THE QUANTUM DIVIDED POWER ALGEBRA OF A FINITE-DIMENSIONAL NICHOLS ALGEBRA OF DIAGONAL TYPE

NICOLÁS ANDRUSKIEWITSCH, IVÁN ANGIONO, FIORELA ROSSI BERTONE

Abstract

Let $\mathcal{B}_{\mathfrak{q}}$ be a finite-dimensional Nichols algebra of diagonal type corresponding to a matrix \mathfrak{q}. We consider the graded dual $\mathcal{L}_{\mathfrak{q}}$ of the distinguished pre-Nichols algebra $\widetilde{\mathcal{B}}_{\mathfrak{q}}$ from [A3] and the quantum divided power algebra $\mathcal{U}_{\mathfrak{q}}$, a suitable Drinfeld double of $\mathcal{L}_{\mathfrak{q}} \# \mathbf{k} \mathbb{Z}^{\theta}$. We provide basis and presentations by generators and relations of $\mathcal{L}_{\mathfrak{q}}$ and \mathcal{U}_{q}, and prove that they are noetherian and have finite Gelfand-Kirillov dimension.

1. Introduction

We fix an algebraically closed field \mathbf{k} of characteristic zero. Let \mathfrak{g} be a finite-dimensional simple Lie algebra and $q \in \mathbf{k}$ a root of 1 (with some restrictions depending on \mathfrak{g}). In the theory of quantum groups, there are several Hopf algebras attached to \mathfrak{g} and q :

- The Frobenius-Lusztig kernel (or small quantum group) $\mathfrak{u}_{q}(\mathfrak{g})$.
- The q-divided power algebra $\mathcal{U}_{q}(\mathfrak{g})$, see [L1, L2].
- The quantized enveloping algebra $U_{q}(\mathfrak{g})$, see [DK, DKP, DP].

These Hopf algebras have the following features:
\diamond They admit triangular decompositions, e. g. $\mathfrak{u}_{q}(\mathfrak{g}) \simeq \mathfrak{u}_{q}^{+}(\mathfrak{g}) \otimes \mathfrak{u}_{q}^{0}(\mathfrak{g}) \otimes \mathfrak{u}_{q}^{-}(\mathfrak{g})$.
\diamond The 0-part of this triangular decomposition is a Hopf subalgebra, actually a group algebra.
\diamond The positive and negative parts are not Hopf subalgebras, but rather Hopf algebras in braided tensor categories, braided Hopf algebras for short.
\diamond There are morphisms $\mathfrak{u}_{q}^{+}(\mathfrak{g}) \hookrightarrow \mathcal{U}_{q}^{+}(\mathfrak{g}), U_{q}^{+}(\mathfrak{g}) \rightarrow \mathfrak{u}_{q}^{+}(\mathfrak{g})$ of braided Hopf algebras, and ditto for the full Hopf algebras.
\diamond The full Hopf algebras can be reconstructed from the positive part by standard procedures (bosonization, the Drinfeld double).
\diamond The positive part $\mathfrak{u}_{q}^{+}(\mathfrak{g})$ has very special properties- it is a Nichols algebra.
Indeed, $\mathfrak{u}_{q}^{+}(\mathfrak{g})$ is completely determined by the matrix $\mathfrak{q}=\left(q^{d_{i} a_{i j}}\right)$, where $\left(a_{i j}\right)$ is the Cartan matrix of \mathfrak{g} and $d_{i} \in\{1,2,3\}$ make $\left(d_{i} a_{i j}\right)$ symmetric. In other words, $\mathfrak{u}_{q}^{+}(\mathfrak{g})$ is the Nichols algebra of diagonal type associated to \mathfrak{q}.

[^0]The knowledge of the finite-dimensional Nichols algebras of diagonal type is crucial in the classification program of finite-dimensional Hopf algebras [AS]. Two remarkable results on these Nichols algebras are:
(a) The explicit classification $[\mathrm{H} 2]$.
(b) The determination of their defining relations [A1, A2].

Let $\mathfrak{q} \in \mathbf{k}^{\theta \times \theta}$ with Nichols algebra $\mathcal{B}_{\mathfrak{q}}$ and assume that $\operatorname{dim} \mathcal{B}_{\mathfrak{q}}<\infty$. There are several reasons to consider the analogues of the braided Hopf algebras $U_{q}^{+}(\mathfrak{g})$ and $\mathcal{U}_{q}^{+}(\mathfrak{g})$, for $\mathcal{B}_{\mathfrak{q}}$, motivated by the classification of Hopf algebras with finite Gelfand-Kirillov dimension and by representation theory. The analogue $\widetilde{\mathcal{B}}_{\mathfrak{q}}$ of $U_{q}^{+}(\mathfrak{g})$ was introduced in [A2] and studied in [A3] under the name of distinguished pre-Nichols algebra. The definition of $\widetilde{\mathcal{B}}_{q}$ is by discarding some of the relations in [A2]. The purpose of this paper is to study the analogue $\mathcal{L}_{\mathfrak{q}}$ of $\mathcal{U}_{q}^{+}(\mathfrak{g})$; this is the graded dual of $\widetilde{\mathcal{B}}_{\mathfrak{q}}$ and although it could be called the distinguished post-Nichols algebra of \mathfrak{q}, we prefer to name it the Lusztig algebra as in $[\mathrm{A}+]$, where mentioned in passing.

The paper is organized as follows. Section 2 is devoted to preliminaries and Section 3 to Nichols algebras of diagonal type and distinguished preNichols algebras. In Section 4 we discuss Lusztig algebras: we provide a basis and a presentation by generators and relations, and prove that they are noetherian and have finite Gelfand-Kirillov dimension. In Section 5 we introduce the quantum divided power algebra $\mathcal{U}_{\mathfrak{q}}$, that is a suitable Drinfeld double of $\mathcal{L}_{\mathfrak{q}} \# \mathbf{k} \mathbb{Z}^{\theta}$; we also provide a presentation by generators and relations, and prove that it is noetherian and has finite Gelfand-Kirillov dimension.

Remark 1.1. The quantum divided power algebras were introduced and studied in [GH, Hu]; they correspond to Nichols algebras of Cartan type $A_{1} \times \cdots \times A_{1}$.
Acknowledgement. We thank the referee for the careful reading of the manuscript.

2. Preliminaries and conventions

2.1. Conventions. If $\theta \in \mathbb{N}$, then we set $\mathbb{I}_{\theta}:=\{1,2, \ldots, \theta\}$; or simply \mathbb{I} if no confusion arises. If Γ is a group, then $\widehat{\Gamma}$ is its group of characters, that is, one-dimensional representations.

Let \mathbb{S}_{n} and \mathbb{B}_{n} be the symmetric and braid groups in n letters, with standard generators $\tau_{i}=(i i+1)$, respectively $\sigma_{i}, i \in \mathbb{I}_{n-1}$. Let $s: \mathbb{S}_{\theta} \rightarrow \mathbb{B}_{\theta}$ be the (Matsumoto) section of the projection $\pi: \mathbb{B}_{\theta} \rightarrow \mathbb{S}_{\theta}, \pi\left(\sigma_{i}\right)=\tau_{i}$, $i \in \mathbb{I}_{n-1}$, given by $s(\omega)=\sigma_{i_{1}} \sigma_{i_{2}} \ldots \sigma_{i_{j}}$, whenever $\omega=\tau_{i_{1}} \tau_{i_{2}} \ldots \tau_{i_{j}} \in \mathbb{S}_{\theta}$ has length j.

We consider the \mathbf{q}-numbers in the polynomial ring $\mathbb{Z}[\mathbf{q}], n \in \mathbb{N}, 0 \leq i \leq n$,

$$
(n)_{\mathbf{q}}=\sum_{j=0}^{n-1} \mathbf{q}^{j}, \quad(n)_{\mathbf{q}}^{!}=\prod_{j=1}^{n}(j)_{\mathbf{q}}, \quad\binom{n}{i}_{\mathbf{q}}=\frac{(n)_{\mathbf{q}}^{!}}{(n-i)_{\mathbf{q}}^{!}(i)_{\mathbf{q}}^{!}} .
$$

If $q \in \mathbf{k}$, then $(n)_{q},(n)_{q}^{!},\binom{n}{i}_{q}$ are the respective evaluations at q.
We use the Heynemann-Sweedler notation for coalgebras and comodules; the counit of a coalgebra is denoted by ε, and the antipode of a Hopf algebra, by \mathcal{S}. All Hopf algebras in this paper have bijective antipode.

Let H be a Hopf algebra. A Yetter-Drinfeld module V over H is a H module and a H-comodule satisfying the compatibility condition

$$
\delta(h \cdot v)=h_{(1)} v_{(-1)} \mathcal{S}\left(h_{(3)}\right) \otimes h_{(2)} \cdot v_{(0)}, \quad h \in H, v \in V
$$

Morphisms of Yetter-Drinfeld modules preserve the action and the coaction. Thus Yetter Drinfeld modules over H form a braided tensor category ${ }_{H}^{H} \mathcal{Y} \mathcal{D}$, with braiding $c_{V, W}(v \otimes w)=v_{(-1)} \cdot w \otimes v_{(0)}, V, W \in{ }_{H}^{H} \mathcal{Y} \mathcal{D}, v \in V, w \in W$. The full subcategory of finite-dimensional objects is rigid.
2.2. Braided vector spaces and Nichols algebras. A braided vector space is a pair (V, c) where V is a vector space and $c \in \operatorname{Aut}(V \otimes V)$ is a solution of the braid equation $(c \otimes \mathrm{id})(\mathrm{id} \otimes c)(c \otimes \mathrm{id})=(\mathrm{id} \otimes c)(c \otimes \mathrm{id})(\mathrm{id} \otimes c)$.

If V is a vector space, then we identify $V^{*} \otimes V^{*}$ with a subspace of $(V \otimes V)^{*}$ by $\langle f \otimes g, v \otimes w\rangle=\langle f, w\rangle\langle g, v\rangle$, for $v, w \in V, f, g \in V^{*} .{ }^{1}$ If (V, c) is a finitedimensional braided vector space, then $\left(V^{*}, c^{t}\right)$ is its dual braided vector space, where $c^{t}: V^{*} \otimes V^{*} \rightarrow V^{*} \otimes V^{*}$ is $\left\langle c^{t}(f \otimes g), v \otimes w\right\rangle=\langle f \otimes g, c(v \otimes w)\rangle$.

We refer to $[\mathrm{T}]$ for the basic theory of braided Hopf algebras. If $R=$ $\bigoplus_{n \geq 0} R^{n}$ is a graded braided Hopf algebra with $\operatorname{dim} R^{n}<\infty$ for all n, then its graded dual $R^{d}=\bigoplus_{n \geq 0}\left(R^{n}\right)^{*}$ is again a graded braided Hopf algebra. We use the variation of the Sweedler notation $\Delta(X)=X^{(1)} \otimes X^{(2)}$ for the coproducts in braided Hopf algebras.

The Nichols algebra of a braided vector space (V, c) is a graded braided Hopf algebra $\mathcal{B}(V)=\oplus_{n \geq 0} \mathcal{B}^{n}(V)$ with very rigid properties. There are several alternative definitions of Nichols algebras, see [AS]. We recall now two of these definitions.

