5 �note that k+1 requires the entire LANS spectrum to
be resolved, and therefore has only been observed for much
larger values of kmax /k�

��.
For the given parameters and initial conditions, we find

the superfilter-scale bottleneck for LANS. However, when
integrating the MHD equations with the Lagrangian model
�dashed line, Fig. 1�a�� with these same parameters, no such
contamination is present. Note that the spectra for the DNS
MHD are shown at the time of peak dissipation, while the
spectra for the Lagrangian-averaged models are for a slightly
later time in order to allow for the possible formation of rigid
bodies, which are known to be the source of the spectral
contamination close to the filter wave number in the Navier-
Stokes case. For this reason, and due to the slight differences
in initial conditions, we have chosen to plot spectra normal-
ized to that of the DNS at k=14 to emphasize the scaling.
For most of the inertial range �also in an approximate sense
below the filter width �� the scaling of EK�k� is reproduced
by the LAMHD simulation. The subfilter scaling for
LAMHD is not as steep as MHD but is not a positive scaling
law. The agreement for EM�k� is remarkable. More impor-
tantly, neither positive-power-law spectra nor contamination
of the superfilter-scale spectra are evidenced at all.

B. Lack of rigid bodies in LAMHD in the large-� limit
for unforced flows

Evidence for the development of rigid bodies in LANS
�which led to its limited use as a LES� has only been shown
for l�� �33�. Since the investigation of the large-� limit is
not as computationally demanding as the small-l limit, it is
interesting to look at this limit as a rough indication of what
occurs for small � and smaller l. This approach has been
employed both for the LANS Navier-Stokes case in two di-
mensions �40� and in three dimensions �33�. In such a case,
the purpose is to examine the properties of the model itself,
as opposed to trying to reproduce large-scale properties, with
the large-scale behavior being reduced to a very small span
of wave numbers. With this practice, the properties of the
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subfilter scales can be studied, to better understand the origin
�or lack� of superfilter-scale contamination. We now use this
limit to further explore the differences between LAMHD and
LANS. We employ simulations for the two models with the
same initial conditions as before, with �=�=5�10−5 �Re
�26 000 at the peak of dissipation for LAMHD�, and a res-
olution of 2563 grid points. Note that these dissipative coef-
ficients are four times smaller than what was considered in
the previous section since, for a fixed resolution, the achiev-
able Reynolds number goes as �2/3. This follows for LANS
from the predicted �and verified� degrees of freedom,
�39,33�. The scaling of LAMHD may differ, but the same
value of the viscosity is employed for the two models, re-
gardless.

For LANS, we observe the expected k+1 zero-flux inertial
range �see Fig. 2� which is followed by a viscous �subfilter-
scale� bottleneck feature, k+1.5
0.2, before the dissipative
range proper. We conducted a second simulation with �
=10−4 and found a k1.4
0.3 spectrum. This is analogous to
results for DNS of the Navier-Stokes equations where only
the viscous bottleneck is observed at moderate Reynolds

number and is preceded by an inertial range only for higher
Reynolds. These viscous bottlenecks may be different in na-
ture from the �superfilter-scale� bottlenecks discussed before,
which are not associated with the onset of the dissipative
range but with the development of a secondary inertial range
in LANS below the filtering length, and may result in con-
tamination of the large �resolved� scales when the LANS
equations are used as an LES. Having confirmed that our
analysis from the forced LANS case extends to the decaying
LANS simulation, we now apply it to LAMHD. The large-�
LAMHD spectra are given in Fig. 3. Notably, there is no
positive-power-law spectrum.

Predictions of energy spectra in the inertial range follow
from the global scaling laws for third-order structure func-
tions for isotropic homogeneous turbulence. Exact results for
these structure functions have been found for incompressible
MHD �41� and for LAMHD �29�. The latter are, in terms of
both the smooth fields z
�u
b and the rough fields z


�v
b �where the z fields are called the Elsässer variables�,

(a) (b)

(b)(a)

FIG. 1. �a� Spectra of kinetic energy �normalized to DNS EK�14� �see text�� for 15363 MHD DNS �solid line�, 5123 LAMHD �dashed
line�, and 5123 LANS �dotted line�, in the latter case with b�0 at all times but otherwise identical conditions. For intermediate scales, k
� �5,40�, LAMHD reproduces the scaling of the DNS, with the larger scales being affected by slight differences in initial conditions �see
text�. For k close to the filter scale �k� �k� /2,k���, a positive power law, k0.5 �gray line�, is found for LANS. �b� Spectra of magnetic energy
�normalized to DNS EM�14�� for the same runs: LAMHD reproduces the scaling of the DNS even beyond the filter wave number, k�=18,
as indicated by the vertical dashed line. LAMHD exhibits neither the positive power law nor the superfilter-scale spectral contamination
associated with high Reynolds number LANS modeling seen in �a�.

