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Direct numerical simulations of the incompressible MHD equations with a uniform background
magnetic field in a turbulent regime are performed to assess the relative importance of broadband
turbulent fluctuations and wavelike fluctuations that are associated with an Alfvén wave dispersion
relation. The focus is on properties of the fluctuations in the frequency domain. Eulerian frequency
spectra and individual wave number mode frequency spectra show the presence of peaks at the
corresponding Alfvén wave frequencies for full nonlinear simulations in a turbulent regime. The
peaks are however broad and their power content is compared to the power in the full spectrum as
well as a signal to noise ratio is defined and quantified for different values of the background
magnetic field. The ratio of power in Alfvén waves to the power in the rest of the spectrum is also
quantified and is found to be small for different values of the mean magnetic field. Individual modes
in time show a much more complex behavior than that could be expected for linear solutions. Also,
nonlinear transfer of energy is evidenced by the existence of peaks at wave numbers perpendicular
to the mean magnetic field. Implications are discussed for theories of strong turbulence as well as
perturbation theories that assume the leading order behavior is that of propagating Alfvén waves.
© 2009 American Institute of Physics. �DOI: 10.1063/1.3148335�

I. INTRODUCTION

It is well known that magnetohydrodynamics �MHD�, in
the linear approximation, supports the existence of a number
of waves, each of which is associated with a dispersion re-
lation that relates frequency to wave number. The simplest
case corresponds to incompressible MHD with a uniform
background magnetic field B0, for which the linear
dispersion relation �in the ideal nondissipative case� de-
scribes Alfvén waves, with frequency w=k ·vA, for wave
vector k, Alfvén velocity vA=B0 /�4��, and density �. The
complex Fourier components of velocity vk and magnetic
field fluctuation bk are transverse to the wave vector, vk ·k
=bk ·k=0.1

On the other hand, when nonlinear terms are taken into
account, the MHD equations develop a turbulent regime,
characterized by a broad range of length scales and corre-
spondingly time scales. In the turbulent regime however one
does not expect a direct or explicit relation between fre-
quency and wave number, such as the dispersion relation for
waves. Commonly, for instance in observational studies of
MHD plasmas such as the solar wind,2 the observed fre-
quency spectra is assumed to be related to wave number
spectra through a frozen-in flow hypothesis �the solar wind
flow velocity acting as the proportionality constant�. The
Eulerian frequency spectrum, transform of the single-point,
multiple time correlation function3 is not directly measured.
Nevertheless there is no evidence in the form of the observed
interplanetary spectra that suggests a role of a dispersion
relation.

The observation of Alfvénic correlations in the solar

wind4–6 is reminiscent of a particular special case, in which
waves can be an exact solution of the full, large amplitude,
nonlinear MHD equations. These correspond to situations in
which the MHD velocity fluctuations are exactly parallel to
�or antiparallel to� and in energy equipartition with the mag-
netic field fluctuations. When the magnetic field is in familiar
Alfvén speed units, this condition is simply v= �b. The so-
lution is then a large amplitude Alfvén wave packet. This
type of wave packet will propagate unidirectionally along �or
antiparallel to� a uniform mean field, if one is present; how-
ever, this “Alfvénic” solution is obtained equally well with
no mean field.7 It is important to recognize that this large
amplitude wave solution does not satisfy a general superpo-
sition principle, wave packets with opposite senses of v−b
correlation,8 when overlapping in space, no longer propagate
without distortion.9 Instead, turbulence develops and one can
ask to what extent the wave description is still useful in that
regime. In other words, it is still possible to talk about waves
in a turbulent regime? Or, a related question, can we still
distinguish some wave activity in a turbulent regime? It is
these issues that we address here.

There is no analog to these questions in standard homo-
geneous incompressible hydrodynamic turbulence, because
wave modes are lacking. However in studies of MHD, the
possibility of a leading order wave description arises, and
indeed this is assumed in a variety of theories that are ge-
nerically known as “weak turbulence.”10,11 In fact, the inter-
play of waves and turbulent fluctuations �nonlinear activity�
is actually a complex topic in MHD �Ref. 12� where it was
pioneered by the works by Kraichnan,9 as well as in the
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general context of plasma physics.13 Indeed, much of the
subject of MHD turbulence is permeated by discussion of the
balance of wavelike and nonlinear activity.