Let $T(V)=\oplus_{n \geq 0} T^{n}(V)$ be the tensor algebra of V; it has a braiding c induced from V. Let $T(V) \otimes T(V)=T(V) \otimes T(V)$ with the multiplication $(m \otimes m)(\mathrm{id} \otimes c \otimes \mathrm{id})$ and let $\Delta: T(V) \rightarrow T(V) \otimes T(V)$ be the unique algebra map such that $\Delta(v)=v \otimes 1+1 \otimes v$, for all $v \in V$. Then $T(V)$ is a (graded) braided Hopf algebra with respect to Δ. Dually, consider the cotensor coalgebra $T^{c}(V)$ which is isomorphic to $T(V)$ as a vector space. It bears a multiplication making $T^{c}(V)$ a braided Hopf algebra with an analogous property, see e. g. [R, AG]. There exists only one morphism of braided Hopf algebras $\Theta: T(V) \rightarrow T^{c}(V)$ that it is the identity on V. The image of Θ is the Nichols algebra $\mathcal{B}(V)$ of V.

Here is the second description of $\mathcal{B}(V)$. Let \mathfrak{S} be the partially ordered set of homogeneous Hopf ideals of $T(V)$ with trivial intersection with $\mathbf{k} \oplus V$. Then \mathfrak{S} has a maximal element $\mathcal{J}(V)$ and $\mathcal{B}(V)=T(V) / \mathcal{J}(V)$ [AS].

[^1]2.3. Pre- and post-Nichols algebras. For several purposes, it is useful to consider braided Hopf algebras $T(V) / I$, for various $I \in \mathfrak{S}$. These are called pre-Nichols algebras $[\mathrm{M}]$. Indeed, $\mathfrak{P r e}(V)=\{T(V) / I: I \in \mathfrak{S}\}$ is a poset with ordering given by the surjections; so that it is isomorphic to $(\mathfrak{S}, \subseteq)$. The minimal element in $\mathfrak{P r e}(V)$ is $T(V)$, and the maximal is $\mathcal{B}(V)$. Dually, the poset $\mathfrak{P o s t}(V)$ consists of graded Hopf subalgebras $S=\bigoplus_{n \geq 0} S^{n}$ of $T^{c}(V)$ such that $S^{1}=V$, ordered by the inclusion. Now the minimal element is $\mathcal{B}(V)$ and the maximal is $T^{c}(V)$. We shall call them post-Nichols algebras.

Remark 2.1. The map $\Phi: \mathfrak{P r e}(V) \rightarrow \mathfrak{P o s t}\left(V^{*}\right), \Phi(R)=R^{d}$, is an antiisomorphism of posets.
Proof. If $R=T(V) / I \in \mathfrak{P r e}(V)$, then $R^{d}=I^{\perp}$: hence, Φ is well-defined and it reverses the order. Also Φ is surjective, because for a given $S \in \mathfrak{P o s t}\left(V^{*}\right)$, $I=S^{\perp}$ is a graded Hopf ideal of $T(V)$ and $S=(T(V) / I)^{d}$.

3. Nichols algebras of diagonal type

A braided vector space (V, c) is of diagonal type if there exist a basis $x_{1}, \ldots, x_{\theta}$ of V and a matrix $\mathfrak{q}=\left(q_{i j}\right) \in M_{\theta}\left(\mathbf{k}^{\times}\right)$such that $c\left(x_{i} \otimes x_{j}\right)=$ $q_{i j} x_{j} \otimes x_{i}$ for all $i, j \in \mathbb{I}=\mathbb{I}_{\theta}$. Let $H=\mathbf{k} G$ be a group algebra, $\chi_{i} \in \widehat{G}$ and $g_{j} \in Z(G)$ such that $\chi_{j}\left(g_{i}\right)=q_{i j}, i, j \in \mathbb{I}$. Then (V, c) is realized in ${ }_{H}^{H} \mathcal{Y} \mathcal{D}$ by $h \cdot x_{i}=\chi_{i}(h) x_{i}$ and $\rho\left(x_{i}\right)=g_{i} \otimes x_{i}$ for all $i \in \mathbb{I}, h \in H$. We will only consider the case when $H=\mathbf{k} \mathbb{Z}^{\theta}, g_{i}=\alpha_{i}$ and $\chi_{j} \in \widehat{\mathbb{Z}^{\theta}}$ is given by $\chi_{j}\left(\alpha_{i}\right)=q_{i j}, i, j \in \mathbb{I}$. Here $\alpha_{1}, \ldots, \alpha_{\theta}$ is the canonical basis of \mathbb{Z}^{θ}.

Let $V^{*} \in \underset{\mathbf{k} \mathbb{Z}^{\theta}}{\mathbf{k}} \mathcal{Y} \mathcal{D}$; it is also a braided vector space of diagonal type, with matrix \mathfrak{q}. Indeed, if $y_{1}, \ldots, y_{\theta}$ is the dual basis of $x_{1}, \ldots, x_{\theta}$, then

$$
\begin{aligned}
\left\langle c^{t}\left(y_{i} \otimes y_{j}\right), x_{h} \otimes x_{k}\right\rangle & =\left\langle y_{i} \otimes y_{j}, c\left(x_{h} \otimes x_{k}\right)\right\rangle=q_{h k}\left\langle y_{i} \otimes y_{j}, x_{k} \otimes x_{h}\right\rangle \\
& =q_{h k} \delta_{j k} \delta_{i h}=q_{i j}\left\langle y_{j} \otimes y_{i}, x_{h} \otimes x_{k}\right\rangle
\end{aligned}
$$

Since $T(V)$ and $\mathcal{B}_{\mathfrak{q}}=\mathcal{B}(V)$ are Hopf algebras in $\mathbf{k}_{\mathbf{k} \mathbb{Z}^{\theta}}{ }^{\boldsymbol{Y}} \mathcal{Y} \mathcal{D}$, we may consider the bosonizations $T(V) \# \mathbf{k} \mathbb{Z}^{\theta}$ and $\mathcal{B}_{\mathfrak{q}} \# \mathbf{k} \mathbb{Z}^{\theta}$. We refer to $[A S, \S 1.5]$ for the definition of the adjoint action of a Hopf algebra, respectively the braided adjoint ad_{c} action of a Hopf algebra in $\underset{\mathbf{k} \mathbb{Z}^{\theta}}{\mathbf{k} \mathbb{Y}^{\theta} \mathcal{D} \text {. Then } \operatorname{ad}_{c} x \otimes \mathrm{id}=\operatorname{ad}(x \# 1) ~}$ if $x \in T(V)$ or $\mathcal{B}_{\mathfrak{q}}$, see [AS, (1-21)].

Now the matrix \mathfrak{q} gives rise to a \mathbb{Z}-bilinear form $\Xi: \mathbb{Z}^{\theta} \times \mathbb{Z}^{\theta} \rightarrow \mathbf{k}^{\times}$by $\Xi\left(\alpha_{j}, \alpha_{k}\right)=q_{j k}$ for all $j, k \in \mathbb{I}$. If $\alpha, \beta \in \mathbb{Z}^{\theta}$, we also set

$$
\begin{equation*}
q_{\alpha \beta}=\Xi(\alpha, \beta) \tag{1}
\end{equation*}
$$

The algebra $T(V)$ is \mathbb{Z}^{θ}-graded. If $x, y \in T(V)$ are homogeneous of degrees $\alpha, \beta \in \mathbb{Z}^{\theta}$ respectively, then their braided commutator is

$$
\begin{equation*}
[x, y]_{c}=x y-\text { multiplication } \circ c(x \otimes y)=x y-q_{\alpha \beta} y x \tag{2}
\end{equation*}
$$

Note that $\operatorname{ad}_{c}(x)(y)=[x, y]_{c}$ whenever x is primitive. We say that x qcommutes with a family $\left(y_{i}\right)_{i \in I}$ of homogeneous elements if $\left[x, y_{i}\right]_{c}=0$, for all $i \in I$. Same considerations are valid in any braided graded Hopf algebra.

Define a matrix $\left(c_{i j}^{\mathfrak{q}}\right)_{i, j \in \mathbb{I}}$ with entries in $\mathbb{Z} \cup\{-\infty\}$ by $c_{i i}^{\mathfrak{q}}=2$,

$$
\begin{equation*}
c_{i j}^{\mathfrak{q}}:=-\min \left\{n \in \mathbb{N}_{0}:(n+1)_{q_{i i}}\left(1-q_{i i}^{n} q_{i j} q_{j i}\right)=0\right\}, \quad i \neq j \tag{3}
\end{equation*}
$$

We assume from now on that $\operatorname{dim} \mathcal{B}_{\mathfrak{q}}<\infty$. Then $c_{i j}^{\mathfrak{q}} \in \mathbb{Z}$ for all $i, j \in \mathbb{I}$ [R, Section 3.2] and we may define the reflections $s_{i}^{\mathfrak{q}} \in G L\left(\mathbb{Z}^{\theta}\right)$, by $s_{i}^{\mathfrak{q}}\left(\alpha_{j}\right)=$ $\alpha_{j}-c_{i j}^{\mathfrak{q}} \alpha_{i}, i, j \in \mathbb{I}$. Let $i \in \mathbb{I}$ and let $\rho_{i}(V)$ be the braided vector space of diagonal type with matrix $\rho_{i}(\mathfrak{q})$, where

$$
\begin{equation*}
\rho_{i}(\mathfrak{q})_{j k}=\Xi\left(s_{i}^{\mathfrak{q}}\left(\alpha_{j}\right), s_{i}^{\mathfrak{q}}\left(\alpha_{k}\right)\right), \quad j, k \in \mathbb{I} \tag{4}
\end{equation*}
$$

The proofs of statements (a) and (b) in the Introduction have as a crucial ingredient the Weyl groupoid [H1] and the generalized root system [HY1]; the definitions involve the assignements $\mathfrak{q} \rightsquigarrow \rho_{i}(\mathfrak{q})$ described above. For our purposes, we just need to recall that

$$
\begin{equation*}
\Delta_{\mathfrak{q}}^{+} \text {is the set of positive roots of } \mathcal{B}_{\mathfrak{q}} \tag{5}
\end{equation*}
$$

3.1. Drinfeld doubles. Let (V, c) be our fixed braided vector space of diagonal type with matrix \mathfrak{q}, realized in $\underset{\mathbf{k} \mathbb{Z}^{\theta}}{\mathbf{Y} \mathcal{D}}$ as above. In this Subsection, the hypothesis on the dimension of the Nichols algebra is not needed. We describe here the Drinfeld doubles of the bosonizations $T(V) \# \mathbf{k} \mathbb{Z}^{\theta}, \mathcal{B}_{\mathfrak{q}} \# \mathbf{k} \mathbb{Z}^{\theta}$ with respect to suitable bilinear forms. This construction goes back essentially to Drinfeld [Dr] and was adapted to different settings in various papers; here we follow [H3].
Definition 3.1. The Drinfeld double $\mathbf{U}_{\mathfrak{q}}$ of $T(V) \# \mathbf{k} \mathbb{Z}^{\theta}$ is the algebra generated by elements $E_{i}, F_{i}, K_{i}, K_{i}^{-1}, L_{i}, L_{i}^{-1}, i \in \mathbb{I}$, with defining relations

$$
\begin{array}{rlrl}
X Y & =Y X, & X, Y \in\left\{K_{i}^{ \pm}, L_{i}^{ \pm}: i \in \mathbb{I}\right\} \\
K_{i} K_{i}^{-1} & =L_{i} L_{i}^{-1}=1, & E_{i} F_{j}-F_{j} E_{i} & =\delta_{i, j}\left(K_{i}-L_{i}\right) . \\
K_{i} E_{j} & =q_{i j} E_{j} K_{i}, & L_{i} E_{j} & =q_{j i}^{-1} E_{j} L_{i}, \\
K_{i} F_{j} & =q_{i j}^{-1} F_{j} K_{i}, & L_{i} F_{j} & =q_{j i} F_{j} L_{i} .
\end{array}
$$

