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We test the ability of semiclassical theory to describe quantitatively the revival of quantum wave packets—a
long time phenomena—in the one dimensional quartic oscillator �a Kerr type Hamiltonian�. Two semiclassical
theories are considered: time-dependent WKB and Van Vleck propagation. We show that both approaches
describe with impressive accuracy the autocorrelation function and wave function up to times longer than the
revival time. Moreover, in the Van Vleck approach, we can show analytically that the range of agreement
extends to arbitrary long times.
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I. INTRODUCTION

From the early times of quantum theory there has been a
lot of interest in the possibility of describing quantum phe-
nomena using approximate theories that take advantage of
classical information �1,2�. Not only because these semiclas-
sical approaches provide in general a deeper insight into the
system’s behavior, due to the fact that classical quantities are
more intuitive, but also in some cases the semiclassical com-
putation of quantum quantities is made easier.

The semiclassical propagation of wave functions started
with the seminal work of Van Vleck �3�, where a semiclas-
sical propagator was first introduced. Gutzwiller �4� showed
that this propagator is the stationary-phase approximation of
the Feymnan path integral, which results in a sum over clas-
sical paths. At the same time Gutzwiller provided some cor-
rections to Van Vleck’s formula which are essential for long
times.

The propagation of wave functions using the Van Vleck-
Gutzwiller propagator has fundamental problems that mani-
fest themselves more sharply in systems with a classically
chaotic dynamics. The facts that, for long times, the integra-
tions to be performed are usually highly oscillatory, and
therefore not amenable to numerical computation �2�, and
that the number of orbits becomes unmanageably large, has
raised doubts about the long-time semiclassical accuracy.
These problems were controlled in Ref. �5�, where a semi-
classical method was applied to compute autocorrelation
functions of Gaussian wave packets. This approach was
shown to work both for chaotic �5� and regular systems �6,7�
in long-time regimes but it has not been applied to calculate
wave functions.

More recently, in Ref. �8� it was shown that Gaussian
wave packets can also be propagated by using the standard

time-dependent WKB theory �TDWKB� �9�, provided it is
complemented with short-time methods. In principle this
scheme is suitable to compute wave functions in the long-
time regime. Although initially conceived for chaotic sys-
tems, the scheme also works for nonlinear integrable dynam-
ics �see Sec. IV below�.

Among the semiclassical time-domain methods one
should also highlight the “initial value representation” �IVR�
of the propagator, especially suited for numerical implemen-
tations �see Ref. �10� for a review�.

In spite of the great advances in semiclassical theories in
the last decades, there are still important open questions con-
cerning the range of validity of semiclassical approximations
and their accuracy in the description of subtle interference
quantum effects such as, for example, quantum revivals.

The phenomenon of quantum revivals has been vastly
studied in the literature �see Ref. �11� for a review� and ob-
served in many experiments, from atomic and molecular to
optical systems �12�. The Wigner function of an initially
well-localized wave packet spreads for short times in a clas-
sical way, then it enters a delocalized quantum regime, and
eventually it recombines itself to recover its original form.
Such a revival occurs at a time, Trev, which is long as com-
pared with classical time scales such as oscillation periods.
Perhaps more interestingly, in a wide class of circumstances,
at times equal to a fraction of the revival time �pTrev /q� the
wave packet relocalizes into a number of smaller copies of
the initial packet, giving rise to “fractional revivals.” When
the initial wave packet can be associated to an essentially
classical state, the “fractional revival” occurrence corre-
sponds to a dynamical generation of Schrödinger’s catlike
states �a quantum superposition of macroscopically distin-
guishable states�.

One of the most interesting systems exhibiting both full
and fractional revivals is the quartic oscillator, whose Hamil-
tonian is obtained by the squaring the harmonic oscillator
Hamiltonian. In essence this is the Hamiltonian of the Kerr
model, describing a single mode of the quantized radiation
field in a nonlinear medium, and extensively studied in quan-
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tum optics. The formation of revivals and fractional revivals
in this system was analyzed, for example, in �13�. Recently
the quartic oscillator has experienced a renewed interest for
its connections with quantum information processing in con-
tinuous variable �CV� systems. Indeed, Hamiltonians of the
Kerr type are the simplest nonlinear ones acting on a single
mode �i.e., one-mode quantum logic gate� needed to define
universal quantum computation within the subclass of uni-
tary transformations generated by Hamiltonians that are
polynomial functions of the CV operators �14�.