To study these issues, we will consider here a simple
model, for which answers to the key questions regarding the
role of waves can be obtained quantitatively: incompressible
MHD with a uniform background magnetic field, and peri-
odic boundary conditions in a rectangular box. Direct nu-
merical solutions of the nonlinear MHD equations will be
obtained for different cases, with the purpose of comparing
mainly the results in the frequency domain and to see to what
extent waves can still be distinguished once a turbulent re-
gime is developed. Unlike the usual study of wave number
spectrum in MHD, we will look at frequency spectra ob-
tained from time series of the magnetic field fluctuations at
distributed probes in the simulation, and also frequency spec-
tra for time series of individual wave number modes. The
influence of the value of the background magnetic field on
the results will be analyzed through a series of simulations in
which this parameter is varied. In particular, for a specific set
of numerical experiments, we will examine quantitatively the
familiar heuristic notion that when “�B /B,” the ratio of fluc-
tuating magnetic field to mean magnetic field, goes to zero,
the MHD behavior becomes ever more wavelike.

II. EQUATIONS, NUMERICAL SIMULATIONS,
AND DIAGNOSTICS

The incompressible MHD equations �momentum and in-
duction equations� in dimensionless units are

�v

�t
+ v · �v = −

1

�
� p + j � B +

1

R
�2v , �1�

�b

�t
= � � �v � B� +

1

Rm
�2b , �2�

where v is the plasma velocity, B=b+B0 is the magnetic
field, with a fluctuating part b and a mean field �dc field� B0,
j=��b is the current density, p is the pressure, and � is the
plasma density. The units are based on a characteristic speed
v0, which for MHD is chosen to be the typical Alfvén speed
of the magnetic field fluctuations, v0=va= �b2�1/2 /�4��. The
characteristic length scale is L where the simulation box side
length is defined as 2�L. The unit time is t0=L /v0, which for
MHD becomes the Alfvén crossing time. The dimensionless
parameters appearing in the equations are the kinetic and
magnetic Reynolds numbers R=v0L /� , Rm=v0L /� �with �
the kinematic viscosity and � the magnetic diffusivity�.

Equations �1� and �2� are solved with a triply periodic
Fourier pseudospectral code. Results are reported here from
runs with resolution of 1283 grid points that allow very long
time integrations to obtain well resolved frequency power
spectra. The large scale Reynolds numbers are R=Rm=400.
The scheme ensures exact energy conservation for the con-
tinuous time, spatially discrete equations. The discrete time
integration is done with a second-order Runge–Kutta
method. The method ensures stabilized aliasing errors.

The initial state consists of nonzero fluctuation ampli-
tudes for the velocity and magnetic field �in equipartition and

with total mean squares normalized to 1� random phased in
the k-space �wave vector� shell 1� �k��4 �with k in units of
1 /L�. The initial cross helicity Hc= �v ·b� and magnetic he-
licity Hm= �a ·b� �with a as the potential vector for the fluc-
tuating magnetic field� are small.

Driving terms are added to Eqs. �1� and �2� to achieve a
statistically steady state. This requires that we integrate the
equations for hundreds or thousands of characteristic nonlin-
ear times. The driving consists of independent vector forcing
terms fv, fb for the velocity and magnetic field evolution
equations. The forcing is k-dependent �only a range of modes
are forced, with wave number between k=1 and k=2�, with
uncorrelated random intensities for each component at each
time step and a memory function, which implies a controlled
correlation time of the driving. The forcing correlation time
is set up to be of the order of the unit time. The uncorrelated
random intensities of the forcing components assure no sys-
tematic statistical injection of cross helicity or magnetic he-
licity. In general in these simulations the energy reaches a
time-varying quasisteady level after tens of nonlinear times.
The presence of low frequency fluctuations in some runs �see
Ref. 14� imposes a requirement of very long run times, as we
will discuss below.

Probes are put in the simulation box, meaning that we
record at selected spatial positions the time series of the fluc-
tuating magnetic field or velocity field. Specifically a plane is
chosen in the middle of the simulation box and a set of 64
probes is placed in that plane in a regular array of 8�8
points. A similar procedure was employed in Ref. 15 to study
the presence of discrete modes within a turbulent system.
Long time series of the single point data are obtained �2000
unit times duration� to compute the Eulerian frequency
power spectra at the position of each probe. All spectra are
computed from one Cartesian component of the fluctuation
time series. For cases with a mean magnetic field, this com-
ponent is perpendicular to the mean field direction. Sampling
rate of the time series �not to be confused with the much
smaller time integration step in the simulation� is 	t=0.04
unit times, which is 25 samples per unit time. This corre-
sponds to a Nyquist angular frequency of � /	t	 =78 in
simulation units. The square absolute value of the complex
fast Fourier transform of the time series is used to compute
the power spectrum. An average spectrum is constructed us-
ing the spectra from all probes. This improves the statistics
and reduces noise, especially at high frequencies.

III. EULERIAN FREQUENCY SPECTRA

We carried out driven, dissipative spectral method simu-
lations of incompressible MHD with a uniform background
magnetic field. The Eulerian frequency spectra were com-
puted over very long times as described above.