FIG. 2. Spectrum of kinetic energy for a 2563 grid with k�=3
��=5�10−5� LANS, b�0 �Navier-Stokes case�. The fitted gray
line, k+1.1
0.4, agrees with the rigid-body hypothesis for the inertial
range �33�. This slope is followed by a steeper slope attributed to a
bottleneck, with k+1.5
0.2.

FIG. 3. Spectra for a 2563 grid with k�=3 ��=�=5�10−5�
LAMHD, Re�26 000: total energy, ET�k�, �solid line� and cross
helicity, HC�k�, �dashed line�. The fitted slopes, ET�k��k−0.7
0.3

and HC�k��k−0.5
0.4 could agree with either Kolmogorov or IK
prediction for LAMHD �see text� at this level of uncertainty.
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�z̄�

�l��z̄i


�l��zi

�l�� � �


� l , �10�

where 
 · � denotes volume averaging, �f�l�� f�x+ l�− f�x�,
and �f ��l���f�x+ l�− f�x�� · l. For subfilter scales �l���, z̄


� l2�−2z
 and the scaling law becomes dimensionally z̄zz̄
��l. This implies a subfilter-scale spectrum corresponding
to the invariants E


� ��z
��
2 /2 for the ideal nondissipative

case. We then have E

� �l�k�z
z̄
���


� �2/3�2/3 or, equiva-
lently,

E

� �k� � ��


� �2/3�2/3k−1 �11�

as for LANS �39�. Recall that in the flux relation �Eq. �10��
�


� stands for the energy transfer and the dissipation rate of
E


� . Hence, the prediction �Eq. �11�� for the spectra, E

� �k�, is

equivalent for ET
����u��

2 + �b��
2� /2 and for HC

�

� 1
2

1
D
Dv ·bd3x. The spectra shown in Fig. 3 for large-�

LAMHD do not exclude, due to the large uncertainties of the
fitted power laws, the predicted k−1 spectra.

A spectral prediction for LAMHD can also be arrived at
by dimensional analysis of the spectrum which follows the
scaling ideas originally due to Kraichnan �42� and which is
developed for LANS in Ref. �43�. Here, the energy dissipa-
tion rate, �


� =dE

� /dt, is related to the spectral energy den-

sity by

�

� � �tk�−1	 E


� �k� , �12�

where tk is the turnover time for an eddy of size �k−1. This

turnover time is related to a “velocity,” Z̄k

 �i.e., tk

�1 / �kZ̄k

��, where �Z̄k


�2� Z̄k

Zk


 / �1+�2k2��kE

� �k� / �1

+�2k2�. Substitution into Eq. �12� yields

E

� �k� � ��


� �2/3k−5/3�1 + �2k2�1/3 �13�

or, for �k�1,

E

� �k� � ��


� ��2/3k−1. �14�

In the Iroshnikov-Kraichnan �11,12� �hereafter, IK� phe-
nomenology, Alfvén waves �corresponding to either z
=0�
can only interact nonlinearly when they collide along field
lines �along which they travel in opposite directions�. The
characteristic time for an Alfvén wave is tA��kB0�−1. If this
is less than tk, the effective transfer time tT is increased, tT
� tk

2 / tA. Substitution of this new transfer time into Eq. �12�
yields, instead of Eq. �13�,

E

� �k� � ��


� B0�1/2k−3/2�1 + �2k2�1/2 �15�

or, for �k�1,

E

� �k� � ��


� B0�1/2�k−1/2. �16�

The spectra shown in Fig. 3 for large-� LAMHD also agree
with the IK predicted spectra �Eq. �16��. In fact, the spectra
more closely correspond to this prediction; this is consistent
with the fact that, for this flow, an IK spectrum E�k��k−3/2 is
observed at large scale �followed by a weak turbulence an-
isotropic spectrum E�k���k�

−2 at small scale� �14�. Again,
simulations at higher resolution are needed for a definite an-
swer and the result may not be universal as shown, for ex-
ample, in the context of reduced MHD dynamics due to the

presence of a strong uniform magnetic field B0 �44� or for
MHD with a strong B0 �13�.