Then $\mathbf{U}_{\mathfrak{q}}$ is a \mathbb{Z}^{θ}-graded Hopf algebra, where the comultiplication and the grading are given, for $i \in \mathbb{I}$, by

$$
\begin{aligned}
\Delta\left(K_{i}^{ \pm 1}\right) & =K_{i}^{ \pm 1} \otimes K_{i}^{ \pm 1}, & \Delta\left(E_{i}\right) & =E_{i} \otimes 1+K_{i} \otimes E_{i} \\
\Delta\left(L_{i}^{ \pm 1}\right) & =L_{i}^{ \pm 1} \otimes L_{i}^{ \pm 1}, & \Delta\left(F_{i}\right) & =F_{i} \otimes L_{i}+1 \otimes F_{i} \\
\operatorname{deg}\left(K_{i}\right) & =\operatorname{deg}\left(L_{i}\right)=0, & \operatorname{deg}\left(E_{i}\right) & =\alpha_{i}=-\operatorname{deg}\left(F_{i}\right)
\end{aligned}
$$

Let $\mathbf{U}_{\mathfrak{q}}^{+}$(respectively, $\mathbf{U}_{\mathfrak{q}}^{-}$) be the subalgebra of $\mathbf{U}_{\mathfrak{q}}$ generated by E_{i} (respectively, $\left.F_{i}\right), i \in \mathbb{I}$. Let $W=\left(V^{*}, \mathfrak{q}^{t}\right) .{ }^{2}$ Moreover, $\mathbf{U}_{\mathfrak{q}}^{+}$and $\mathbf{U}_{\mathfrak{q}}^{-}$are Hopf

$$
K_{i} \cdot E_{j}=q_{i j} E_{j}, \quad \quad \delta\left(E_{i}\right)=K_{i} \otimes E_{i}
$$

[^2]$$
L_{i} \cdot F_{j}=q_{j i} F_{j}, \quad \delta\left(F_{i}\right)=L_{i} \otimes F_{i}
$$

Thus, there are isomorphisms $\psi^{+}: T(V) \rightarrow \mathbf{U}_{q}^{+}, \psi^{-}: T(W) \rightarrow \mathbf{U}_{q}^{-}$of Hopf

Let

$$
\mathfrak{u}_{\mathfrak{q}}=\mathbf{U}_{\mathfrak{q}} /\left(\psi^{-}\left(\mathcal{J}_{\mathfrak{q}^{t}}\right)+\psi^{+}\left(\mathcal{J}_{\mathfrak{q}}\right)\right) ;
$$

this is the Drinfeld double of $\mathcal{B}_{\mathfrak{q}} \# \mathbf{k} \mathbb{Z}^{\theta}$. We denote by $E_{i}, F_{i}, K_{i}, L_{i}$ the elements of $\mathfrak{u}_{\mathfrak{q}}$ that are images of their homonymous in $\mathbf{U}_{\mathfrak{q}}$. Let \mathfrak{u}^{0} (respectively, $\mathfrak{u}_{\mathfrak{q}}^{+}, \mathfrak{u}_{\mathfrak{q}}^{-}$) be the subalgebra of $\mathfrak{u}_{\mathfrak{q}}$ generated by K_{i}, L_{i}, (respectively, by E_{i}, by $\left.F_{i}\right), i \in \mathbb{I}$. Then $\mathfrak{u}^{0} \simeq \mathbf{k} \mathbb{Z}^{2 \theta}$;

- there is a triangular decomposition $\mathfrak{u}_{\mathfrak{q}} \simeq \mathfrak{u}_{\mathfrak{q}}^{+} \otimes \mathfrak{u}^{0} \otimes \mathfrak{u}_{\mathfrak{q}}^{-}$;
- $\mathfrak{u}_{\mathfrak{q}}^{+} \simeq \mathcal{B}_{\mathfrak{q}}, \mathfrak{u}_{\mathfrak{q}}^{-} \simeq \mathcal{B}_{\mathfrak{q}^{t}}$.
3.2. Lusztig isomorphisms and PBW bases. G. Lusztig defined automorphisms of the quantized enveloping algebra $U_{q}(\mathfrak{g})$ of a simple Lie algebra \mathfrak{g}, see [L2]. These automorphisms satisfy the relations of the braid group covering the Weyl group of \mathfrak{g}; they are instrumental in the construction of Poincaré-Birkhoff-Witt (PBW) bases of $U_{q}(\mathfrak{g})$. These results were extended to the Drinfeld double of a finite-dimensional Nichols algebra of diagonal type in [H3], with the role of the Weyl group played here by the Weyl groupoid $\mathcal{W}_{\mathfrak{q}}$. The definition of the Lusztig isomorphisms in [H3] requires some hypotheses on the matrix \mathfrak{q}, that are always satisfied in the finitedimensional case. So, let (V, c) and \mathfrak{q} as above; recall that we assume that $\operatorname{dim} \mathcal{B}_{\mathfrak{q}}<\infty$. Fix $i \in \mathbb{I}$. We first recall the definition of the isomorphisms $\mathfrak{u}_{\mathfrak{q}} \rightarrow \mathfrak{u}_{\rho_{i}(\mathfrak{q})}[\mathrm{H} 3]$. For $i \neq j \in \mathbb{I}$ and $n \in \mathbb{N}_{0}$, define the elements of $\mathfrak{u}_{\mathfrak{q}}$

$$
E_{j, n}=\left(\operatorname{ad} E_{i}\right)^{n} E_{j}, \quad F_{j, n}=\left(\operatorname{ad} F_{i}\right)^{n} F_{j}
$$

Let $\underline{E}_{j}, \underline{F}_{j}, \underline{K}_{j}, \underline{L}_{j}$ be the generators of $\mathfrak{u}_{\rho_{i}(\mathfrak{q})}$. Set

$$
\begin{equation*}
a_{j}(\mathfrak{q}):=\left(-c_{i j}^{\mathfrak{q}}\right)_{q_{i i}}^{!} \prod_{s=0}^{-c_{i j}^{\mathfrak{q}}-1}\left(q_{i i}^{s} q_{i j} q_{j i}-1\right), \quad j \neq i \tag{6}
\end{equation*}
$$

Theorem 3.2. [H3, 6.11] There are algebra isomorphisms $T_{i}: \mathfrak{u}_{\mathfrak{q}} \rightarrow \mathfrak{u}_{\rho_{i}(\mathfrak{q})}$ uniquely determined, for $h, j \in \mathbb{I}$, $j \neq i$, by

$$
\begin{aligned}
& T_{i}\left(K_{h}\right)=\underline{K}_{i}^{-c_{i h}^{\mathfrak{q}}} \underline{K}_{h}, \quad T_{i}\left(E_{i}\right)=\underline{F}_{i} \underline{L}_{i}^{-1}, \quad T_{i}\left(E_{j}\right)=\underline{E}_{j,--c_{i j}^{\mathfrak{q}}} \\
& T_{i}\left(L_{h}\right)=\underline{L}_{i}^{-c_{i h}^{\mathfrak{q}}} \underline{L}_{h}, \quad T_{i}\left(F_{i}\right)=\underline{K}_{i}^{-1} \underline{E}_{i}, \quad T_{i}\left(F_{j}\right)=\frac{1}{a_{j}\left(\rho_{i}(\mathfrak{q})\right)} \underline{F}_{j,-c_{i j}^{\mathfrak{q}}}
\end{aligned}
$$

Let $w \in \mathcal{W}_{\mathfrak{q}}$ be an element of maximal length and fix a reduced expression $w=\sigma_{i_{1}}^{\mathfrak{q}} \sigma_{i_{2}} \cdots \sigma_{i_{M}}$. If $k \in \mathbb{I}_{M}$ and $\mathbf{h}=\left(h_{1}, \ldots, h_{M}\right) \in \mathbb{N}_{0}^{M}$, set

$$
\begin{align*}
\beta_{k} & =s_{i_{1}}^{\mathfrak{q}} \cdots s_{i_{k-1}}\left(\alpha_{i_{k}}\right) \tag{7}\\
E_{\beta_{k}} & =T_{i_{1}} \cdots T_{i_{k-1}}\left(E_{i_{k}}\right) \in\left(\mathfrak{u}_{\mathfrak{q}}^{+}\right)_{\beta_{k}} \tag{8}\\
\mathbf{E}^{\mathbf{h}} & =E_{\beta_{M}}^{h_{M}} E_{\beta_{M-1}}^{h_{M-1}} \cdots E_{\beta_{1}}^{h_{1}} \tag{9}
\end{align*}
$$

By [CH, Prop. 2.12], $\Delta_{+}^{\mathfrak{q}}=\left\{\beta_{k} \mid 1 \leq k \leq M\right\}$. Thus, we set

$$
\begin{equation*}
N_{\beta}=N_{k}=\operatorname{ord} q_{\beta \beta} \in \mathbb{N} \cup\{\infty\}, \quad \text { if } \beta=\beta_{k} \in \Delta_{+}^{\mathfrak{q}} \tag{10}
\end{equation*}
$$

Theorem 3.3. [HY2, 4.5, 4.8, 4.9] The following set is a basis of $\mathfrak{u}_{\mathfrak{q}}^{+}$:

$$
\left\{\mathbf{E}^{\mathbf{h}} \mid \mathbf{h} \in \mathbb{N}_{0}^{M}, 0 \leq h_{k}<N_{k}, k \in \mathbb{I}_{M}\right\}
$$

3.3. Distinguished pre-Nichols algebra. We now recall the definition of the distinguished pre-Nichols algebra from [A3]. Let \mathfrak{q}, V be as above. First, $i \in \mathbb{I}$ is a Cartan vertex of \mathfrak{q} if

$$
\begin{equation*}
q_{i j} q_{j i}=q_{i i}^{q_{i j}^{q}}, \quad \text { for all } j \neq i \tag{11}
\end{equation*}
$$

recall (3). Then the set of Cartan roots of \mathfrak{q} is
$\mathfrak{O}_{\mathfrak{q}}=\left\{s_{i_{1}}^{\mathfrak{q}} s_{i_{2}} \ldots s_{i_{k}}\left(\alpha_{i}\right) \in \Delta_{+}^{\mathfrak{q}}: i \in \mathbb{I}\right.$ is a Cartan vertex of $\left.\rho_{i_{k}} \ldots \rho_{i_{2}} \rho_{i_{1}}(\mathfrak{q})\right\}$.
A set of defining relations of the Nichols algebra $\mathcal{B}_{\mathfrak{q}}$, i. e. generators of the ideal $\mathcal{J}_{\mathfrak{q}}$, was given in [A2, Theorem 3.1]. We now consider the ideal $\mathcal{I}_{\mathfrak{q}} \subset \mathcal{J}_{\mathfrak{q}}$ of $T(V)$ generated by all the relations in loc. cit., but