Figure 1 shows the results for a case with a fixed uni-
form background magnetic field of B0=8 and initial fluctua-
tion amplitude of �b2�1/2=1. This could be viewed as an ex-
ample of moderately strong mean magnetic field, and
therefore a good candidate for observing Alfvén wave behav-
ior, and signatures of the associated wave dispersion relation.
The full incompressible nonlinear MHD equations are
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evolved for a long period of 2000 unit times. The driven
system achieves an �statistically� stationary state after a few
tens of unit times. The figure shows the Eulerian frequency
spectrum for this case. A broadband frequency spectrum
is obtained, with some �broad� peaks at particular frequen-
cies. Also shown for reference is the spectra obtained if the
MHD equations are solved using the same initial conditions,
but with no forcing and dissipation, and putting the nonlinear
terms to zero. The equations in this case are, of course, the
linear system and the expected solutions are Alfvén waves of
exact frequencies w=k ·vA=k
B0, which for B0=8 corre-
spond to peaks in the frequency spectrum at
w=8,16,24,¯ �corresponding to k
 =1,2 ,3 ,¯�. The linear-
ized case shows strong peaks at solutions to the dispersion
relation, with these resonances broadened due to the finite
integration time. In contrast, the full nonlinear solution
shows a clearly broader frequency distribution. The peaks at
the Alfvén waves can still be identified, although they are
much broader and less dominant than in the linear case.

Other features of the observed broad band spectrum can
also be understood. The spectrum of the driving is of the
form P�w��1 / �w2+wc

2�, with wc=1 /
c, where 
c is the
�single� forcing correlation time. Here we set tc�0.3 so the
spectrum of the driving is flat for frequencies w�wc�3 and
is of the form P�w��w−2 for w�wc. A spectral distribution
near this form is visible at the intermediate and large fre-
quencies in the spectrum of the nonlinear solution in Fig. 1
and may be due in part to forcing. It may also be in part
associated with nonlinear couplings, which are expected to
produce inertial range spectra in the range from w−5/3 to w−2

at w�1.16,17 At the lower frequencies �w
1� a power law
spectrum is observed �rather than a flat spectrum associated
with uncorrelated events�. This power law behaves approxi-
mately as P�w��w−1. Such a feature is present sometimes in
nonlinear solutions and is an instance of so-called “1 / f
noise.” Here, in MHD turbulence, this behavior becomes
more evident for a large background magnetic field, as we

discussed in more detail in a previous work.14 A discussion
of the influence of the mean magnetic field strength, along
with a quantitative assessment of the importance of the wave
power peaks, is given in Sec. IV.

IV. INFLUENCE OF THE MEAN MAGNETIC FIELD

We study the influence of the mean magnetic field
by performing simulations with different values of
B0=0 ,1 ,2 ,8 ,16, while maintaining a fixed level of fluctua-
tions �B�1. All cases are driven to a statistically steady
state using identical forcing algorithms. The results for the
Eulerian frequency power spectrum are shown in Fig. 2. It
can be seen that the Alfvén wave peaks become more distinct
as the value of the mean magnetic field is increased. This
might be expected, since the linearization to obtain the wave
solution is typically connected to the limit �B
B0. It is in-
teresting that very little evidence of waves peaks can be seen
for values of the mean field B0�2. Only a small peak cor-
responding to the lowest k
 =1 mode �w=B0� is observed for
B0�2, while harmonic peaks at larger k
 modes can be seen
only for the stronger mean field B0=8 ,16 cases. Evidently
the remainder of the frequency spectrum, the part that is not
associated with the linearized solutions, is strong enough to
obscure some of the periodic features expected from the dis-
persion relation in the low amplitude case. This broadband
noise, a basic feature of turbulence, appears to dominate over
much of the frequency range of the computed spectra.

It is of central relevance to develop a quantitative under-
standing of this mixture of turbulence and wave effects in the
spectra. One such quantitative measure is a signal-to-noise-
ratio �SNR� defined as18

SNR = log10� P�w0�
P0�w0�
 . �3�

Here w0 is the frequency at the peak �center�, corresponding
to the Alfvén wave frequency, e.g., w0=B0 for k
 =1, and
P0�w0� is a background value of the power spectrum, the
value of the power spectrum P�w� if the power law were
continued through w0, ignoring the peak at the wave fre-
quency. The meaning of these parameters is illustrated in
Fig. 3.

The SNR values for different values of B0 are shown in
Table I. This quantity is 0 for B0=0 and increases monotoni-
cally to �3 for the largest value considered B0=16. The fact
that the peaks are more noticeable for the large values of B0

�see Fig. 2� is reflected then through this quantity. A conclu-
sion could be drawn then that the waves dominate the picture
as the value of B0 is increased. This is certainly true for
frequencies around the corresponding Alfvén wave frequen-
cies. However, this quantity is local, in that it compares the
spectral power in the waves only relative to the signal nearby
in frequency.