Another indication of the zero-flux regions in LANS is
found by examining the spatial variation of the cubed incre-
ments associated with the scaling laws �u��l��ui�l��vi�l� for
LANS and �z̄�


�l��z̄i

�l��zi


�l� for LAMHD �note that one

can transform this relation into the u ,v ,b , b̄ variables�. For a
given length l, these cubed increments when averaged are
related to the energy fluxes by Eq. �10� �the LANS relation
and the hydrodynamic and the MHD relations are contained
in this expression in the corresponding limits�. As a result of
this correspondence, for brevity we will indicate cubed in-
crements in the figures as the corresponding energy flux
times the length used to compute the increments. This also
allows us to identify regions with zero cubed increments as
rigid bodies �a rigid rotation has zero longitudinal incre-
ments�. Probability distribution functions �PDFs� �see Fig. 4�
indicate that LAMHD has a much smaller proportion of its
volume, which could potentially be rigid bodies �i.e., frozen
regions with no internal degrees of freedom �zero velocity
increment�, which therefore do not contribute to the energy
flux�. That is, more of the volume is contributing to the tur-
bulent cascade. Snapshots for constructing the PDFs are
taken from both �=2	 /3 Lagrangian-averaged models for
times shortly after the peak of dissipation and when the
LANS total dissipation is nearly equal to that of LAMHD.
The strengths of the central peaks of the PDFs for large � are
another indication that LAMHD inherits none of the rigid-
body or zero-flux-region problems of LANS.

C. Why are spectral properties of LAMHD better than
in the fluid case?

Why does LAMHD not exhibit the same spectral con-
tamination as LANS? One possible cause is the hyperdiffu-
sivity term seen in the LES form for LAMHD �Eq. �7��,
whereas there is no hyperviscositylike term in LANS. To test
if this hyperdiffusion is responsible for the lack of spectral

FIG. 4. PDFs of cubed increments. The cubed increments when
averaged are equal to flux times length, ��l. Here l=0.88� ��
=2	 /3�. The dotted line is �u��l��ui�l��vi�l� for LANS, the solid
line is for LAMHD �z̄�

−�l��z̄i
+�l��zi

+�l�, and the dashed line is for
LAMHD �z̄�

+�l��z̄i
−�l��zi

−�l�. More of the volume gives no contribu-
tion to the flux for LANS than for LAMHD, indicating no rigid
bodies in LAMHD.
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contamination in LAMHD, we removed the hyperdiffusion
by setting �̄b=0 in Eqs. �5� or, equivalently, by substituting
��2b for ��2b in Eqs. �4�. We then start the run from the
same initial conditions but now with these new equations
employing �=2	 /33 and �=�=2�10−4 at a resolution of
3843 �with hyperdiffusion, a smaller resolution of 2563 is
possible �see Sec. III D��. Note that such a modified
LAMHD model is not expected to, nor found to, perform
well as a SGS model; this numerical experiment is per-
formed here only in order to assess the effect of the hyper-
diffusive term introduced by the � modeling. We find that
hyperdiffusion is not responsible for the lack of a k+1 spectral
contamination in LAMHD �see Fig. 5�.

Other possible causes for LAMHD not exhibiting the
superfilter-scale bottleneck as does LANS are the actual
physical differences between the two fluids that are modeled:
Navier-Stokes and MHD. First, unlike incompressible
Navier-Stokes, MHD supports oscillatory solutions �Alfvén
waves� which are linked to enhanced spectral nonlocality of
energy transfer �6,45� leading to dynamic interactions be-
tween widely separated scales. For Navier-Stokes, the deple-
tion of energy transfer due to local interactions at some cut-
off in wave number is believed to bring about the bottleneck
effect �46–49�. However, related to the spectrally nonlocal
energy transfer via Alfvén waves, MHD does not seem to
exhibit a bottleneck in its spectra between the inertial and the
dissipative ranges �14�. As LAMHD supports Alfvén waves
at all scales �and alters their dissipation and wave speed ap-
preciably only for subfilter scales�, the same physics could
be behind the lack of a superfilter-scale bottleneck in
LAMHD.