In addition to the already mentioned studies of revivals in
the Coulomb problem �6,7�, we must also mention the papers
by Wang and Heller �15� and by Novaes �16�. The first au-
thors considered the revival of a wave packet in the Morse
potential. Using a convenient numerical implementation of
the Van Vleck-Gutzwiller propagator they succeeded in re-
producing satisfactorily the first revival of the wave function.
Novaes studied the semiclassical propagation of a wave
packet in the quartic oscillator, starting from the semiclassi-
cal coherent-state representation of the propagator. Even
though he also obtained an excellent agreement, the increas-
ing difficulty in determining the required complex trajecto-
ries as time grows limited the application of the method to
short times �a few classical periods� �16�.

The present paper is devoted to show that “elementary”
semiclassical theories can be successfully applied to describe
the revival phenomena in the quartic oscillator. Our study
focus both on the autocorrelation function and on the wave
function. The two elementary semiclassical theories exam-
ined are two: Van Vleck propagation �Sec. III� and time-
dependent WKB �Sec. IV�. In the first case, calculations are
analytical; in the second, numerical. In both cases we find an
excellent agreement between semiclassical theory and exact
propagation even at very long times �e.g., multiples of the
revival time�. In the particular case of the Van Vleck auto-
correlation function we show analytically that it agrees with
the exact one up to arbitrary long times, the error being semi-
classically small and independent of time. As a byproduct of
our study, we show that TDWKB also works efficiently in
integrable nonlinear systems �8�.

Section II contains a description of the main aspects of the
model. We present our main conclusions in Sec. V.

II. THE MODEL

Consider a one degree of freedom harmonic oscillator:

H =
p̂2

2m
+

1

2
m�2q̂2. �1�

Throughout the paper we set m=1 and �=1 �if desired, these
constants can be recovered at any moment by dimensional
considerations�. We shall be interested in the dynamics of
coherent states of this harmonic oscillator, i.e., eigenstates of
the annihilation operator �17�

â =
1

�2�
�q̂ + ip̂� , �2�

with �â , â†�=1 �â† the creation operator�. Our model to study
the revivals and fractional revivals is the quartic Hamiltonian
given by

Ĥ = ��2�â†â +
1

2
�2

� ��2�n̂ +
1

2
�2

, �3�

where n̂= â†â is the number operator. This nonlinear Hamil-
tonian is of the Kerr type �18�. Recall that the effective
Hamiltonian that describes the dynamics of a single light
mode inside a high finesse optical cavity containing a Kerr
medium is

Ĥ = �1n̂2 − �1�n̂ �4�

��1 and �1� are real frequencies�, and we recover the optical
context in our formalism considering �=1.

The quantum evolution of a coherent state, 	�0
, with
Hamiltonian �3� yields

	�
 = e−iĤt/�	�0
 = e−	�0	2/2�
n=0

� 	�0	2n

�n!
e−i���n + 1/2�2t	n
 , �5�

where 	n
 is a number state, i.e., n̂	n
=n	n
. At multiples of
the revival time

T2 =
�

��
, �6�

the dynamics reconstructs the initial coherent state. For times
equal to �p /q�T2 �p /q an irreducible fraction� the evolved
state consists of a superposition of q coherent states lying on
a circle of radius 	�0	 �fractional revivals� �13�. In Fig. 1 we
show the Wigner function �19� of the evolved state �5� at
several selected times. Schrödinger catlike states can be
clearly seen at the fractional revival times.

We shall focus on the autocorrelation function,

C1�t� = ��0	e−iĤt/�	�0
 = e−	�0	2�
n=0

� 	�0	2n

n!
e−i���n + 1/2�2t, �7�

in the semiclassical regime, defined by the condition 	�0	2
�1, which is the appropriate semiclassical limit in the case
of an optical context. It is important to note that this function
shows the periodicity property

C1�t + T2� = e−i�/4C1�t� , �8�

the period being the revival time �6�.
Note that the Weyl-Wigner representation �19,20� of

Hamiltonian �3� is ���q2+ p2� /2�2−�2 /4. Thus, the classical
Hamiltonian corresponds to

H�q,p� = �I2, �9�

with the action variable

I�q,p� =
1

2�
 pdq =

1

2
�q2 + p2� , �10�

a constant of motion.