The situation is different with regard to the total spectral
power. The panels of Fig. 2 show that the spectral density is
maximal at the lowest frequencies in all cases. Furthermore,
this very low frequency power at w�1 represents an increas-
ing fraction of the total spectral power for the larger values

0.01 0.10 1.00 10.00
w

10−10

10−5

100

P(
w

)

FIG. 1. Eulerian frequency spectra from MHD simulations. The frequency
spectrum of magnetic field fluctuations �B �specifically bx� from a full non-
linear solution of MHD with a background magnetic field B0=8�B. In gray,
the spectrum from a linear solution of the MHD equations, with no forcing
or dissipation.
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of B0. To demonstrate this quantitatively, another quantity
can be defined, as a wave power ratio �WPR�. This measure
is the ratio of the power around the peak values �less the
background spectrum if a power law would be continued�
relative to the total power in all frequencies. This quantity is

WPR =
�w1

w2�P�w� − P0�w��dw

�w�0P�w�dw
, �4�

where w1 and w2 are values below and above the wave fre-
quency peak w0, as illustrated in Fig. 3. The values of the
WPR for different values of B0 are reported in Table I.

As can be seen in Table I, the fraction of power in the
waves is as small as 2% for the largest value of B0. It reaches
its maximum �13%� for B0=2. It is always a small fraction of
the total power. Perhaps unanticipated from a wave perspec-
tive is that the wave power fraction again decreases at values
of B0 greater than B0=2. This is due to an increase, as B0

increases, in the importance of very low frequency power at
frequencies much less than any of the discrete Alfvén wave
frequencies. This can be seen in Fig. 2.

The origin of the power at low frequencies is not from
any kind of wave but rather from fluctuations whose Fourier
wave vectors k are mainly perpendicular to the mean mag-
netic field �i.e., small k
 or k
 =0 fluctuations�. This is a mani-
festation in the frequency domain of the well known spectra
anisotropy of MHD under the influence of a strong uniform
background magnetic field. Spectral anisotropy is familiar in
MHD simulations,19,20 is measured in laboratory
experiments,21 and has a number of manifestations in solar
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FIG. 2. Eulerian frequency spectra from full nonlinear solutions of the
MHD equations for different values of the background magnetic field B0.
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FIG. 3. Scheme for illustrating the different frequencies and power values
around a peak of the power frequency spectrum.

TABLE I. SNR and WPR for different values of B0.

B0 SNR WPR

0 0 0

1 0.3 0.1

2 0.6 0.13

8 1.5 0.03

16 3.1 0.02
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wind fluctuations.22 The common feature in all these cases is
a suppression of excitation of high parallel wave vectors, due
to an anisotropic cascade, so that much of the energy resides
in very small parallel wave numbers, and k��k
 in the in-
ertial cascade range. Such fluctuations, with wave vectors
essentially perpendicular to the mean magnetic field, have
near-zero frequency compared to the same wavelength mode
with wave vector parallel to the mean field. �These fluctua-
tions should not be called waves, in the sense that the term is
applied to Alfvén waves with wave vectors parallel to the
magnetic field.�

The frequency spectrum, as can be seen in Fig. 2, has a
power law form at the lowest frequencies, especially for the
large B0 cases. This power law is of the form P�w��w−1, as
we studied in more detail in a previous publication.14 As
reported there, the origin of the 1 /w fluctuations is in non-
local interactions of the lowest wave number modes �k=1�
with large k wave numbers. A recent study of nonlocal versus
local interactions in decaying MHD with a strong magnetic
field has been performed in Ref. 23. Evidently it is the en-
hancement of the low frequency 1 /w power as B0 becomes
large that is responsible for the decrease in the fraction of
power in identifiable wave modes in that same limit.

The evolution in time of a component of the magnetic
field also shows some interesting features that are related to
the above discussion. Figure 4 illustrates the full time evolu-
tion �2000 time units� of a component of the magnetic field
�bx�, measured at a single fixed probe in the simulation. This
is the counterpart, in the time domain, of the frequency plots
in Fig. 2. A trend is clearly observed in the panels of Fig. 4
for different values of the mean magnetic field B0. Together
with the rapid fluctuations associated with Alfvén waves,
conspicuous longer period fluctuations can be seen, and these
become more conspicuous as the mean magnetic field is in-
creased. A smaller time interval of 100 unit times is shown in
Fig. 5 to appreciate in more detail this behavior. These long
period fluctuations are the manifestation of the low-
frequency activity visible in the power spectrum plots and
specifically are associated with the 1 /w power spectral fea-
ture as the mean magnetic field is increased. When sampled
for an insufficiently long time period, the 1 /w noise has the
character of a time-varying mean magnetic field. Neverthe-
less it is truly low frequency turbulence, as it is generated
entirely by nonlinear interactions.