Another difference between the fluid and the MHD cases
is the geometry of the dissipative structures: one finds vortex
filaments for Navier-Stokes at high value of the vorticity, and
current and vorticity sheets for MHD—sheets which are
found to roll up at high Reynolds number �38�. It has been
claimed that the development of helical filaments in the fluid
case can lead to the depletion of nonlinearity and the quench-

ing of local interactions �50,51� and, hence, to the viscous
bottleneck. A similar energy transfer depletion may occur in
LANS. In �33� evidence is presented that Taylor’s frozen-in
turbulence hypothesis applied to Lagrangian averages leads
to the formation of “rigid bodies” in the flow wherein there
are no internal degrees of freedom and no transfer of energy
to smaller scales �i.e., regions with ���u�

3 / l=0 as well as
��v=0�. These regions are likely related to the shorter
thicker vortex filaments formed and the suppression of vor-
tex stretching dynamics as � is increased �52�. As MHD has
spectrally nonlocal transfer �e.g., velocity at large scales does
stretching of magnetic field lines at small scales�, this leads
to the breakup of these rigid bodies in the LAMHD case and
the breakup of the viscous bottleneck in the MHD case. The
magnetic field interaction with the large-scale velocity can
re-enable transfer of energy to smaller scales of the velocity
field. Indeed, defining the kinetic spectral transfer due to the
Lorentz force as

TL
��k� � 	 ûk · �j � b

̂

�k
�d�k �17�

for LAMHD, and as

TL�k� � 	 v̂k · �j � b
̂

�k
�d�k �18�

for MHD, we see in Fig. 6 that the Lorentz force is removing
large-scale kinetic energy and supplying small-scale kinetic
energy; this effectively bypasses the formation of rigid bod-
ies for LAMHD and the viscous bottleneck for MHD �note
that Eqs. �17� and �18� do not detail the scales at which
magnetic energy is created or destroyed�.

This argument can also be recast in terms of Kelvin’s
circulation theorem. For Navier-Stokes, the circulation � of
the velocity v is conserved in the ideal case for barotropic
flows. In ideal MHD, this conservation is broken by the Lor-
entz force,

FIG. 5. Spectra for a 3843 grid with k�=33 obtained from the
modified LAMHD �see text� shortly after the maximum of dissipa-
tion: kinetic energy �solid line� and magnetic energy �dashed line�;
the LAMHD equations have been modified by removing the hyper-
diffusive turbulent emf. Even without hyperdiffusivity, no positive
power law is found. Instead, fits �gray lines� for kinetic- and
magnetic-energy spectra near the filtering length are k−1.7
0.1 and
k−1.9
0.1, respectively.

FIG. 6. �Color online� Spectral transfer due to the Lorentz force,
TL �for 15463 DNS� and TL

� �for 5123 k�=18 LAMHD�, at a time
just prior to the peak of dissipation. Positive TL is shown as dashed-
dotted lines and negative TL as dashed lines. Positive TL

� is shown as
solid �green online� lines and negative TL

� as dotted �green online�
lines. LAMHD qualitatively reproduces the transfer of kinetic en-
ergy in MHD.
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d�

dt
=

d

dt
�

C
v · dr = �

C
j � b · dr , �19�

where C is any material curve. As a result, while in ideal
Navier-Stokes a material curve C defines the boundary of a
vorticity tube with fixed strength, in MHD these structures
are deformed and their vorticity contents changed by the
Lorentz force. A similar result follows for LAMHD and
LANS,

d�

dt
=

d

dt
�

C
u · dr = �

C
j � b · dr . �20�

Breaking the conservation of circulation in this way can pre-
vent the formation of a bottleneck. For example, for the fluid
case in the Clark-� model �which differs from LANS only in
the conservation of ��, it was also found that no superfilter-
scale bottleneck was present �53�.