III. VAN VLECK APPROACH

The semiclassical calculations in this section are based on
the Van Vleck-Gutzwiller approximation �3,4� to the propa-
gator:
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K�q�,q�,t� �
e−i�/4

�2��
�

k

Ake
iSk�q�,q�,t�/�−i	k�/2. �11�

The sum runs over classical trajectories connecting q� to q�
in time t. Each trajectory contributes with an amplitude Ak
and a phase. The phase is made up from the Lagrangian
action Sk,

Sk�q�,q�,t� = �
0

t

�pq̇ − H�dt , �12�

and the Maslov index 	k, which �in the present case� coin-
cides with the number of turning points �where q̇=0� en-
countered by the trajectory �9�. The amplitude is given by

Ak =
1

�	�q�/�p�	k
, �13�

with

q� = q��q�,p�,t� . �14�

Equation �11� can be derived, for instance, by using time-
dependent WKB theory to propagate a position eigenstate
�9�.

A. Autocorrelation function

Consider the autocorrelation function

C2�t� = �
−�

� �
−�

�

dq�dq��0
��q���0�q��K�q�,q�,t� , �15�

where �0�q� is the wave function of the initial state. By
substituting the exact propagator K�q� ,q� , t� by Van Vleck’s
we obtain a semiclassical correlation function.

The simplicity of the system we are considering permits
the analytical determination of the required trajectories; the

properties of the trajectories can thus be calculated to the
desired precision. The classical equations of motion are ob-
tained from Hamiltonian �9�,

q�t� = �2I sin�
 + ��I�t� , �16�

p�t� = �2I cos�
 + ��I�t� , �17�

with

��I� =
�H

�I
= 2�I . �18�

Both the action I—a constant of motion—and 
 are deter-
mined by the initial conditions. The trajectories contributing
to the Van Vleck propagator are the solutions of the follow-
ing boundary problem:

q� = �2I sin�
 + ��I�t� , �19�

q� = �2I sin�
� , �20�

for a given time t.
Among all trajectories that satisfy the equations above,

only a small subset will be relevant to the autocorrelation
function. The reason is that the initial wave packet is local-
ized on a phase-space region of radius O����, meaning that
the important trajectories are only those having end points
�q� , p�� and �q� , p�� in a region of radius O���� around the
center of the wave packet.

We shall consider, for convenience �but without loss of
generality�, an initial wave packet corresponding to a coher-
ent state 	�0
 located on the p axis, i.e., �0= ip0 /�2�, whose
wave function is

�0�q� = ����−1/4e−q2/2�eip0q/�. �21�

In this case, we can assume that both q� and q� are small
�O����� and resort to Taylor expansions around �q0=0 , p0�.

FIG. 1. �Color online� Snapshots of the evolution of an initially Gaussian wave packet �Wigner functions�. From left to right, times are
t=T2 /4, T2 /3, T2 /2.385 67, with T2 the revival time. The initial coherent state is centered at �q0 , p0�= �0,14�.
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We can get a good idea of the structure of the set of trajec-
tories that we need by analyzing the particular case q�=q�
=0. From Eqs. �19� and �20� we obtain a set of periodic
trajectories, labeled by the winding number k, the corre-
sponding actions being

Ik =
pk

2

2
=

k�

�t
. �22�

The relevant values of k are those satisfying

Ik � I0 �
p0

2

2
, �23�

i.e.,

k � k0 �
p0

2�t

2�
. �24�

For simplicity we ignore k=0 trajectories, which would re-
quire a special treatment. This means that our calculation is
not valid for times of the order or smaller than T1, where T1
is the period of the classical motion of the centroid of the
wave packet:

T1 =
2�

�0
�

2�

2�I0
=

�

�I0
. �25�

�This is not a problem as we are interested in long times.�
The number of trajectories that contribute at t�kT1 is of the
order of �k �see Sec. III C�. The properties of these periodic
trajectories are easily calculated:

	k
�0� = 2k , �26�

Sk
�0� = 2k�Ik − H�Ik�t =

�2k2

�t
, �27�

Ak
�0� =

1
�4Ik�t

. �28�

In the general case, when q� and/or q� are not strictly
zero, even if the corresponding trajectories are not periodic
any more, they can be put into one-to-one correspondence
with the periodic ones. Accordingly, the actions and ampli-
tudes can be calculated as Taylor expansions in q� and q�
around the periodic solutions. �The Maslov indices do not
change, as they just count twice the number of turns.�

We shall approximate the actions Sk to second order in
�q� ,q�� and the amplitudes Ak will be kept at zeroth order
�5,7�. So, we need to calculate first and second derivatives of
Sk with respect to q� and q� and evaluate them at �q�=0,q�
=0, t�. The results are

�Sk

�q�
= −

�Sk

�q�
= pk, �29�

�Sk
2

�q�2 =
�Sk

2

�q�2 = −
�Sk

2

�q� � q�
=

1

4Ik�t
. �30�

Thus, we arrive at

Sk �
�2k2

�t
+�2�k

�t
�q� − q�� +

�q� − q��2

8k�
, �31�

Ak � Ak
�0� =

1
�4Ik�t

. �32�

The final steps in the calculation of the semiclassical corre-
lation function are: �i� substitute the expressions above into
Van Vleck propagator �11�, �ii� insert the resulting propaga-
tor into the definition of correlation function �15�, �iii� cal-
culate the Gaussian integrals. In this way we obtain:

C2�t� �
e−i�/4

�2�
�
k=1

�

ei�2k2/��te−ik�e−�pk − p0�2/ak�

�kak

. �33�

with

ak = 1 −
i

2k�
, �34�

and pk=�2k� /�t.
Equation �33� gives the semiclassical correlation function

obtained from Van Vleck’s propagator and perturbation
analysis around periodic orbits; it is a well behaved sum that
can, in principle, be calculated for any t and compared with
the exact result. The domain of validity is t�T1. Now we
proceed to numerical comparisons, postponing analytical
considerations to Sec. III C.

In Fig. 2, we display semiclassical and exact correlation
functions in two time windows, one for short times �panel
�a��, the other for times around the second revival �panel �b��.
Except for the initial correlation peak �t�0�, where the
semiclassical approximation was expected to fail, the agree-

(b)

t/T

C
(t

)
|

|
C

(t
)

|
|

1t/T

C
(t

)
|

|
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0.
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0.1

1t/T
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1

FIG. 2. �Color online� Absolute value of the autocorrelation
function vs time, in units of the classical period T1. Line: exact;
dots: semiclassical approximation. We set m ,� ,� ,�=1, p0=14. �a�
Short times. Inset: blowup of the region where the first interference
effects appear. �b� Times around the second revival �t�2T2�.
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ment is excellent. Remarkably, the peak that is lost at t�0, it
perfectly resurges at t�2T2 �and at other revival times–
graphics not shown�.

B. Van Vleck wave function

There is a straightforward test for the wave functions gen-
erated by the Van Vleck approach: If, instead of doing both
the integrals defining the correlation function in Eq. �15�, we
calculate only the first one, over q�, we obtain a Van Vleck
wave function ��q��. First of all, this semiclassical wave
function can be tested only in a small interval around q�=0
�because of the approximations we did in calculating the Van
Vleck propagator�. Moreover, this calculation omits the con-
tributions arising from trajectories that arrive at q� in time t
with negative momentum. So, we expect the approximation
to work well only at times where the �Wigner function of
the� evolved state does not have negative momentum com-
ponents around q�=0. Such a situation arises, for instance, at
revival times, when the initial wave packets are exactly re-
constructed.

Another cases that can be described in terms of periodic
orbits are fractional revivals such as that at t=T2 /3 �see
middle panel of Fig. 1�, when the wave packet is a superpo-
sition of three coherent states with phases arg���
=� /2,2� /3,4� /3. In this case one has:

	��t�
 = e−i�/12c0	�0
 + . . . , �35�

where

c0 =
2 + e−2�i/3

3
, �36�

and the ellipsis stand for the other two coherent states.
Figures 3�a� and 3�b� shows that indeed the Van Vleck

scheme which only uses periodic orbits reproduces the exact
wave functions almost perfectly at times t=T2 and t=T2 /3.