V. FREQUENCY SPECTRA OF INDIVIDUAL MODES

A frequency power spectrum is computed for different
single k modes. This is obtained from the complex time se-
ries of a mode bk�t�, by computing the square absolute value
of the fast Fourier transform of this time series. In this case,
the time series is subdivided in periods and the frequency
spectrum of each period is taken and then an average spec-
trum is constructed. This is done to improve the statistics and
due to the fact that only one time series per wave number
mode is obtained from a simulation. In contrast, for the case
of the Eulerian spectrum in Sec. IV, many probes are used
instead to improve the statistics.

Some sample results for individual mode frequency
spectra are shown in Fig. 6. Panel �a� corresponds to the
frequency spectra of several modes with kx=kz=0 and
ky =1,2 ,4 ,8. The mean magnetic field is in the y-direction,
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FIG. 4. Behavior in time for a component of the magnetic field at a single
probe for different values of the background magnetic field.
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so these are purely “parallel” modes with k=k
 =ky. Such
modes are intuitively “Alfvén waves,” and in linear theory
would have wave frequencies w=8,16,32, respectively, cor-
responding to the simulation value of the mean magnetic
field, B0=8. In fact, Fig. 6 demonstrates the presence of sev-
eral peaks at the expected linear mode frequencies, indicat-

ing a degree of Alfvén wavelike features. We also see that
the peaks that are present are broadened peaks in each wave
number mode frequency spectrum. Note the similarity of the
peak structure in Figs. 1 and 6 �the Eulerian spectrum�, ex-
cept that the individual mode spectra in panel �a� of Fig. 6,
which are purely parallel �k�=0�, lack the low frequency
power enhancement discussed in Sec. IV.

Even though point spectral features reminiscent of
waves are present in the single mode frequency spectra, it is
also clear that these modes do not behave as single waves but
respond to the dynamics with a broad frequency spectrum.
The ky =1 mode corresponds to a directly driven mode and
its overall intensity, as well as its wave intensity, is the high-
est of the spectra shown in panel �a� of Fig. 6. The other
modes �ky =2,4 ,8� arise in these runs only due to the non-
linear transfer of energy �cascade�, but the presence of wave
activity nonetheless can be seen in their spectra. The power
at these larger k modes is smaller. Interestingly, the high
wave number modes do not show a stronger wave spectral
feature—a result that is counterintuitive but clearly associ-
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FIG. 5. Magnetic field component at a single probe, as in Fig. 4, but over a
smaller time scale. A period of 100 unit times is shown for three different
values of the background magnetic field to observe simultaneous existence
of waves and longer time fluctuations.
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FIG. 6. Frequency spectra of individual wave number modes: �a� the spectra
of modes with wave number parallel to the background magnetic field and
�b� the spectra of modes with wave number perpendicular to the background
magnetic field.
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ated with the strong nonlinear cascade effects experienced by
these modes.

Panel �b� of Fig. 6 shows the frequency spectra of modes
with ky =kz=0 and kx=1,2 ,4 ,8. These are modes with wave
vector purely perpendicular to the direction of the mean
magnetic field, having k
 =0. The Alfvén wave dispersion
relation would indicate a frequency w=0 for these modes
�since k
 =0�. Although their spectra are broadband, much of
the power in the frequency spectrum of these modes is con-
centrated toward the lowest frequencies. An interesting fea-
ture is that there are some visible peaks at around w=16 for
the three spectra with kx=2,4 ,8. The origin of this peak can
be readily understood through examination of the nonlinear
couplings that occur involving triads of wave vector modes.
For example, a triad of the form

k = �0,2,0� = �kx,0,0� + �− kx,2,0� = k1 + k2 �5�

can transfer power from a pure parallel mode �0,2,0� to a
perpendicular mode with different values of kx.

19 The peak in
the power at w=8 comes from the Alfvén mode with k
 =2
�see panel �a� of Fig. 6�. Similarly, other modes with differ-
ent values of kx can also couple to the mode �0,2,0�, inherit-
ing some of its wavelike time dependence. The case kx=1
appears as an exception and does not show a clear peak,
probably because it is so strongly influenced by the driving,
which acts directly on that mode.

Another aspect of the behavior of single wave number
modes is to look at the time behavior of the real and imagi-
nary parts of its Fourier amplitudes. This is shown in Fig. 7.
If the mode was a single propagating wave, it should de-
scribe a circular trajectory in the complex plane, with the
angular frequency of this rotation given precisely by the
wave frequency. Its actual behavior is much more complex
as can be clearly seen in the figure. Panel �a� of Fig. 7 shows
the time behavior for a mode with kx=0, ky =1, kz=0, that
is, a mode with k parallel to the mean magnetic field. The
trajectory maintains a roughly circular shape due to the ex-
istence of the Alfvén wave for that k, however, it fills a broad
region in the complex plane than a single wave would do.