D. LES application

Having now shown that LAMHD does not suffer the same
drawbacks with regard to energy spectra as LANS, we may
turn our attention to a practical application. The purpose of a
SGS model or LES is to make predictions about large Rey-
nolds number flows at a reduced computational expense.
From the scaling arguments in Refs. �33,39�, using simula-
tions conducted at Re�2200, and assuming a k−1 scaling, we
can estimate �=1 /33 for a 2563 LAMHD-LES “prediction”
of our 15363 MHD DNS. The time evolution of the energies
and the total enstrophy are shown in Fig. 7 for much later
times than reasonably attainable with the MHD DNS with
present-day computers. Also shown are results for solving
the MHD equations, Eqs. �1� with �=2�10−4 and a reso-
lution of 2563: a so-called “unresolved DNS” and the non-
hyperdiffusive modified LAMHD from the previous section.
Before the peak of dissipation, t�4, the unresolved DNS
gives a poorer prediction of the total dissipation and the total
energy, which is then followed by a significantly larger and
somewhat later peak of dissipation, at t�5, than the resolved

DNS and the LAMHD LES. The nonhyperdiffusive
LAMHD is not expected to perform well as a SGS model
and it is seen to be clearly underdissipative. The ratio of
magnetic to kinetic dissipation is �1.5 for the DNS, �2.9
for LAMHD, �1.1 for the under-resolved DNS, and 1.4 for
the nonhyperdiffusive model. Together with Fig. 7�b� these
ratios show that LAMHD achieves accurate total dissipation
by an excess of magnetic dissipation and a reduction in ki-
netic dissipation �both at the small scales�. This feature has
already been depicted in Fig. 15 of Ref. �27�. Compensated
energy spectra for the peak of dissipation �t� �2.7,3.7�� are
shown in Fig. 8. For the under-resolved DNS, we observe the
appearance of a tail at large wave numbers with a k2 spec-
trum as predicted using statistical-mechanics arguments for
truncated systems in the ideal ��=0,�=0� case �54�. The
under-resolved spectra are not significantly different from the
resolved DNS, but note that a reliable and convincing deter-
mination of spectral indices, beyond visual inspection, does
require high resolutions. Comparing now the resolved DNS
and the LAMHD run, the quality of the spectra are similar
for scales larger than �. Recall that differences at the largest
scales stem from the differences in initial conditions as stated
in Sec. III A and from time evolution of the flow. Finally,
noting that the computer saving here is 63 in memory and 64

in running time, we conclude that the LAMHD continues to
behave satisfactorily, as already shown both in two space
dimensions �27–29� and in three dimensions �30�, in particu-
lar in the context of the dynamo problem of generation of
magnetic fields by velocity gradients; thus, LAMHD may
prove to be a useful tool in many astrophysical contexts
where magnetic fields are dynamically important, such as in
the solar and the terrestrial environments, or in the interstel-
lar and the intergalactic media.

We also computed a 5123 LAMHD LES ��=1 /85� which
retains more of the small scales than the 2563 LAMHD LES
while still yielding significant computational savings over
the 15363 DNS. We compare this with the result for �
=1 /18 �chosen not as a LES but to stress the model� in Fig.
9. The structure of sheets observed in MHD dissipative struc-
tures is preserved in the LAMHD simulations, although cur-
rent and vortex sheets become thicker in LAMHD as a result

(a) (b)

(b)(a)

FIG. 7. �Color online� Temporal evolution, �eddy �4.5, for 15363 DNS �solid black line�, 2563 k�=33 LAMHD �dashed �green online�
line�, 2563 under-resolved “DNS” �dotted �red online� line�, and 3843 k�=33 nonhyperdiffusive LAMHD �dashed-dotted �blue online� line�.
�a� Time evolution of the energies: kinetic �lower curves�, magnetic �middle curves�, and total �upper curves�. �b� Time evolution of total
enstrophy, 
j2+�2� �
j2+� ·�� for LAMHD and 
j · j+� ·�� for the nonhyperdiffusive case�. Note that LAMHD gives a better agreement
to the total dissipation rate up to the maximum time that the high resolution DNS is performed. Also note that the DNS equivalent to the
LAMHD run presented here is not feasible on present-day computers at a reasonable cost.
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of the filter as � is increased. This is necessary to achieve
reduced resolution computations. Note that these sheets are
different in nature from the fat rigid bodies observed in
LANS, as the turbulent energy transfer to small scales is not
quenched and there is no superfilter-scale bottleneck.