- we exclude the power root vectors $E_{\alpha}^{N_{\alpha}}, \alpha \in \mathfrak{O}_{\mathfrak{q}}$,
- we add the quantum Serre relations $\left(\operatorname{ad}_{c} E_{i}\right)^{1-c_{i j}^{q}} E_{j}$ for those $i \neq j$
such that $q_{i i}^{c_{i j}^{q}}=q_{i j} q_{j i}=q_{i i}$.
Definition 3.4. [A3, 3.1] The distinguished pre-Nichols algebra of V is

$$
\widetilde{\mathcal{B}}_{\mathfrak{q}}=T(V) / \mathcal{I}_{\mathfrak{q}} .
$$

Let $\widetilde{\mathfrak{u}}_{\mathfrak{q}}=\mathbf{U}_{\mathfrak{q}} /\left(\psi^{-}\left(\mathcal{I}_{\mathfrak{q}^{t}}\right)+\psi^{+}\left(\mathcal{I}_{\mathfrak{q}}\right)\right)$; this is the Drinfeld double of $\widetilde{\mathcal{B}}_{\mathfrak{q}} \# \mathbf{k} \mathbb{Z}^{\theta}$. It was shown in [A3] that there is a triangular decomposition $\widetilde{\mathfrak{u}}_{\mathfrak{q}} \simeq \widetilde{\mathfrak{H}}_{\mathfrak{q}}^{+} \otimes \widetilde{\mathfrak{u}}^{0} \otimes \widetilde{\mathfrak{u}}_{\mathfrak{q}}^{-}$ as above, with $\widetilde{\mathfrak{u}}^{0} \simeq \mathfrak{u}^{0} \simeq \mathbf{k} \mathbb{Z}^{2 \theta}$.

If β_{k} is as in (7), $k \in \mathbb{I}_{M}$, then we set $\widetilde{N}_{k}=\left\{\begin{array}{ll}N_{k} & \text { if } \beta_{k} \notin \mathfrak{O}_{\mathfrak{q}}, \\ \infty & \text { if } \beta_{k} \in \mathfrak{O}_{\mathfrak{q}},\end{array}\right.$ For simplicity, we introduce

$$
\begin{equation*}
\mathrm{H}=\left\{\mathbf{h} \in \mathbb{N}_{0}^{M}: 0 \leq h_{k}<\widetilde{N}_{k}, \text { for all } k \in \mathbb{I}_{M}\right\} \tag{12}
\end{equation*}
$$

Theorem 3.5.
(a) [A3, 3.4] There exist algebra isomorphisms $\widetilde{T}_{i}: \widetilde{\mathfrak{u}}_{\mathfrak{q}} \rightarrow \widetilde{\mathfrak{u}}_{\rho_{i}(\mathfrak{q})}$ inducing the isomorphisms $T_{i}: \mathfrak{u}_{\mathfrak{q}} \rightarrow \mathfrak{u}_{\rho_{i}(\mathfrak{q})}$.
(b) $[A 3,3.6]$ Let $\widetilde{E}_{\beta_{k}}, \widetilde{\mathbf{E}}^{\mathbf{h}}$ be the elements of $\widetilde{\mathfrak{u}}_{\mathfrak{q}}$ defined as in (8), (9) with \widetilde{T}_{i} instead of T_{i}. Then $\left\{\widetilde{\mathbf{E}}^{\mathbf{h}} \mid \mathbf{h} \in \mathrm{H}\right\}$ is a basis of $\widetilde{\mathfrak{u}}_{\mathfrak{q}}^{+}$.

As before, we have an isomorphism $\widetilde{\psi}: \widetilde{\mathcal{B}}_{\mathfrak{q}} \rightarrow \widetilde{\mathfrak{u}}_{q}^{+}$of Hopf algebras in $\underset{\mathbf{k} \mathbb{Z}^{\theta}}{\mathbf{k} \mathbb{Y}^{\theta} \mathcal{D} \text {, so we define }}$

$$
x_{\beta_{k}}=\widetilde{\psi}^{-1}\left(\widetilde{E}_{\beta_{k}}\right), \quad k \in \mathbb{I}_{M} ; \quad \mathbf{x}^{\mathbf{h}}=\widetilde{\psi}^{-1}\left(\widetilde{\mathbf{E}}^{\mathbf{h}}\right), \quad \mathbf{h} \in \mathrm{H}
$$

Note that $\widetilde{E}_{\beta_{k}}$ is a well-defined sequence of braided commutators in the elements $E_{i}, i \in \mathbb{I}$; then $x_{\beta_{k}}$ is the same sequence of braided commutators in the x_{i} 's. Also, $\mathbf{x}^{\mathbf{h}}=x_{\beta_{M}}^{h_{M}} x_{\beta_{M-1}}^{h_{M-1}} \cdots x_{\beta_{1}}^{h_{1}}$ and

$$
\mathrm{B}=\left\{\mathbf{x}^{\mathbf{h}} \mid \mathbf{h} \in \mathrm{H}\right\}
$$

is a basis of $\widetilde{\mathcal{B}}_{\mathfrak{q}}$. The Hilbert series of a graded vector space $V=\oplus_{n \in \mathbb{N}_{0}} V^{n}$ is $\mathcal{H}_{V}=\sum_{n \in \mathbb{N}_{0}} \operatorname{dim} V^{n} T^{n} \in \mathbb{Z}[[T]]$. It follows from Theorem 3.5 (b) that

$$
\begin{equation*}
\operatorname{GK} \operatorname{dim} \widetilde{\mathcal{B}}_{\mathfrak{q}}=\left|\mathfrak{O}_{\mathfrak{q}}\right|, \quad \mathcal{H}_{\widetilde{\mathcal{B}}_{\mathfrak{q}}}=\prod_{\beta_{k} \in \mathfrak{O}_{\mathfrak{q}}} \frac{1}{1-T^{\operatorname{deg} \beta}} \cdot \prod_{\beta_{k} \notin \mathfrak{O}_{\mathfrak{q}}} \frac{1-T^{N_{\beta} \operatorname{deg} \beta}}{1-T^{\operatorname{deg} \beta}} \tag{13}
\end{equation*}
$$

4. Lusztig algebras

Let $\mathfrak{q}=\left(q_{i j}\right) \in M_{\theta}\left(\mathbf{k}^{\times}\right),(V, c)$ the corresponding braided vector space of diagonal type and $\left(V^{*}, \mathfrak{q}\right)$ the dual braided vector space. We still assume that $\mathcal{B}_{\mathfrak{q}}$ is finite-dimensional. As in $[\mathrm{A}+, 3.3 .4]$, we define the Lusztig algebra $\mathcal{L}_{\mathfrak{q}}$ of (V, c) as the graded dual of the distinguished pre-Nichols algebra $\widetilde{\mathcal{B}}_{\mathfrak{q}}$ of $\left(V^{*}, \mathfrak{q}\right)$; thus, $\mathcal{B}_{\mathfrak{q}} \subseteq \mathcal{L}_{\mathfrak{q}}$. In this Section we establish some basic properties of this algebra.
4.1. Presentation. In the rest of the section we consider the bilinear form $\langle\rangle:, \widetilde{\mathcal{B}}_{\mathfrak{q}} \times \widetilde{\mathcal{B}}_{\mathfrak{q}}^{*} \rightarrow \mathbf{k}$ carried from the identification $V^{*} \otimes V^{*} \simeq(V \otimes V)^{*}$ in Section 2.2 which satisfies for all $x, x^{\prime} \in \widetilde{\mathcal{B}}_{\mathfrak{q}}, y, y^{\prime} \in \widetilde{\mathcal{B}}_{\mathfrak{q}}^{*}$

$$
\left\langle y, x x^{\prime}\right\rangle=\left\langle y^{(2)}, x\right\rangle\left\langle y^{(1)}, x^{\prime}\right\rangle \quad \text { and } \quad\left\langle y y^{\prime}, x\right\rangle=\left\langle y, x^{(2)}\right\rangle\left\langle y^{\prime}, x^{(1)}\right\rangle
$$

If $\mathbf{h} \in H$, then define $\mathbf{y}_{\mathbf{h}} \in \widetilde{\mathcal{B}}_{\mathfrak{q}}^{*}$ by $\left\langle\mathbf{y}_{\mathbf{h}}, \mathbf{x}^{\mathbf{j}}\right\rangle=\delta_{\mathbf{h}, \mathbf{j}}, \mathbf{j} \in \mathrm{H}$. Then $\mathbf{y}_{\mathbf{h}} \in \mathcal{L}_{\mathfrak{q}}$ and $\left\{\mathbf{y}_{\mathbf{h}} \mid \mathbf{h} \in \mathrm{H}\right\}$ is a basis of $\mathcal{L}_{\mathfrak{q}}$.

Let $\left(\mathbf{h}_{k}\right)_{k \in \mathbb{I}_{M}}$ denote the canonical basis of \mathbb{Z}^{M}. If $k \in \mathbb{I}_{M}$ and $\beta=\beta_{k} \in$ $\Delta_{+}^{\mathfrak{q}}$, then we denote the element $\mathbf{y}_{n \mathbf{h}_{k}}$ by $y_{\beta}^{(n)}$.

We recall some notation and results from [A3] and [AY]. For $i \in \mathbb{I}_{M}$, let

$$
\begin{aligned}
B^{i} & =\left\langle\left\{x_{\beta_{i}}^{h_{i}} \cdots x_{\beta_{1}}^{h_{1}} \mid 0 \leq h_{j}<N_{j}\right\}\right\rangle \subseteq \mathcal{B}_{\mathfrak{q}} \\
\mathbf{B}^{i} & =\left\langle\left\{x_{\beta_{M}}^{h_{M}} \cdots x_{\beta_{i}}^{h_{i}} \mid 0 \leq h_{j}<N_{j}\right\}\right\rangle \subseteq \mathcal{B}_{\mathfrak{q}} \\
\widetilde{B}^{i} & =\left\langle\left\{x_{\beta_{i}}^{h_{i}} \cdots x_{\beta_{1}}^{h_{1}} \mid 0 \leq h_{j}<\widetilde{N}_{j}\right\}\right\rangle \subseteq \widetilde{\mathcal{B}}_{\mathfrak{q}} \\
\widetilde{\mathbf{B}}^{i} & =\left\langle\left\{x_{\beta_{M}}^{h_{M}} \cdots x_{\beta_{i}}^{h_{i}} \mid 0 \leq h_{j}<\widetilde{N}_{j}\right\}\right\rangle \subseteq \widetilde{\mathcal{B}}_{\mathfrak{q}}
\end{aligned}
$$

We also denote by \widetilde{L}^{i} and $\widetilde{\mathbf{L}}^{i}$ the analogous subspaces of $\mathcal{L}_{\mathfrak{q}}$:

$$
\begin{aligned}
\widetilde{L}^{i} & =\left\langle\left\{y_{\beta_{1}}^{\left(h_{1}\right)} \cdots y_{\beta_{i}}^{\left(h_{i}\right)} \mid 0 \leq h_{j}<\widetilde{N}_{j}\right\}\right\rangle \subseteq \mathcal{L}_{\mathfrak{q}} \\
\widetilde{\mathbf{L}}^{i} & =\left\langle\left\{y_{\beta_{i}}^{\left(h_{i}\right)} \cdots y_{\beta_{M}}^{\left(h_{M}\right)} \mid 0 \leq h_{j}<\widetilde{N}_{j}\right\}\right\rangle \subseteq \mathcal{L}_{\mathfrak{q}}
\end{aligned}
$$

Proposition 4.1. - [AY, 4.2, 4.11] B^{i} (respectively \mathbf{B}^{i}) is a right (respectively left) coideal subalgebra of $\mathcal{B}_{\mathfrak{q}}$.