Evidently its phase is constantly perturbed by nonlinear cou-
plings. Panel �b� of Fig. 6 shows the time behavior for a
mode with kx=1, ky =0, kz=0, that is a mode with k per-
pendicular to the mean magnetic field �and in the forcing
range�. The trajectory is quite different from the trajectory of
the parallel mode �panel �a��. This behavior, reminiscent of a
random walk, corresponds to the 1 / f noise type fluctuations
observed in the k=1 mode.14

VI. UNDRIVEN AND WAVE DRIVEN SYSTEMS

One question that might arise is whether the results of
the randomly driven system discussed above remain relevant
in the absence of driving or with other kinds of forcing. To
address this we briefly describe MHD Eulerian spectra com-
puted for representative cases of these types.

First, for the decaying case, without driving, one must
consider the effects of fluctuation amplitude that necessarily
decreases when viscosity and/or resistivity are nonzero. To
account for this in the Eulerian spectrum, prior to carrying
out the analysis from the real space time series, we can
renormalize the signal at each time using the �square root of�
energy computed at that time. This produces a more station-
ary signal. Figure 8 here shows the result of such an analysis
of an undriven run that is otherwise identical in its initial
setup to the case shown in Fig. 2. The spectrum is compared
in the figure to the corresponding driven case. It is immedi-
ately apparent that the basic structure of the Eulerian spectra
is similar in the two cases. The wave resonances are broader
in the driven case. Both driven and undriven spectra show a
tendency toward buildup at low frequencies as described
above. The undriven case was run to time t=100, thus lim-
iting the lowest frequency that can be analyzed. Running this
case much longer that this would lead to a less relevant spec-
trum, as the system would approach a linear decay regime.
For very low energy at late times, even with renormalization,
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FIG. 7. Time behavior of individual wave number modes in the complex
plane from the full nonlinear solution of the MHD equations: �a� the behav-
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FIG. 8. Eulerian frequency spectrum for an undriven run �initial value prob-
lem� with B0=8 and initial unit fluctuation energy. To render the time series
stationary, the amplitude is scaled �normalized� by the square root of the
energy at each time prior to computing the Fourier transform and the
frequency spectrum. The resulting spectrum �thin line� is compared with
the corresponding driven case �thick line� with B0=8 discussed above �see
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only a few large scale Fourier modes would contribute to the
frequency spectrum. The basic conclusion in this comparison
is that the driven and undriven cases are qualitatively similar,
with low frequency power very strong in both cases.

Another case of interest might be the driven case in
which the energy that is supplied enters the system not ran-
domly, but in the form of Alfvén waves injected either at a
boundary or as a body force. This case we examined earlier
through reduced MHD simulations, which are weakly three
dimensional but support propagating Alfvén wave
modes.15,24 The context of this type of wave driving at the
boundary has often been coronal heating driven at the base
by Alfvén wave injection. The basic result, not reproduced
here,15 is that the signature in the frequency domain of the
wave driving at the base can survive to the top of a coronal
model. This occurs even though the spatial information be-
comes completely scrambled as a Kolmogorov-like cascade
is established. We have not quantified the relative dominance
of the wave power in the wave driven case compared to the
randomly driven cases described in earlier sections above.
This is because there are a number of parameters in the open
boundary wave driven cases that would require extensive
examination to come to firm conclusions. However we sus-
pect that the parameters of the wave driven case can be tuned
to relatively favor the wave spectra signatures. This expecta-
tion is in part motivated by the possibility of entirely extin-
guishing turbulence for unidirectional wave driving with no
source of counter propagating waves.15,24 However for
strongly turbulent cases of all varieties that we have exam-
ined, the wave frequency power does not become the domi-
nant signal.

VII. DISCUSSION AND CONCLUSIONS

We performed numerical simulations of the incompress-
ible MHD equations with a uniform background magnetic
field in the regime of turbulence to assess the existence of
Alfvén waves in the fluctuations, specifically in the fre-
quency domain. Both the Eulerian frequency spectra and in-
dividual wave number mode frequency spectra show the
presence of peaks at the corresponding frequencies of the
Alfvén modes for full nonlinear simulations in a turbulent
regime. However the peaks are much broader and less in-
tense than the peaks obtained from linearized solutions �i.e.,
Alfvén waves� of the MHD equations. Following individual
modes in time shows a much more complex behavior than
that could be expected for linear solutions. Nonlinear transfer
of energy is also evidenced by the existence of peaks at wave
numbers perpendicular to the direction of the mean magnetic
field, that would be completely absent in the case of a linear
Alfvén mode solution.