IV. DISCUSSION

In this paper, we have tested the LAMHD model against
high Reynolds number direct numerical simulations �up to
Reynolds numbers of �9200� and in particular we have fo-
cused our attention on the dynamics of small scales near the

� cutoff. We find that the small-scale spectrum presents no
particular defect; specifically, we find that, unlike in the hy-
drodynamical case, the Lagrangian-averaged modeling for
MHD exhibits, even at large Reynolds numbers, neither a
positive-power-law spectrum nor any contamination of the
superfilter-scale spectral properties. This difference between
LANS and LAMHD is not due to the inclusion of a hyper-
diffusive term in LAMHD that stems from the derivation of
the model; rather, it stems from fundamental differences be-
tween hydrodynamics and MHD. Indeed, neither the �non-
consistent� removal of hyperdiffusion from LAMHD nor the
examination of scales much smaller than � gave any indica-
tion of problems similar to those caused by the zero-flux
regions found in computations using LANS. These regions
limited the computational gains of using LANS as a LES in
hydrodynamics to a factor of only 10 in computational de-
grees of freedom or 30 in computation time. LAMHD is not
subjected to the same limitations and, as we demonstrated, a
gain of a factor of 200 in the number of degrees of freedom,
or a factor of 1300 in computation time, is obtained when
comparing to the highest Reynolds number in turbulent
MHD available today in a DNS.

There are two obvious candidates to explain the lack of a
�superfilter-scale� bottleneck effect in LAMHD: the en-
hanced �hyper�diffusion in LAMHD compared with LANS
and physical differences between fluids and magnetofluids,
specifically, spectrally nonlocal transfer via Alfvén waves
and its associated breaking of the circulation conservation.
The first candidate would eliminate the superfilter-scale
bottleneck by removing energy from the system and preclud-
ing the formation of a secondary range below the filtering
scale � �note that this term becomes of the same order as the
ordinary diffusion when l���. Simulations of LAMHD per-
formed without the hyperdiffusion term ruled out this sce-
nario, as no superfilter bottleneck was found.

The second candidate is the presence of the Lorentz force
in MHD �and LAMHD� which breaks down the circulation
conservation and provides the restoring force for Alfvén
waves. Both properties were shown to be preserved by
LAMHD. In Navier-Stokes, the development of helical fila-
ments could quench local interactions �50,51� depleting the
energy transfer and leading to the viscous bottleneck. How-
ever, in MHD, the conservation of the circulation �d� /dt
=0 in the absence of dissipation� is broken by the Lorentz

(a) (b)

(b)(a)

FIG. 8. �Color online� Spectra compensated by k3/2 for the �a� kinetic and �b� magnetic energies averaged over t� �2.7,3.7�; labels are
as in Fig. 7 and the dashed vertical line indicates k�=33. Note the k2 tail at high wave number is known to develop for under-resolved runs,
a prediction stemming from statistical mechanics.

(b)(a)

(c) (d)

FIG. 9. 2D cross sections of square current, j2, for 5123

LAMHD LES ��=1 /85� �a� and model-stress case ��=1 /18� �b�.
MHD dissipative structures, sheets, are retained which become
thicker as � is increased. �c� 2563 LAMHD-LES ��=1 /33� and �d�
2563 unresolved DNS. For the unresolved run, current sheets are
somewhat smeared out by numerical noise.
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force, which modifies Kelvin’s theorem �see Eq. �19��. The
forcing term is associated with the Alfvén waves and repre-
sents the removal of circulation �and of kinetic energy� that
is transferred to the magnetic field. Note that, in Fourier
space, the term scales as kEM�k� and is dominant compared
to the dissipation in the inertial range. This term precludes
the formation of rigid bodies, giving as a result a larger net
flux toward smaller scales and a resulting larger dissipation
in MHD or LAMHD. This is illustrated in Fig. 4. This sink
of circulation may also be the cause of the lack of a viscous-
scale bottleneck in MHD. In LANS it was shown �33,53�
that the conservation of the circulation �except for viscosity�
leads to the formation of rigid bodies that fill a substantial
volume of the fluid, and that in turn substantially decrease
the energy flux to small scales, reduce the dissipation, and
create the superfilter-scale bottleneck. In LAMHD, the de-
struction of subfilter-scale rigid bodies by large-scale mag-
netic field and shear results as the presence of a magnetic
field permits the development of long-range interactions in
spectral space �6,7,45�. This can also explain why � models
for other nonlocal equations or for problems that do not pre-
serve the circulation provide good SGS models. As an ex-
ample, the use of LANS in primitive equations ocean mod-
eling gives satisfactory results, e.g., in its reproducing the
Antarctic circumpolar current baroclinic instability that can
be seen only at substantially higher resolutions when using
direct numerical simulations �55�.