In order to calculate the wave function at an arbitrary time
�but not too short�, we must also take into account the con-
tributions of the family of trajectories that, starting at q�,
arrive at q� in time t with negative momentum. As done
before, we Taylor-expand actions and amplitudes around the
main family �q�=0,q�=0�. These are “half-periodic” trajec-
tories, i.e., their frequencies satisfy �kt=2��k−1 /2�, for k
�1. We skip the details and just show the final results:

Sk �
�2k2

�t
−�2�k

�t
�q� + q�� +

�q� + q��2

8k�
, �37�

Ak �
1

�4Ik�t
, �38�

	k = 2k − 1. �39�

Adding the contributions of the family above to that of the
periodic trajectories we obtain a semiclassical wave function
valid for arbitrary times. Figure 3 �bottom panel� compares
semiclassical and exact wave functions at a time when the
state is completely delocalized in phase space �rightmost

panel in Fig. 1�. Again, the semiclassical approximation per-
forms remarkably well for small enough values of q. Not
unexpectedly, for 	q	�3 some small deviations start to show
up, and keep growing with increasing 	q	.

C. Analytical comparisons

The striking accuracy of the semiclassical approximations
verified in the previous sections, together with the relative
simplicity of the expressions involved, suggests that it should
be possible to give an analytical explanation of the approxi-
mate quantum-semiclassical equivalence. In the following
we show analytically that the error committed in the semi-
classical autocorrelation function is really very small and,
what is especially important, independent of time. �A similar
analysis could in principle be carried out for wave functions
but will not be attempted here.�

When comparing semiclassical �33� and exact �7� corre-
lation functions we immediately see a fundamental differ-
ence: time appears in a different way in both expressions.
While the quantum expression is a Fourier series, i.e., a sum
of plane waves �in t�, the semiclassical correlation is a sum
of wave packets, or wave trains. The tool that switches be-
tween wave trains and plane waves is Poisson transformation

q

q
R

e[
(

)]
ψ

q
R

e[
(

)]
ψ

q
R

e[
(

)]

0.6

0.3

0.3

0.6

0.

0.6

0.3

0.3

0.6

0.

4 2 0 42

0.3

0.3

0.

(a)

(b)

(c)

ψ

FIG. 3. �Color online� Real part of the wave function ��q� vs q
at some selected times. Line: exact; dots: Van Vleck. Similar agree-
ment is observed for the imaginary part. We used m=�=�=�=1,
p0=14. �a� At the first revival time. �b� At the fractional revival time
t=T2 /3. �c� At t=T2 /2.385 67, when the wave function is com-
pletely delocalized.
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�19�. But before applying Poisson transformation to, say, the
quantum correlation function let us introduce a small simpli-
fication.

1. Quantum correlation function

For large 	�0	2 one can approximate the Poisson distribu-
tion by a Gaussian �19�:

e−	�0	2 	�0	2n

n!
�

1
�2�

e−�n −  + 1/2�2/2, �40�

where = 	�0	2. With this approximation the exact autocorre-
lation can be written in terms of the Jacobi theta function
�21�

�3�z	�� = �
n=−�

�

e�in2�+2inz. �41�

In fact, after the substitution Poisson-to-Gaussian in Eq. �7�,
we extend the lower limit of the summation to −�, obtaining

C1�t� �
1

�2�
e−� − 1/2�2/2e−i��t/4�3�z1	�1� , �42�

where

z1 =
1

2i
�1 −

1

2
− i��t� , �43�

�1 =
1

�i
�−

1

2
− i��t� . �44�

Expressing C1�t� in terms of �3 brings in several benefits.
First, formulas become more compact and can be calculated
quickly and efficiently using standard softwares, e.g., Math-
ematica �22�, where �3 is a built-in function. Second, Pois-
son transforming the theta function is equivalent to using the
functional equation

�3�z	�� = �− i��−1/2ez2/�i��3�� z

�
� −

1

�
� , �45�

where �−i��−1/2 is to be interpreted by the convention
	arg�−i��	�� /2 �21�. �This equation has already been used
by Wang and Heller in their semiclassical study of the square
well �15�.�

Now we use the functional equation but restricting our-
selves to times longer than the period T1, i.e., ��t�. So,

z1

�1
� z1� =

�

2
+

i�

2��t
+ ¯ , �46�

−
1

�1
� �1� =

�

��t
+

i�

2�2�2t2 + ¯ , �47�

z1
2

�i�1
=

i��t

4
−

1

2
+

1

8
+ ¯ , �48�

�− i�1�−1/2 = e−i�/4� �

��t
+ ¯ . �49�

In this way we arrive at an approximate expression for the
quantum correlation function which has a semiclassical ap-
pearance:

C1�t� �
e−/2

�2��t
e−i�/4�3�z1�	�1�� . �50�

Before comparing this expression with the semiclassical one
we shall do some manipulations of the semiclassical formula.

2. Van Vleck correlation function

The semiclassical correlation function is written as a sum
over periodic orbits. Each orbit is weighted by the exponen-
tial function:

W�k� �
e−�pk − p0�2/ak�

�kak

. �51�

Recall that this function depends on time through pk Eq.
�22�. For long times �large k� we can set ak�1. Thus W�k�
becomes a real function, which can be well approximated by
a Gaussian.

We show in Fig. 4 some plots of the exact W�k� �Eq. �51��
for typical values of the parameters together with the sim-
plest Gaussian approximation obtained by setting k=k0,
ak=1 in the denominator, and linear expanding pk around
k=k0, i.e.,

W�k� �
e−��k − k0�2/2k0��t

�k0

. �52�

It is verified that the Gaussian approximation is already very
good for the small values of k considered.

The remarkable fact is that if we substitute the approxi-
mate weight function �52� into the semiclassical correlation
function �33� we obtain the approximate quantum correlation
function �50�. This concludes the analytical comparison of
quantum and semiclassical correlation functions. Even if we
have not exhibited an explicit strict bound for the error of the
semiclassical approximation, we provided strong evidence
that the difference between the exact and semiclassical cor-

2 4 6 8 10
0.

0.2

0.4

0.6

k

W
(k

)
|

|

FIG. 4. �Color online� Orbit weight function for times t /T1

=3,5 ,7 �from left to right, respectively�. Lines: Gaussian approxi-
mation, with k a continuous variable. Dots: absolute value of exact
weight. Parameters are m ,� ,� ,�=1, p0=14.
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relation functions is bounded for arbitrarily long times, the
bound decreasing with increasing 	�0	. �Note that this is
much stronger than the general statement that the semiclas-
sical approximation is a leading term of the asymptotic ex-
pansion of the exact quantum dynamics, which presupposes
the limit of � going to zero for a fixed time.�

IV. TDWKB APPROACH

It was recently shown that when the underlying classical
dynamics of a system is chaotic the evolution of a Gaussian
wave packet can be described by the standard TDWKB
method �8�. The reason is that, in semiclassical regimes, after
some short time the Gaussian wave packet stretches over a
classical length ��0. Thus, it becomes a primitive WKB
state,

�0�q� = A0�q�exp�iS0�q�/�� , �53�

supported by the Lagrangian manifold defined by

p = dS0/dq , �54�

and where the amplitude A0�q� and the phase S0�q� are
smooth function on the quantum scale. From then on the
wave function evolves according to the TDWKB recipe,

�t�q� � �


At
���q�exp�iSt

���q�/� − i	�/2� , �55�

where  labels the different branches of the Lagrangian
manifold obtained by evolving classically the initial mani-
fold Eq. �54�.

In chaotic systems the applicability of TDWKB to wave
packets is guaranteed by the exponentially fast stretching of
phase space �8�. We show here that the same scheme can be
applied in the case of integrable nonlinear systems, where
the stretching is linear in time.