- [A3, 4.1] If $\beta \in \mathfrak{O}_{\mathfrak{q}}$, then $x_{\beta}^{N_{\beta}} \mathfrak{q}$-commutes with every element of $\widetilde{\mathcal{B}}_{\mathfrak{q}}$.
- [A3, 4.9] If $\beta_{i} \in \mathfrak{O}_{\mathfrak{q}}$, then there exist $X\left(n_{1}, \ldots, n_{i-1}\right) \in \widetilde{\mathcal{B}}_{\mathfrak{q}}$ such that

$$
\begin{aligned}
\Delta\left(x_{\beta_{i}}^{N_{\beta_{i}}}\right)= & x_{\beta_{i}}^{N_{\beta_{i}}} \otimes 1+1 \otimes x_{\beta_{i}}^{N_{\beta_{i}}} \\
& +\sum_{n_{k} \in \mathbb{N}_{0}} x_{\beta_{i-1}}^{n_{i-1} N_{\beta_{i-1}}} \ldots x_{\beta_{1}}^{n_{1} N_{\beta_{1}}} \otimes X\left(n_{1}, \ldots, n_{i-1}\right)
\end{aligned}
$$

Corollary 4.2. \widetilde{B}^{i} is a right coideal subalgebra of $\widetilde{\mathcal{B}}_{\mathfrak{q}}$.
Let $Z_{\mathfrak{q}}^{+}$be the subalgebra of $\widetilde{\mathcal{B}}_{\mathfrak{q}}$ generated by $x_{\beta}^{N_{\beta}}, \beta \in \mathfrak{O}_{\mathfrak{q}}$.
Theorem 4.3. [A3, 4.10, 4.13] $Z_{\mathfrak{q}}^{+}$is a braided normal Hopf subalgebra of $\widetilde{\mathcal{B}}_{\mathfrak{q}}$. Moreover $Z_{\mathfrak{q}}^{+}={ }^{\operatorname{co\pi }} \widetilde{\mathcal{B}}_{\mathfrak{q}}$, where π denotes the canonical projection of $\widetilde{\mathcal{B}}_{\mathfrak{q}}$ onto $\mathcal{B}_{\mathfrak{q}}$.

Lemma 4.4. Let x, x_{1} and x_{2} be elements in the $P B W$ basis B of $\widetilde{\mathcal{B}}_{\mathfrak{q}}$. Write $\Delta(x)$ as a linear combination of $\{a \otimes b \mid a, b \in \mathrm{~B}\}$. Assume that $x_{1} \otimes$ x_{2} has a non-zero coefficient in $\Delta(x)$ (in this combination) and $x_{1} x_{2}$ (the concatenation of x_{1} and x_{2}) is in B . Then $x=x_{1} x_{2}$.

Proof. Suppose that $x=x_{\beta_{i}}^{h_{i}} \cdots x_{\beta_{1}}^{h_{1}}$ with $h_{i}>0$. Let

$$
\begin{aligned}
m(x) & =\min \left\{j \in \mathbb{N}: h_{j} \neq 0\right\}, \\
\mathcal{D}(x) & =\sum_{j=1}^{i} \sum_{t=1}^{h_{j}}\binom{h_{j}}{t}_{q_{\beta_{j} \beta_{j}}} x_{\beta_{i}}^{h_{i}} \cdots x_{\beta_{j}}^{t} \otimes x_{\beta_{j}}^{h_{j}-t} \cdots x_{\beta_{1}}^{h_{1}}+1 \otimes x, \\
\widetilde{C}^{i} & =\left\langle\left\{x_{\beta_{M}}^{h_{M}} \cdots x_{\beta_{1}}^{h_{1}} \in \mathrm{~B} \mid \exists j>i \text { s.t. } h_{j} \neq 0\right\}\right\rangle .
\end{aligned}
$$

Observe that if $x_{1} \otimes x_{2}$ appears in $\mathcal{D}(x)$, then $x=x_{1} x_{2}$. However, if $x_{1} \otimes x_{2} \in \sum_{u \in \widetilde{B}^{i}} u \otimes \widetilde{C}^{m(u)}$, then $x_{1} x_{2} \notin \mathrm{~B}$. Therefore the proof is completed by showing that

$$
\Delta(x) \in \mathcal{D}(x)+\sum_{u \in \widetilde{B}^{i}} u \otimes \widetilde{C}^{m(u)}
$$

We proceed by induction on i. If $i=1$, then $x=x_{\beta_{1}}^{h}$ and $x_{\beta_{1}}$ is primitive, so $\Delta\left(x_{\beta_{1}}^{h}\right)=\sum_{0 \leq k \leq h}\binom{h}{k}_{q_{\beta_{1} \beta_{1}}} x_{\beta_{1}}^{k} \otimes x_{\beta_{1}}^{h-k}=\mathcal{D}\left(x_{\beta_{1}}^{h}\right)$. Let $i>1$. Now we proceed by induction on h_{i}. Set $x^{\prime}=x_{\beta_{i}}^{h_{i}-1} x_{\beta_{i-1}}^{h_{i-1}} \cdots x_{\beta_{1}}^{h_{1}}$, so $x=x_{\beta_{i}} x^{\prime}$. Notice that

$$
\begin{equation*}
\Delta\left(x_{\beta_{i}}\right) \in x_{\beta_{i}} \otimes 1+1 \otimes x_{\beta_{i}}+\widetilde{B}^{i-1} \otimes \widetilde{C}^{i} \tag{14}
\end{equation*}
$$

Indeed the analogous statement for $\mathcal{B}_{\mathfrak{q}}$ was proved in [AY, 4.3], but the same argument applies for $\widetilde{\mathcal{B}}_{\mathfrak{q}}$. By the inductive hypothesis and (14)

$$
\begin{aligned}
& \Delta(x)=\Delta\left(x_{\beta_{i}}\right) \Delta\left(x^{\prime}\right) \\
& \quad \in\left(x_{\beta_{i}} \otimes 1+1 \otimes x_{\beta_{i}}+\widetilde{B}^{i-1} \otimes \widetilde{C}^{i}\right)\left(\mathcal{D}\left(x^{\prime}\right)+\sum_{u \in \widetilde{B}^{i}} u \otimes \widetilde{C}^{m(u)}\right) .
\end{aligned}
$$

Notice that $\left(x_{\beta_{i}} \otimes 1+1 \otimes x_{\beta_{i}}\right) \mathcal{D}\left(x^{\prime}\right) \in \mathcal{D}(x)+\sum_{u \in \widetilde{B}^{i}} u \otimes \widetilde{C}^{m(u)}$, since

$$
\begin{aligned}
&\left(x_{\beta_{i}} \otimes 1+1 \otimes x_{\beta_{i}}\right)\left(\sum_{t=1}^{h_{i}-1}\binom{h_{i}-1}{t}_{q_{\beta_{i} \beta_{i}}} x_{\beta_{i}}^{t} \otimes x_{\beta_{i}}^{h_{i}-1-t} \cdots x_{\beta_{1}}^{h_{1}}+1 \otimes x^{\prime}\right)= \\
& x_{\beta_{i}} \otimes x^{\prime}+\sum_{t=2}^{h_{i}}\binom{h_{i}-1}{t-1}_{q_{\beta_{i} \beta_{i}}} x_{\beta_{i}}^{t} \otimes x_{\beta_{i}}^{h_{i}-t} \cdots x_{\beta_{1}}^{h_{1}}+ \\
& \sum_{t=1}^{h_{i}-1} q_{\beta_{i} \beta_{i}}^{t}\binom{h_{i}-1}{t}_{q_{\beta_{i} \beta_{i}}} x_{\beta_{i}}^{t} \otimes x_{\beta_{i}}^{h_{i}-t} \cdots x_{\beta_{1}}^{h_{1}}+1 \otimes x_{\beta_{i}} x^{\prime}
\end{aligned}
$$

and for $h_{i}>1,1 \leq t<h_{i}$, we have $\binom{h_{i}-1}{t-1}_{q_{\beta_{i} \beta_{i}}}+q_{\beta_{i} \beta_{i}}^{t}\binom{h_{i}-1}{t}_{q_{\beta_{i} \beta_{i}}}=\binom{h_{i}}{t}_{q_{\beta_{i} \beta_{i}}}$. Also, $\widetilde{B}^{i-1} \subset \widetilde{B}^{i}, \widetilde{B}^{i}$ is a subalgebra and $\widetilde{C}^{i} z \subset \widetilde{C}^{i}$ for all $z \in \widetilde{\mathcal{B}}_{\mathfrak{q}}$, by [A3, 3.15], so

$$
\left(\widetilde{B}^{i-1} \otimes \widetilde{C}^{i}\right) \mathcal{D}\left(x^{\prime}\right) \subset \widetilde{B}^{i-1} \widetilde{B}^{i} \otimes \widetilde{C}^{i} \widetilde{B}^{i} \subset \widetilde{B}^{i} \otimes \widetilde{C}^{i}
$$

As $x_{\beta_{i}} u \in \widetilde{B}^{i}$ for all $u \in \widetilde{B}^{i}$ and $m(u)=m\left(x_{\beta_{i}} u\right)$, then

$$
x_{\beta_{i}} u \otimes \widetilde{C}^{m(u)}=x_{\beta_{i}} u \otimes \widetilde{C}^{m\left(x_{\beta_{i}} u\right)} \quad \text { and } \quad u \otimes x_{\beta_{i}} \widetilde{C}^{m(u)} \subset u \otimes \widetilde{C}^{m(u)}
$$

Finally, $\widetilde{B}^{i-1} u \otimes \widetilde{C}^{i} \widetilde{C}^{m(u)} \subset \widetilde{B}^{i} \otimes \widetilde{C}^{i} \subset \sum_{v \in \widetilde{B}^{i}} v \otimes \widetilde{C}^{m(v)}$ for all $u \in \widetilde{B}^{i}$. From these considerations the proof of the inductive step follows directly.
Corollary 4.5. If $\beta \in \Delta_{+}^{\mathfrak{q}}$, then

$$
\begin{array}{ll}
y_{\beta}^{(r)}=\frac{y_{\beta}^{r}}{(r)_{q_{\beta \beta}}^{!}}, & r<N_{\beta}=\operatorname{ord} q_{\beta \beta} ; \\
y_{\beta}^{(n)}=\frac{\left(y_{\beta}^{\left(N_{\beta}\right)}\right)^{s}}{s!} y_{\beta}^{(r)}, & \beta \in \mathfrak{O}_{q}, n=s N_{\beta}+r, r<N_{\beta} \tag{16}
\end{array}
$$