Energy is dissipated in MHD flows through two different
processes. Viscosity is responsible for the dissipation of me-
chanical energy, while Ohmic losses are responsible for dis-
sipation of magnetic energy. Mechanical and magnetic ener-
gies are not conserved separately, but rather coupled as
illustrated by the existence of Alfvén waves, which corre-
spond to oscillations of the magnetofluid, with the velocity
field parallel or antiparallel to the magnetic field, and asso-
ciated with the interchange of magnetic and kinetic energies.
In MHD, it is believed that most of the total energy in the
flow is finally dissipated �mediated by this interchange�
through Ohmic losses in a process that involves reconnection
of magnetic field lines. This is supported by several simula-
tions of MHD turbulence �56,57� and is consistent with phe-
nomenology. While in hydrodynamics small scales are per-
meated by a myriad of vortex filaments, in MHD the
dominant dissipative structures are current sheets, where
strong gradients of the magnetic field and their associated
strong currents lead to rapid Ohmic dissipation. Subgrid
models attempt to replace the physical processes of small-
scale dissipation with processes that mimic the nonlinear
transfer of energy to smaller scales �where energy is in real-
ity dissipated but now in scales that are not resolved by the
model�. In traditional LES, this is done with enhanced turbu-
lent viscosities. Note that the eddy viscosity is not obtained
from the linear dissipative term �the term that describes the
actual physical process responsible for the dissipation� but
from the nonlinear terms in the equations �the terms that
describe the coupling between fields at different scales�. The
final goal is not to capture the dissipation processes, but to be
able to preserve �with computational gains� the large-scale
dynamics.

Lagrangian-averaged models take a different �although re-
lated �see, e.g., �29��� approach. Besides adding �in some

cases, as in the case of MHD� an enhanced viscosity, the
nonlinear terms are modified at small scales. This modifica-
tion changes the time scale of the energy cascade and as a
result changes the scaling law of the energy spectrum E�k� at
subfilter scales. This change leads to changes in the dissipa-
tion, as the dissipation is in the original equations propor-
tional to k2E�k�. The end result �an enhanced dissipation that
is intended to mimic the transfer of energy to smaller scales
in the unresolved scales� should be the same as in a tradi-
tional LES: gains in computing costs preserving as much
information of the large-scale flow as possible. As in the case
of LES, the actual dissipation process is not as important as
the fact that large-scale dynamics should be reproduced with
minimal contamination by the subgrid model. We believe
that the results presented here �and in earlier works �27–31��
show that this is the case and allow the use of the LAMHD
equations as a subgrid model of MHD turbulence. However,
considering the differences observed between LANS and
LAMHD, we discuss the dissipation processes in LAMHD.
Two mechanisms for dissipation can be identified in
LAMHD: dissipation of mechanical energy through the vis-
cosity and dissipation of magnetic energy through �en-
hanced� Ohmic losses. From the equations, the total variation
in energy goes as �27� dE /dt=−�
� ·��−�
j2� and as a re-
sult the mechanical-energy dissipation scales as k2EV�k�
while the magnetic-energy dissipation scales as �1
+�2k2�k2EM�k�. The extra k2 factor in the latter gives more
dissipation than in the LANS case. This excess of magnetic
dissipation in LAMHD mimics, as previously mentioned, the
dominant contribution to dissipation by Ohmic losses in
MHD. This hyperdiffusion is required in the subfilter scales
to accurately model the total energy dissipated at the unre-
solved scales. This was demonstrated by our experiments
with a modified LAMHD, where we �nonconsistently� re-
moved the hyperdiffusive term and found the resulting model
to fail as a LES.