For the present analysis we found more convenient to
make a slight modification of the Hamiltonian of previous
sections,

Ĥ = ��2�n̂ − n0�2. �56�

The corresponding classical Hamiltonian is

H�q,p� = ��I − I0�2. �57�

This is equivalent to working with the Hamiltonian Eq. �3�
but in the interaction representation, with a free evolution

given by the harmonic oscillator Ĥ0=���n̂+C �with ��
=2���n0+1 /2� and C an appropriate constant��. Thus, we
eliminate the rotation dynamics of the wave packet, while
preserving the nonlinear squeezing. This choice simplifies
the determination of the initial WKB manifold Eq. �54�,
which now remains almost stationary; otherwise it would
rotate, forcing us to change representation from time to time
to avoid caustics. Switching to the interaction representation
does not affect the semiclassical accuracy of the calculation,

because the transformation generated by Ĥ0 is semiclassi-
cally exact �23�.

The centroid �q0 , p0� of the initial wave packet will be
chosen in such a way that I0=��n0+1 /2�= �q0+ p0� /2. The
numerical implementation of the TDWKB recipe �8� requires
the determination of the initial manifold through Eq. �54�.
The initial action S0�q� is extracted from the phase of the
exact wave function propagated up to some short time ti. The
only condition this time must satisfy is that the exact wave
function must be described to good accuracy by a primitive
WKB state, i.e., Eq. �53� with A�q� and S�q� smooth on the
quantum scale.

Our choice of the initial manifold is showed in Fig. 5�a�.
Using the classical equations of motion we evolve this initial
manifold up to the desired final time �see Fig. 5�b��. In order
to calculate the WKB wave function �t�q� we have to deter-
mine the classical trajectories corresponding to each term in
the sum in Eq. �55�. Those are the trajectories that at times ti

have initial conditions �qj
�i� , pj

�i�� on the initial manifold, and
at time t reach the final manifold at the points �qj

�f� , pj
�f��,

where qj
�f�=q for all values of j. For example, in Fig. 5 we

show with crosses in panel �a� the initial conditions of the
trajectories that end at points �qj

�f�=q , pj
�f�� with positive mo-

mentum �panel �b��, and with circles the trajectories that end
with a negative momentum. The classical action for these
trajectories can be calculated analytically for the Hamil-
tonian in Eq. �57�,

FIG. 5. �a� �Color online� Wigner function of the evolved initial
coherent state, centered at the point �q0 , p0�= �0,14�, for a time t
=T2 /320 �T2 the revival time�. The superimposed black line is the
initial Lagrangian manifold. �b� Wigner function of the same initial
coherent state at t=T2 /16. The spiraling black line is the classical
evolved manifold that supports the WKB state. Parameters are
m ,� ,�=1. See text for explanation of the meaning of crosses and
circles.
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St
�j� = S0 + �

ti

t

�pq̇ − H�dt

= S0 +
1

2
�pj

�f�qj
�f� − pj

�i�qj
�i�� + ���Ij�Ij − Hj��t , �58�

where ��Ij��2��Ij − I0�, Hj ���Ij − I0�2 and �t� t− ti. The
Maslov index 	 in Eq. �55� equals + /− the number of turn-
ing points along a clockwise/counterclockwise trajectory �9�.
The amplitudes At

�j� in Eq. �55� are calculated from the con-
tinuity equation

At
�j��qj

�f� = q� = A0�qj
�i��� dqi

dqf
�1/2

, �59�

where A0�qj
�i�� is the amplitude of the primitive WKB wave

function supported by the initial manifold. The factor
	dqi /dqf	 is determined by evolving numerically a nearby
trajectory.

Note that the relatively hard part of this numerical method
is the calculation of the points �qj

�i� , pj
�i�� and �qj

�f�=q , pj
�f�� in

the initial and the final Lagrangian manifolds, respectively.
This can be done in a systematic way defining a parameter s
running along the initial manifold and calculating the points
�qj

�f� , pj
�f�� as intersections of the trajectories, with parameter

s and fixed elapsed time t, with the phase-space vertical line
q=q�f�, in a way resembling a Poincaré section map.

In Fig. 6 we compare the exact wave function of an ini-
tially coherent state with the TDWKB wave function for
t=4T2 in panel �a� and for a generic time in panel �b� �when
the Wigner function is nonlocalized, similar to the wave
function in the rightmost panel of Fig. 1�. In panel �a� we see
that the agreement is very good for all values of q, with small
errors for 	q	�1.8. For multiples of the revival time,
t=mT2, the number of classical trajectories needed to build
up the TDWKB wave function grows like �90 m. Neverthe-
less, the numerical errors seem to be almost constant. Like in
the Van Vleck approach of Sec. III, at multiples of the revival
time only classical trajectories with positive final momenta
contribute.