Proof. Arguing inductively, we may suppose that $y_{\beta}^{r-1}=(r-1)_{q_{\beta \beta}}^{!} y_{\beta}^{(r-1)}$. If $x=\mathbf{x}^{\mathbf{h}} \in \widetilde{\mathcal{B}}_{\mathfrak{q}}$ such that

$$
\left\langle y_{\beta}^{r}, x\right\rangle=\left\langle y_{\beta}^{r-1}, x^{(1)}\right\rangle\left\langle y_{\beta}, x^{(2)}\right\rangle \neq 0
$$

then by Lemma 4.4, $x=x_{\beta}^{r}$. Then

$$
\left\langle y_{\beta}^{r}, x_{\beta}^{r}\right\rangle=\left\langle y_{\beta}^{r-1},\left(x_{\beta}^{r}\right)^{(1)}\right\rangle\left\langle y_{\beta},\left(x_{\beta}^{r}\right)^{(2)}\right\rangle=(r-1)_{q_{\beta \beta}}^{!}(r)_{q_{\beta \beta}}=(r)_{q_{\beta \beta}}^{!}
$$

The second equation follows immediately since $\left\langle y_{\beta}^{\left(N_{\beta}\right)} y_{\beta}^{(r)}, x_{\beta}^{N_{\beta}+r}\right\rangle=1$.
The next lemma is crucial for the presentation of the algebra $\mathcal{L}_{\mathfrak{q}}$ by generators and relations.
Lemma 4.6. Let $i \in \mathbb{I}_{M}, h_{i}<\tilde{N}_{\beta_{i}}$ and $\mathbf{h}=\left(h_{1}, \ldots, h_{M}\right) \in \mathbb{N}_{0}^{M}$, then

$$
\begin{equation*}
\mathbf{y}_{\mathbf{h}}=y_{\beta_{1}}^{\left(h_{1}\right)} \cdots y_{\beta_{M}}^{\left(h_{M}\right)} \tag{17}
\end{equation*}
$$

Hence $\left\{y_{\beta_{1}}^{\left(h_{1}\right)} \cdots y_{\beta_{M}}^{\left(h_{M}\right)} \mid 0 \leq h_{i}<\tilde{N}_{\beta_{i}}\right\}$ is a basis of $\mathcal{L}_{\mathfrak{q}}$.

Proof. The proof is by induction on $\operatorname{ht}(\mathbf{h}):=\sum_{i \in \mathbb{I}_{M}} h_{i}$. If $\operatorname{ht}(\mathbf{h})=1$ then $\mathbf{y}_{\mathbf{h}}=y_{\beta}$ for some $\beta \in \Delta_{+}^{\mathfrak{q}}$ and the claim follows by definition.

Let $1 \leq i_{1}<\cdots<i_{j} \leq M, n_{k}<\widetilde{N}_{\beta_{i_{k}}}$ and $n_{1}=s N_{\beta_{i_{1}}}+r \neq 0$ where $r<N_{\beta_{i_{1}}}$. Let $y=y_{\beta_{i_{1}}}^{\left(n_{1}\right)} \ldots y_{\beta_{i_{j}}}^{\left(n_{j}\right)} \in \mathcal{L}_{\mathfrak{q}}$. Since $\left\{\mathbf{y}_{\mathbf{h}} \mid \mathbf{h} \in \mathrm{H}\right\}$ is a basis of $\mathcal{L}_{\mathfrak{q}}$, we can express y as the linear combination $y=\sum_{\mathbf{h} \in \mathrm{H}} c_{\mathbf{h}} \mathbf{Y}_{\mathbf{h}}$. Notice that $c_{\mathbf{h}} \neq 0$ if and only if $\left\langle y, x^{\mathbf{h}}\right\rangle \neq 0$.

If $r \neq 0$, then we write $y=\frac{1}{(r)_{q}} y_{\beta_{i_{1}}} y^{\prime}$ where $y^{\prime}=y_{\beta_{i_{1}}}^{\left(n_{1}-1\right)} \ldots y_{{\beta_{i_{j}}}^{\left(n_{j}\right)}}$ and $q=q_{\beta_{i_{1}} \beta_{i_{1}}}$. Then $\left\langle y, x^{\mathbf{h}}\right\rangle=\frac{1}{(r)_{q}}\left\langle y_{\beta_{i_{1}}},\left(x^{\mathbf{h}}\right)^{(2)}\right\rangle\left\langle y^{\prime},\left(x^{\mathbf{h}}\right)^{(1)}\right\rangle$. By inductive hypothesis and Lemma $4.4, c_{\mathbf{h}} \neq 0$ if and only if $\mathbf{h}=\left(0, \ldots, n_{1}, \ldots, n_{k}, 0, \ldots\right)$. Moreover, the nonzero $c_{\mathbf{h}}$ is equal to 1 and the proof in this case is completed.

If $r=0, n_{1}=s N_{\beta_{i_{1}}}$, then we write $y=y_{\beta_{i_{1}}}^{\left(N_{\beta_{i_{1}}}\right)} y^{\prime}$. Arguing as above, (17) follows. Hence $\left\{y_{\beta_{1}}^{\left(h_{1}\right)} \cdots y_{\beta_{M}}^{\left(h_{M}\right)} \mid 0 \leq h_{i}<\widetilde{N}_{\beta_{i}}\right\}$ is a basis of $\mathcal{L}_{\mathfrak{q}}$ because so is $\left\{\mathbf{y}_{\mathbf{h}}: \mathbf{h} \in \mathrm{H}\right\}$ by definition.

We seek for a presentation of $\mathcal{L}_{\mathfrak{q}}$. Let us consider the algebra \mathbb{L} presented by generators $\mathrm{y}_{\beta}^{(n)}, \beta \in \Delta_{+}^{\mathfrak{q}}, n \in \mathbb{N}$ with relations

$$
\begin{array}{ll}
\text { (18) } \mathrm{y}_{\beta}^{\left(N_{\beta}\right)}=0, & \beta \in \Delta_{+}^{\mathfrak{q}}-\mathfrak{O}_{\mathfrak{q}} ; \\
\text { (19) } & \mathrm{y}_{\beta}^{(h)} \mathrm{y}_{\beta}^{(j)}=\binom{h+j}{j}_{q_{\beta \beta}} \mathrm{y}_{\beta}^{(h+j)}, \\
& \beta \in \Delta_{+}^{\mathfrak{q}}, \tag{19}\\
& h, j \in \mathbb{N} ; \\
\text { (20) }\left[\mathrm{y}_{\beta}^{(h)}, \mathrm{y}_{\alpha}^{(j)}\right]_{c}=\sum_{\mathrm{m} \in \mathrm{M}(\alpha, \beta, h, j)} \kappa_{\mathrm{m}} \mathrm{~m}, & \alpha<\beta \in \Delta_{+}^{\mathfrak{q}}, \\
& 0<h<N_{\alpha}, \\
& 0<j<N_{\beta} ;
\end{array}
$$

$$
\left[\mathrm{y}_{\beta}^{\left(N_{\beta}\right)}, \mathrm{y}_{\alpha}^{\left(N_{\alpha}\right)}\right]_{c}=\kappa_{\gamma} \mathrm{y}_{\gamma}^{\left(N_{\gamma}\right)}+\sum_{\substack{0<l<N_{\beta}, 0<i<N_{\alpha} \tag{21}\\
\mathrm{m} \in \mathrm{M}\left(\alpha, \beta, N_{\alpha}-i, N_{\beta}-l\right)}} \kappa_{\mathrm{m}}^{i, l} \mathrm{y}_{\alpha}^{(i)} \mathrm{my}_{\beta}^{(l)}, \quad \begin{gather*}
\alpha, \beta, \gamma \in \mathfrak{O}_{\mathfrak{q}}, \\
\alpha<\gamma<\beta \\
\hline
\end{gather*}
$$

$$
\left[\mathrm{y}_{\beta}^{(j)}, \mathrm{y}_{\alpha}^{\left(N_{\alpha}\right)}\right]_{c}=\sum_{\substack{0<i<N_{\alpha}, \mathrm{m} \in \mathrm{M}\left(\alpha, \beta, N_{\alpha}-i, j\right)}} \kappa_{\mathrm{m}}^{i, 0} \mathrm{y}_{\alpha}^{(i)} \mathrm{m},
$$

$$
\begin{gathered}
\alpha \in \mathfrak{O}_{\mathfrak{q}} \\
\beta \in \Delta_{+}^{\mathfrak{q}} \\
0<j<N_{\beta}
\end{gathered}
$$

Here we set

$$
\begin{aligned}
\mathrm{M}(\alpha, \beta, h, j) & =\left\{\mathrm{m}=\mathrm{y}_{\beta_{r}}^{\left(h_{r}\right)} \cdots \mathrm{y}_{\beta_{k}}^{\left(h_{k}\right)} \in \widetilde{L}^{\beta} \cap \widetilde{\mathbf{L}}^{\alpha}: \operatorname{deg} \mathrm{m}=\operatorname{deg} \mathrm{y}_{\alpha}^{(h)}+\operatorname{deg} \mathrm{y}_{\beta}^{(j)}\right\} ; \\
\kappa_{\mathrm{m}}^{i, l} & =\left\langle y_{\beta}^{(h)} y_{\alpha}^{(j)}, x_{\beta}^{l} x_{\beta_{k}}^{h_{k}} \cdots x_{\beta_{r}}^{h_{r}} x_{\alpha}^{i}\right\rangle ; \\
\kappa_{\gamma} & =\left\langle\mathrm{y}_{\beta}^{\left(N_{\beta}\right)} \mathrm{y}_{\alpha}^{\left(N_{\alpha}\right)}, x_{\gamma}^{N_{\gamma}}\right\rangle, \quad \operatorname{deg} \mathrm{y}_{\gamma}^{\left(N_{\gamma}\right)}=\operatorname{deg} \mathrm{y}_{\alpha}^{\left(N_{\alpha}\right)}+\operatorname{deg} \mathrm{y}_{\beta}^{\left(N_{\beta}\right)}
\end{aligned}
$$

Theorem 4.7. There is an algebra isomorphism $\Upsilon: \mathbb{L} \rightarrow \mathcal{L}_{\mathfrak{q}}$ given by

$$
\Upsilon\left(\mathrm{y}_{\beta}^{(n)}\right)=y_{\beta}^{(n)}, \quad \beta \in \Delta_{+}^{\mathfrak{q}}, n<\tilde{N}_{\beta}
$$

Proof. We first prove that Υ is well-defined, i. e. that (18), ..., (22) are satisfied by the elements $y_{\beta}^{(n)} \in \mathcal{L}_{\mathfrak{q}}$. Relation (18) is trivial since $x_{\beta}^{N_{\beta}}=0$ if $\beta \notin \mathfrak{O}_{\mathfrak{q}}$ and (19) is clear from (15).