Studying the effect of the magnitude of the background
magnetic field, it can be concluded that peaks at the wave
frequencies are much more clearly seen for large values of
the magnetic field �compared to the fluctuating field�, as
should be expected from the linear approximation in MHD.
This can be quantified by the SNR of the Alfven waves
peaks. For values of B0�2 the peaks at the Alfvén frequen-
cies are almost unseen, so less wave type behavior should be

expected for fluctuations at moderate values of the mean
magnetic field. This would be relevant when the fluctuation
and mean are of the same typical magnitude, as they are as
for instance in the solar wind.2

On the other hand, the comparison of power near Alfvén
wave frequency peaks versus the total power in the rest of
the frequency spectrum �what we called the WPR� shows
that the power at waves is a small fraction of the total power.
A very interesting feature is that the WPR appears to have a
local maximum near B0=2, an estimate that might be con-
siderably refined with many more long time simulations. For
values of B0 having larger values, the power in the wavelike
motions with frequency near the solutions of the dispersion
relation actually decreases. The major conclusion of this
study is that the frequency spectra of incompressible �peri-
odic, dissipative� MHD, driven at large scales, are dominated
by nonlinear effects at all tested values of applied magnetic
field strength.

The reason for this behavior, which appears not to have
been recognized previously, is that very strong mean mag-
netic field leads to greater power at very low frequencies,
much less than any wave frequencies. Associated with this
low frequency power buildup, we also recognized the devel-
opment of a broad frequency spectrum, with 1 / f type fluc-
tuations at the low-frequency range �see Ref. 14� and steeper
power laws for the high frequency range �at the dissipative
region�.

Although the peaks in the power at certain frequencies,
both in Eulerian spectra and in certain single Fourier mode
frequency spectra, indicate the existence of wave-type fluc-
tuations, the present results suggest that the idea of describ-
ing MHD turbulence as a superposition of waves remains
questionable. For example, for the limited range of mean
magnetic field values considered here, we found no param-
eter range in which the frequency spectra are, in a leading
order approximation, given by wave modes at or near the
frequencies given by the dispersion relation. The reason for
this appears to be, at weak B0, the dominance of nonlinear
couplings at all scales. On the other hand, for very strong
B0=8 and above, the effects of anisotropy and the associated
buildup of 1 / f noise at low frequencies begins to dominate
the spectra, again swamping the wave effects. Only in an
intermediate range of mean field strengths near B0=2 do we
find the wave power to be as much as 13% of the power in
the frequency domain. Another diagnostic that could in prin-
ciple detect wavelike behavior is the spectrum of cross
helicity.2,4,7 We carried out such analysis for a number of the
runs shown here �now shown� and found no remarkable
cross helicity wave signatures.

These results may lead to implications for theoretical
treatments of strong MHD turbulence, since they describe,
somewhat in detail, the relative importance of waves and
turbulence in a particular �and clearly not fully general� in-
stance of MHD turbulence. We have not, for example, exam-
ined compressible effects, or any nonclassical features of
MHD, such as Hall effect, nor have we examined the influ-
ence of widely varying the Reynolds numbers. It is espe-
cially unclear to us how to bring the present results into

062304-8 P. Dmitruk and W. H. Matthaeus Phys. Plasmas 16, 062304 �2009�

Downloaded 04 Nov 2009 to 157.92.44.71. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp



correspondence with the assumptions underlying perturba-
tion theories known as weak turbulence theories.10,11,25 It
also remains to be seen what the consequences might be for
the behavior of charged particles in so-called particle-wave
interaction models. For example, can the particle-wave inter-
actions usually invoked in models of particle acceleration26

be used when a turbulent regime is established? This requires
further study, including direct investigation of the response
of particles to fully turbulent regimes as compared to the
behavior of particles to collections of wave modes that are
assumed to obey exact dispersion relations.

ACKNOWLEDGMENTS

P.D. is a member of CIC-CONICET and acknowledges
Grant Nos. UBACYT X429/08, ANPCyT PICT 33370/05,
and PICT 00856/07. This research was also supported by
NASA Grant No. NNX08AI47G �heliophysics theory pro-
gram�, NSF Grant Nos. ATM-0539995 �solar-terrestrial pro-
gram� and ATM0752135 �SHINE�.

1For compressible MHD more types of waves appear, the fast and slow
magnetoacoustic waves, including velocity fluctuations parallel to wave
vectors, i.e., vk ·k�0.

2W. H. Matthaeus and M. L. Goldstein, J. Geophys. Res. 87, 6011, DOI:
10.1029/JA087iA08p06011 �1982�.

3A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics �MIT, Cam-
bridge, 1971�, Vol. 1, p. 769.

4J. W. Belcher and L. Davis, Jr., J. Geophys. Res. 76, 3534, DOI: 10.1029/
JA076i016p03534 �1971�.