Yet another way to understand the differences between
LANS �for incompressible isotropic and homogeneous
flows� and LAMHD is to consider the derivation of these
models �25� using the generalized Lagrangian-mean �GLM�
formalism �58�. This form of Lagrangian averaging describes
wave mean-flow interactions. For the case of weak turbu-
lence, where the nonlinear transfer is dominated by waves,
GLM requires in principle no closure. As a result, GLM
gives an exact closed theory for the evolution of the wave
activity. On the other hand, when there are no waves �as in
incompressible Navier-Stokes� or when eddies dominate the
transfer, a closure is required. One possible closure assumes
that fast fluctuations are just advected by the mean flow �ba-
sically, Taylor’s frozen-in hypothesis for the small-scale tur-
bulent fluctuations� and leads to several “� models” that in-
clude LANS and LAMHD. In this context, it is not
surprising for subgrid models based on GLM to perform bet-
ter in the presence of Alfvén waves �for LAMHD� or Rossby
and gravity waves �for the Lagrangian-averaged primitive
equations �55��. The more relevant the waves are to the dy-
namics, and to the nonlinear coupling of modes in the sys-
tem, the less relevant is the hypothesis behind the closure.
Furthermore, the �-model equations can then be expected to
be a better approximation to the problem at hand, that is, to
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be closer to an exact closure of the original system of equa-
tions.

In the fluid case, the application of the “Taylor” closure
that smaller-than-� scale fluctuations are swept along by the
large-scale flow results in the fluctuations having greatly re-
duced interactions. This allows for a reduction in computa-
tional expense and leads to the superfilter-scale bottleneck by
quenching spectrally nonlocal interactions. In the LAMHD
case, the small-scale z+�z−� fluctuations are swept along by
the large-scale z−�z+� flow. Small-scale fluctuations advected
by two different fields may now collide and nonlinearly in-
teract. The second part of the model is the preferential hy-
perdiffusion of Alfvén waves with wavelengths shorter than
�. This damps rather than quenches nonlinear interactions
among the small scales. This more gentle suppression of the
transfer of energy to smaller scales reduces the numerical
resolution requirements without forming a bottleneck.

It was noted in �30� when assessing the properties of
LAMHD in the dynamo context that the overall temporal
evolution was satisfactory, e.g., with a correct growth rate,
although the growth of the magnetic seed field started
slightly earlier in the LAMHD run than in the DNS. One can
speculate as to whether this delay is linked to the super-
bottleneck effect of LANS �which prevails when the mag-
netic field is negligible compared to the velocity, with the
two modeling approaches, LAMHD and LANS, being dy-
namically consistent�. This point is left for future work; one
could determine as well at what ratio of magnetic to kinetic
energy the overshooting of spectra in LANS disappears for
LAMHD.

Also deserving a separate study is to investigate the be-
havior of LAMHD when anisotropies that appear at small
scales �14� are present; this would be essential when a uni-
form magnetic field is imposed to the overall flow. The
evaluation of the behavior of the model when computing
spectra in the perpendicular and the parallel directions �with

respect to a quasiuniform magnetic field, computed by lo-
cally averaging the field in a sphere of radius comparable to
the integral scale� remains to be done but is somewhat time
consuming. An analysis of the structures that develop in the
highly turbulent LAMHD flow studied in the preceding sec-
tion is also left for future work; of particular interest is the
occurrence of Kelvin-Helmholtz-like rollup of current sheets
as observed at high resolution �14�; however, the choice of
the parameter � in the present paper was made on the basis
of questioning the existence or lack thereof of a rigid-body
high-wave-number k+1 spectrum and, thus, was not opti-
mized for the study of the inertial range properties of the
flow for which a much smaller value of the length � could be
used.

Finally, how far the resolution can be reduced when using
LAMHD as a LES for various statistics of interest will also
require further detailed study. The present study shows that,
while reproducing the superfilter-scale energy spectrum in
three dimensions, gains by a factor of 1300 in computing
time can be achieved. The need to reproduce higher-order
statistics can decrease these gains. As an example, in two-
dimensional MHD, it was shown that gains when using
LAMHD as a subgrid model depend for high-order moments
on the order that one wants to see to be accurately repro-
duced �29�.
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