For the other relations, given $\alpha<\beta$ and $h, j \in \mathbb{N}$, we write $y_{\beta}^{(h)} y_{\alpha}^{(j)}=$ $\sum_{\mathbf{h} \in \mathrm{H}} c_{\mathbf{h}} \mathbf{Y}_{\mathbf{h}}$. Then

$$
c_{\mathbf{h}}=\left\langle y_{\beta}^{(h)} y_{\alpha}^{(j)}, \mathbf{x}^{\mathbf{h}}\right\rangle=\left\langle y_{\alpha}^{(j)},\left(\mathbf{x}^{\mathbf{h}}\right)^{(1)}\right\rangle\left\langle y_{\beta}^{(h)},\left(\mathbf{x}^{\mathbf{h}}\right)^{(2)}\right\rangle
$$

is the coefficient of $x_{\alpha}^{j} \otimes x_{\beta}^{h}$ in the expression of $\Delta\left(\mathbf{x}^{\mathbf{h}}\right)$ as linear combination of elements of the PBW basis in both sides of the tensor product.

If $j<N_{\alpha}$ and $h<N_{\beta}$, then $y_{\alpha}^{(j)}, y_{\beta}^{(h)} \in \mathcal{B}_{\mathfrak{q}}$. If $c_{\mathbf{h}} \neq 0$ then $\mathbf{x}^{\mathbf{h}}$ appears in the expression of $x_{\alpha}^{j} x_{\beta}^{h}$ in elements of the PBW basis, see [A1, Section 3]. Hence, by [HY2, 4.8] $\mathbf{x}^{\mathbf{h}} \in \mathbf{B}^{\alpha} \cap B^{\beta}$, and relation (20) is clear.

Let $\alpha, \beta \in \mathfrak{O}_{\mathfrak{q}}, j=N_{\alpha}$ and $h=N_{\beta}$. Suppose that there is $\mathbf{h}=$ $\left(h_{1}, \ldots, h_{M}\right)$ such that $c_{\mathbf{h}} \neq 0$ and $h_{i} \geq N_{i}$ for some $i \in \mathbb{I}_{M}$. As $x_{\beta_{i}}^{N_{i}} \mathfrak{q}$ commutes with every element of $\widetilde{\mathcal{B}}_{\mathfrak{q}}$, we have $\mathbf{x}^{\mathbf{h}}=c x_{\beta_{i}}^{N_{i}} \mathbf{x}^{\mathbf{h}^{\prime}}$, where $\mathbf{h}^{\prime}=$ $\left(h_{1}, \ldots, h_{i}-N_{i} \ldots, h_{M}\right)$ and $c=\Xi\left(h_{M} \beta_{M}+\cdots+h_{i+1} \beta_{i+1}, N_{i} \beta_{i}\right) \in \mathbf{k}$. Then $\Delta\left(\mathbf{x}^{\mathbf{h}}\right)=c \Delta\left(x_{\beta_{i}}^{N_{i}}\right) \Delta\left(\mathbf{x}^{\mathbf{h}^{\prime}}\right)$ and hence $\mathbf{x}^{\mathbf{h}}=x_{\beta_{i}}^{N_{i}}$ by Proposition 4.1. For the remaining \mathbf{j} such that $c_{\mathbf{j}} \neq 0$ we have $j_{i}<N_{i}$ for all $i \in \mathbb{I}_{M}$. We write $x_{\alpha}^{N_{\alpha}} \otimes x_{\beta}^{N_{\beta}}=\xi\left(1 \otimes x_{\beta}^{n}\right)\left(x_{\alpha}^{N_{\alpha}-m} \otimes x_{\beta}^{N_{\beta}-n}\right)\left(x_{\alpha}^{m} \otimes 1\right)$ where $\xi=$ $\Xi^{-1}\left(\left(N_{\alpha}-m\right) \alpha, n \beta\right) \Xi^{-1}\left(m \alpha,\left(N_{\beta}-n\right) \beta\right)$. Therefore, arguing as in the proof of (20) for $y_{\beta}^{\left(N_{\beta}-n\right)} y_{\alpha}^{\left(N_{\alpha}-m\right)}$, we obtain that $\mathbf{y}_{\mathbf{j}}=\mathrm{y}_{\alpha}^{(m)} \mathrm{my}_{\beta}^{(n)}, \mathrm{m} \in \widetilde{L}^{\beta} \cap \widetilde{\mathbf{L}}^{\alpha}$. Here, either $m=N_{\alpha}, n=N_{\beta}$ so $\mathbf{y}_{\mathbf{j}}=\Xi\left(N_{\alpha} \alpha, N_{\beta} \beta\right) \mathrm{y}_{\alpha}^{\left(N_{\alpha}\right)} \mathrm{y}_{\beta}^{\left(N_{\beta}\right)}$, or else $m<N_{\alpha} n<N_{\beta}$. Hence relation (21) follows up to consider the correct degree for $\mathbf{y}_{\mathbf{h}}$.

For (22), $c_{\mathbf{h}} \neq 0$ implies $\mathbf{x}^{\mathbf{h}} \in \mathcal{B}_{\mathfrak{q}}$ by the same argument above, since $Z_{\mathfrak{q}}^{+}$ is a braided Hopf subalgebra by Theorem 4.3.

Hence, Υ is a morphism of algebras. By the presentation of \mathbb{L} we can prove that $\left\{\mathrm{y}_{\beta_{1}}^{\left(h_{1}\right)} \ldots \mathrm{y}_{\beta_{M}}^{\left(h_{M}\right)}: h_{i}<\widetilde{N}_{i}\right\}$ is a basis of \mathbb{L}. So, Υ maps a basis to a basis by Lemma 4.6 and then it is bijective.

Example 4.8. Let $\theta=3 \leq N, q \in \mathbf{k}^{\times}$, ord $q=N$. We consider a diagonal braiding (of super type A) given by a matrix $\mathfrak{q}=\left(q_{i j}\right)_{i, j \in \mathbb{I}_{3}}$ such that

$$
q_{11}=q_{23} q_{32}=q, \quad q_{12} q_{21}=q^{-1}, \quad q_{22}=q_{33}=-1, \quad q_{13} q_{31}=1
$$

Let $\alpha_{j k}=\sum_{j \leq i \leq k} \alpha_{i}$; then $\Delta_{\mathfrak{q}}^{+}=\left\{\alpha_{j k}: 1 \leq j \leq k \leq 3\right\}, \mathfrak{O}_{\mathfrak{q}}^{+}=\left\{\alpha_{1}, \alpha_{23}, \alpha_{13}\right\}$.
The Lusztig algebra $\mathcal{L}_{\mathfrak{q}}$ is presented by generators $y_{j k}^{(n)}, 1 \leq j \leq k \leq 3$, $n \in \mathbb{N}$ and relations:

$$
y_{12}^{(2)}=y_{2}^{(2)}=y_{3}^{(2)}=0
$$

$$
\begin{aligned}
& y_{j k}^{(n)} y_{j k}^{(m)}=\binom{n+m}{n}_{q_{j k}} y_{j k}^{(n+m)}, \quad n, m \in \mathbb{N}, \\
& {\left[y_{12}, y_{1}\right]_{c}=} {\left[y_{13}, y_{1}\right]_{c}=\left[y_{3}, y_{1}\right]_{c}=\left[y_{13}, y_{12}\right]_{c}=\left[y_{2}, y_{12}\right]_{c}=\left[y_{23}, y_{12}\right]_{c}=0, } \\
& {\left[y_{2}, y_{13}\right]_{c}=} {\left[y_{23}, y_{13}\right]_{c}=\left[y_{3}, y_{13}\right]_{c}=\left[y_{23}, y_{2}\right]_{c}=\left[y_{3}, y_{23}\right]_{c}=0, } \\
& {\left[y_{2}, y_{1}\right]_{c}=\left(1-q^{-1}\right) y_{12}, \quad \quad\left[y_{3}, y_{12}\right]_{c}=(1-q) y_{13}, } \\
& {\left[y_{23}, y_{1}\right]_{c}=\left(1-q^{-1}\right) y_{13}, \quad\left[y_{3}, y_{2}\right]_{c}=(1-q) y_{23}, } \\
& {\left[y_{23}^{(N)}, y_{1}\right]_{c}=}\left(1-q^{-1}\right)\left(q_{21} q_{31}\right)^{N-1} y_{13} y_{23}^{(N-1)}, \\
& {\left[y_{23}, y_{1}^{(N)}\right]_{c}=}\left(1-q^{-1}\right)\left(q_{21} q_{31}\right)^{N-1} y_{1}^{(N-1)} y_{13}, \\
& {\left[y_{2}, y_{1}^{(N)}\right]_{c}=}\left(1-q^{-1}\right) q_{21}^{N-1} y_{1}^{(N-1)} y_{12}, \\
& {\left[y_{12}, y_{1}^{(N)}\right]_{c}=} {\left[y_{13}, y_{1}^{(N)}\right]_{c}=\left[y_{3}, y_{1}^{(N)}\right]_{c}=0, } \\
& {\left[y_{13}^{(N)}, y_{1}\right]_{c}=} {\left[y_{13}^{(N)}, y_{12}\right]_{c}=\left[y_{2}, y_{13}^{(N)}\right]_{c}=\left[y_{23}, y_{13}^{(N)}\right]_{c}=\left[y_{3}, y_{13}^{(N)}\right]_{c}=0, } \\
& {\left[y_{23}^{(N)}, y_{12}\right]_{c}=} {\left[y_{23}^{(N)}, y_{13}\right]_{c}=\left[y_{23}^{(N)}, y_{2}\right]_{c}=\left[y_{3}, y_{23}^{(N)}\right]_{c}=0, } \\
& {\left[y_{13}^{(N)}, y_{1}^{(N)}\right]_{c}=} {\left[y_{23}^{(N)}, y_{13}^{(N)}\right]_{c}=0, } \\
& {\left[y_{23}^{(N)}, y_{1}^{(N)}\right]_{c}=}\left(1-q^{-1}\right)^{N}\left(q_{21} q_{31}\right)^{N \frac{N-1}{2}} y_{13}^{(N)} \\
& \quad \quad+\sum_{k=1}^{N-1}\left(1-q^{-1}\right)^{k}\left(q_{21} q_{31}\right)^{k \frac{2 N-k-1}{2}} y_{1}^{(N-k)} y_{13}^{(k)} y_{23}^{(N-k)} .
\end{aligned}
$$

Indeed, to compute $y_{23}^{(N)} y_{1}^{(N)}$ in $\mathcal{L}_{\mathfrak{q}}$, we need to describe all $\mathbf{h} \in \mathrm{H}$, cf. (12), such that $x_{1}^{N} \otimes x_{23}^{N}$ appears in $\Delta\left(\mathbf{x}^{\mathbf{h}}\right)$ with non-zero coefficient (also to be determined), where (for some numeration of $\Delta_{\mathfrak{q}}^{+}$)

$$
\mathbf{x}^{\mathbf{h}}=x_{3}^{h_{1}} x_{23}^{h_{2}} x_{2}^{h_{3}} x_{123}^{h_{4}} x_{12}^{h_{5}} x_{1}^{h_{6}}
$$