5B. Bavassano, M. Dobrowolny, G. Fanfoni, F. Mariani, and N. F. Ness,
Sol. Phys. 78, 373 �1982�.

6D. A. Roberts, M. L. Goldstein, L. W. Klein, and W. H. Matthaeus, J.
Geophys. Res. 92, 12023, DOI: 10.1029/JA092iA11p12023 �1987�.

7M. Dobrowolny, A. Mangeney, and P. Veltri, Phys. Rev. Lett. 45, 144
�1980�.

8The condition for interaction of two Alfvénic wave packets, corresponding
to “opposite sense of correlation” of v and b, is sometimes described as
“opposite directions of propagation.” This is actually misleading and not
fully correct. For example, the same condition applies in a two dimen-
sional geometry perpendicular to a uniform mean magnetic field, even
though there is, for this case, no propagation along the mean field. Fur-
thermore, the condition for interaction of the packets also applies when
there is no mean magnetic field and, therefore, no propagation.

9R. Kraichnan, Phys. Fluids 8, 1385 �1965�.
10S. J. Schwartz, Mon. Not. R. Astron. Soc. 178, 399 �1977�.
11S. Galtier, S. V. Nazarenko, A. C. Newell, and A. Pouquet, J. Plasma Phys.

63, 447 �2000�.
12Y. Zhou, W. H. Matthaeus, and P. Dmitruk, Rev. Mod. Phys. 76, 1015

�2004�.
13V. N. Tsytovich, An Introduction to the Theory of Plasma Turbulence, 1st

ed. �Pergamon, New York, 1972�, p. 1.
14P. Dmitruk and W. H. Matthaeus, Phys. Rev. E 76, 036305 �2007�.
15P. Dmitruk, W. H. Matthaeus, and L. Lanzerotti, Geophys. Res. Lett. 31,

L21805, DOI: 10.1029/2004GL021119 �2004�.
16H. Tennekes, J. Fluid Mech. 67, 561 �1975�.
17S. Y. Chen and R. H. Kraichnan, Phys. Fluids A 1, 2019 �1989�.
18A. R. Bulsara and L. Gammaitoni, Phys. Today 49, 39 �1996�.
19J. Shebalin, W. H. Matthaeus, and D. C. Montgomery, J. Plasma Phys. 29,

525 �1983�.
20S. Oughton, E. R. Priest, and W. H. Matthaeus, J. Fluid Mech. 280, 95

�1994�.
21D. C. Robinson and M. G. Rusbridge, Phys. Fluids 14, 2499 �1971�.
22J. W. Bieber, W. Wanner, and W. H. Matthaeus, J. Geophys. Res. 101,

2511, DOI: 10.1029/95JA02588 �1996�.
23A. Alexakis, B. Bigot, H. Politano, and S. Galtier, Phys. Rev. E 76,

056313 �2007�.
24L. del Zanna and M. Velli, Adv. Space Res. 30, 471 �2002�.
25B. D. G. Chandran, Phys. Rev. Lett. 95, 265004 �2005�.
26J. A. Miller, P. J. Cargill, A. G. Emslie, D. G. Holman, B. R. Dennis, T. N.

LaRosa, R. M. Winglee, S. G. Benka, and S. Tsuneta, J. Geophys. Res.
102, 14631, DOI: 10.1029/97JA00976 �1997�.

062304-9 Waves and turbulence… Phys. Plasmas 16, 062304 �2009�

Downloaded 04 Nov 2009 to 157.92.44.71. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp

http://dx.doi.org/10.1029/JA087iA08p06011
http://dx.doi.org/10.1029/JA076i016p03534
http://dx.doi.org/10.1007/BF00151617
http://dx.doi.org/10.1029/JA092iA11p12023
http://dx.doi.org/10.1029/JA092iA11p12023
http://dx.doi.org/10.1103/PhysRevLett.45.144
http://dx.doi.org/10.1063/1.1761412
http://dx.doi.org/10.1017/S0022377899008284
http://dx.doi.org/10.1103/RevModPhys.76.1015
http://dx.doi.org/10.1103/PhysRevE.76.036305
http://dx.doi.org/10.1029/2004GL021119
http://dx.doi.org/10.1017/S0022112075000468
http://dx.doi.org/10.1063/1.857475
http://dx.doi.org/10.1017/S0022377800000933
http://dx.doi.org/10.1017/S0022112094002867
http://dx.doi.org/10.1063/1.1693359
http://dx.doi.org/10.1029/95JA02588
http://dx.doi.org/10.1103/PhysRevE.76.056313
http://dx.doi.org/10.1016/S0273-1177(02)00320-4
http://dx.doi.org/10.1103/PhysRevLett.95.265004
http://dx.doi.org/10.1029/97JA00976