In Fig. 6�b� we show the TDWKB approximation in the
generic case, where trajectories with final negative momenta
also contribute. In this example, the exact wave function
spreads also over the regions −17�q�−11 and 11�q
�17, where the final manifold crosses several times the axis
p=0. These points are caustics of the TDWKB approxima-
tion, where the amplitude in Eq. �59� diverges. Thus, each
time the contributing trajectories has a null final momentum,
the TDWKB approximation breaks down. This is clearly
seen in Fig. 6�b�. The proper treatment of the WKB function
in this region requires more sophisticated approximations.
For our present purposes, it is enough to verify that for 	q	
�10, where there are no caustic points, the agreement is
excellent.

V. CONCLUDING REMARKS

Quantum revival is a subtle phenomenon where interfer-
ence plays a crucial role. We studied revivals in the quartic
oscillator from a semiclassical perspective. Among various

semiclassical theories existing in the literature we chose two
of most basic and popular: Van Vleck propagation and time-
dependent WKB. In both cases the results were impressive:
quantum dynamics—in particular, revivals—can be semi-
classically described with great accuracy.

In the TDWKB approach, we computed the wave function
numerically for times beyond the first revivals. Excluding an
initial stage �where standard WKB fails�, the classical skel-
eton of the wave function appeared to be a spiraling mani-
fold. Thus, we have exhibited another successful test of the
TDWKB scheme for the propagation of wave packets
�8�—in this occasion for the long-time dynamics of an inte-
grable system. However, at present, we cannot assess analyti-
cally how far the agreement will extend. In order to do this
one should integrate the present scheme with a theory ca-
pable of describing the short time dynamics. The natural tool
is complex TDWKB which uses manifolds in the complexi-
fied phase space �24�. Then one should prove that, provided
the dynamics is stretching, the complex manifold describing
a coherent state eventually decays into a real manifold �such
as that shown in Fig. 5�a��.

(b)

(a)

FIG. 6. �Color online� Real part of the evolved wave function of
an initially coherent state centered at the point �q0 , p0�= �0,14�
evolved with the Hamiltonian of Eq. �56�. The full line is the exact
wave function and the circles correspond to the TDWKB approxi-
mation. �a� For t=4T2 �T2 is the revival time�; �b� For T2 /2.385 67.
Similar agreement is observed for q�0 and for the imaginary parts.
Parameters are m ,� ,�=1.
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Like in some previous studies �6,7�, we obtained an ex-
pression for the autocorrelation function as a sum over clas-
sical trajectories, all the ingredients being given in closed
form. Furthermore, we showed analytically that the Van
Vleck correlation function and the exact one are essentially
equal. The key step was to use the Poisson transformation,
which reshapes a semiclassical correlation function into a
quantum-looking one, or vice versa. Similar analyses may be
possible both for the Coulomb potential �6,7� and the Morse
oscillator �15� �the latter is simpler, in principle, because its
spectrum is quadratic in the quantum number �25��.

The system under study, the quartic oscillator, is special,
even among integrable systems, in that its Hamiltonian is a
�quadratic� function of the action variable. Thus, for in-
stance, stationary WKB theory gives the exact energy levels
for this system. We have provided analytical and numerical
evidence showing that the semiclassical time-dependent
schemes considered in this paper are also “exact.” It remains
to ascertain if these considerations extend to more general
H�I� Hamiltonians, e.g., of the polinomial type.

Concerning the work by Novaes �16�, who studied the
quartic oscillator by using the semiclassical coherent-state

representation of the propagator, it is likely, in the light of
our results, that it should be possible to identify the relevant
subset of complex trajectories which contribute to the auto-
correlation function at long times.

Even if the methods presented here can in principle be
generalized to systems with several degrees of freedom, it is
clear that search of specific trajectories �“root searching”�
will be extremely expensive at higher dimensions. One way
to avoid this problem is to map the present methods into IVR
schemes, thus substituting root searching by integration over
initial conditions �10�. The efficient implementation of this
strategy is currently under investigation.
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