One of these $\mathbf{x}^{\mathbf{h}}$ is $x_{23}^{N} x_{1}^{N}$, with coefficient $\mathfrak{q}_{N \alpha_{1}, N \alpha_{2}+N \alpha_{3}}$. Let \mathbf{h} be as needed. We use the coproduct formulas in [A3, 5.1]. Clearly $h_{1}=0$. From $\Delta\left(x_{23}^{h_{2}}\right)$, the only contribution is $\left(1 \otimes x_{23}\right)^{h_{2}}$. Then we deduce easily that $h_{3}=h_{5}=0$, and $h_{6}=h_{2}=N-h_{4}$. In this case, set $h_{4}=k$ to simplify the notation, so

$$
\left(1 \otimes x_{23}\right)^{N-k}\left(x_{1} \otimes x_{23}\right)^{k}\left(x_{1} \otimes 1\right)^{N-k}=\left(q_{21} q_{31}\right)^{k \frac{2 N-k-1}{2}} x_{1}^{N} \otimes x_{23}^{N}
$$

This gives the last relation, and the others are deduced analogously.
Corollary 4.9. The algebra $\mathcal{L}_{\mathfrak{q}}$ is finitely generated.
Proof. By (19), it is generated by $\left\{y_{\beta}: \beta \in \Delta_{+}^{\mathfrak{q}}\right\} \cup\left\{y_{\alpha}^{\left(N_{\alpha}\right)}: \alpha \in \mathfrak{O}_{\mathfrak{q}}\right\}$.
Remark 4.10. Actually, the subalgebra $\mathcal{B}_{\mathfrak{q}} \subset \mathcal{L}_{\mathfrak{q}}$ is generated by its primitive elements $\left\{y_{\alpha}: \alpha \in \Pi_{\mathfrak{q}}\right\}$ where $\Pi_{\mathfrak{q}}$ denotes the set of simple roots $\alpha_{1}, \ldots, \alpha_{\theta}$. Moreover, $y_{\gamma}^{\left(N_{\gamma}\right)} \in \mathbf{k}^{\times}\left[y_{\beta}^{\left(N_{\beta}\right)}, y_{\alpha}^{\left(N_{\alpha}\right)}\right]_{c}$ if and only if $x_{\alpha}^{N_{\alpha}} \otimes x_{\beta}^{N_{\beta}}$ appears with
nonzero coefficient in $\Delta\left(x_{\gamma}^{N_{\gamma}}\right)$. Hence,

$$
\left\{y_{\alpha}: \alpha \in \Pi_{\mathfrak{q}}\right\} \cup\left\{y_{\alpha}^{\left(N_{\alpha}\right)}: \alpha \in \mathfrak{O}_{\mathfrak{q}}, x_{\alpha}^{N_{\alpha}} \in \mathcal{P}\left(\widetilde{\mathcal{B}}_{\mathfrak{q}}\right)\right\}
$$

generates $\mathcal{L}_{\mathfrak{q}}$ as an algebra.
Proposition 4.11. $\widetilde{\mathbf{L}}^{i}$ is a right coideal subalgebra of $\mathcal{L}_{\mathfrak{q}}$.
Proof. From Theorem 4.7 we have that $y_{\beta_{j}}^{(n)} y_{\beta_{i}}^{(m)} \in \widetilde{\mathbf{L}}^{i}$ for $i<j$, thus $\widetilde{\mathbf{L}}^{i}$ is a subalgebra of \mathcal{L}_{q}. On the other hand, we know that $\left\langle y_{\beta}^{(n)}, x x^{\prime}\right\rangle=$ $\left\langle\left(y_{\beta}^{(n)}\right)^{(2)}, x\right\rangle\left\langle\left(y_{\beta}^{(n)}\right)^{(1)}, x^{\prime}\right\rangle$. Therefore $y_{\mathbf{j}} \otimes y_{\mathbf{h}}$ appears with nonzero coefficient in $\Delta\left(y_{\beta}^{(n)}\right)$ if and only if x_{β}^{n} appears with nonzero coefficient in the expression of $x^{\mathbf{h}} x^{\mathbf{j}}$ in the PBW basis. The last condition implies that $x^{\mathbf{h}} \in \widetilde{B}^{\beta}$ and $x^{\mathbf{j}} \in \widetilde{\mathbf{B}}^{\beta}$. Hence,

$$
\Delta\left(y_{\beta}^{(n)}\right) \in \sum_{i=0}^{n} y_{\beta}^{(i)} \otimes y_{\beta}^{(n-i)}+\widetilde{\mathbf{L}}^{\beta} \otimes \widetilde{L}^{\beta} .
$$

Hence $\Delta\left(y_{\beta_{i}}^{\left(n_{i}\right)} \ldots y_{\beta_{M}}^{\left(n_{M}\right)}\right)=\Delta\left(y_{\beta_{i}}^{\left(n_{i}\right)}\right) \Delta\left(y_{\beta_{i+1}}^{\left(n_{i+1}\right)} \ldots y_{\beta_{M}}^{\left(n_{M}\right)}\right) \in \widetilde{\mathbf{L}}^{i} \otimes \mathcal{L}_{\mathfrak{q}}$ and the proof is complete.
4.2. Noetherianity and Gelfand-Kirillov dimension. We argue as in the pre-Nichols case [A3, Section 3.4], cf. [DP]. Let us consider the lexicographic order in \mathbb{N}_{0}^{M}, so that $\mathbf{h}_{M}<\cdots<\mathbf{h}_{1}$, where $\left(\mathbf{h}_{j}\right)_{j \in \mathbb{I}_{M}}$ denotes the canonical basis of \mathbb{Z}^{M}.
Lemma 4.12. Let $\mathcal{L}_{\mathfrak{q}}(\mathbf{h})$ be the subspace of $\mathcal{L}_{\mathfrak{q}}$ generated by $\mathbf{y}_{\mathbf{j}}$, with $\mathbf{j} \leq \mathbf{h}$. Then $\mathcal{L}_{\mathfrak{q}}(\mathbf{h})$ is an \mathbb{N}_{0}^{M}-algebra filtration of $\mathcal{L}_{\mathfrak{q}}$.
Proof. It is enough to prove that $\mathbf{y}_{\mathbf{h}} \mathbf{y}_{\mathbf{j}} \in \mathcal{L}_{\mathfrak{q}}(\mathbf{h}+\mathbf{j})$ for all $\mathbf{h}, \mathbf{j} \in \mathrm{H}$. First we consider the case when $\mathbf{h}=n \mathbf{h}_{k}, \mathbf{j}=m \mathbf{h}_{l}, k, l \in \mathbb{I}_{M}, n, m \in \mathbb{N}$. We claim that $y_{\beta_{k}}^{(n)} y_{\beta_{l}}^{(m)} \in \mathcal{L}_{\mathfrak{q}}\left(n \mathbf{h}_{k}+m \mathbf{h}_{l}\right)$. This follows by definition when $k \leq l$. If $l<k$, then $\left[y_{\beta_{k}}^{(n)}, y_{\beta_{l}}^{(m)}\right]_{c} \in \sum_{j<m} y_{\beta_{l}}^{(j)} \widetilde{\mathbf{L}}^{l+1}$ by Theorem 4.7, thus

$$
y_{\beta_{k}}^{(n)} y_{\beta_{l}}^{(m)} \in \mathcal{L}_{\mathfrak{q}}\left(n \mathbf{h}_{k}+m \mathbf{h}_{l}\right) \quad \text { since } \quad \sum_{j=l+1}^{M} a_{j} \mathbf{h}_{j}<n \mathbf{h}_{k}+m \mathbf{h}_{l} .
$$

The Lemma follows by reordering the factors of $\mathbf{y}_{\mathbf{h}} \mathbf{y}_{\mathbf{j}}$, for any $\mathbf{h}, \mathbf{j} \in \mathbb{N}_{0}^{M}$.
We now consider the corresponding graded algebra

$$
\operatorname{gr} \mathcal{L}_{\mathfrak{q}}=\oplus_{\mathbf{h} \in \mathbb{N}_{0}^{M}} \operatorname{gr}^{\mathbf{h}} \mathcal{L}_{\mathfrak{q}}, \quad \text { where } \quad \operatorname{gr}^{\mathbf{h}} \mathcal{L}_{\mathfrak{q}}=\mathcal{L}_{\mathfrak{q}}(\mathbf{h}) / \sum_{\mathbf{j}<\mathbf{h}} \mathcal{L}_{\mathfrak{q}}(\mathbf{j})
$$

Lemma 4.13. The algebra gr $\mathcal{L}_{\mathfrak{q}}$ is presented by generators $\mathrm{y}_{k}^{(n)}, k \in \mathbb{I}_{M}$, $n \in \mathbb{N}$, and relations

$$
\mathrm{y}_{k}^{\left(N_{k}\right)}=0, \quad \beta_{k} \notin \mathfrak{O}_{\mathfrak{q}},
$$

$$
\begin{aligned}
& \mathrm{y}_{k}^{(n)} \mathrm{y}_{k}^{(m)}=\binom{n+m}{m}_{q_{\beta_{k} \beta_{k}}} \mathrm{y}_{k}^{(n+m)} \\
& {\left[\mathrm{y}_{k}^{(n)}, \mathrm{y}_{l}^{(m)}\right]_{c}=0, \quad l<k}
\end{aligned}
$$

Proof. Let \mathcal{G} be the algebra presented by the generators and relations above and $\pi: \mathcal{G} \rightarrow \operatorname{gr} \mathcal{L}_{\mathfrak{q}}$ given by $\mathrm{y}_{k}^{(n)} \mapsto y_{\beta_{k}}^{(n)}$. By Theorem 4.7, the relations above hold in $\operatorname{gr} \mathcal{L}_{\mathfrak{q}}$. By a direct computation, \mathcal{G} has a basis

$$
\left\{\mathrm{y}_{1}^{\left(h_{1}\right)} \ldots \mathrm{y}_{M}^{\left(h_{M}\right)}: h_{i}<\tilde{N}_{i}\right\} .
$$

On the other hand, $\mathbf{y}_{\mathbf{h}} \in \mathcal{L}_{\mathfrak{q}}(\mathbf{h})-\sum_{\mathbf{j}<\mathbf{h}} \mathcal{L}_{\mathfrak{q}}(\mathbf{j})$. Hence the projection of the PBW basis of $\mathcal{L}_{\mathfrak{q}}$ is a basis of $\operatorname{gr} \mathcal{L}_{\mathfrak{q}}$ and π is an isomorphism.

Proposition 4.14. The algebra $\mathcal{L}_{\mathfrak{q}}$ is Noetherian.
Proof. Let \mathcal{Z}^{+}be the subalgebra of $\operatorname{gr} \mathcal{L}_{\mathfrak{q}}$ generated by $\left\{y_{\beta}^{\left(N_{\beta}\right)}: \beta \in \mathfrak{O}_{\mathfrak{q}}\right\}$. Then \mathcal{Z}^{+}is a quantum affine space and $\operatorname{gr} \mathcal{L}_{\mathfrak{q}}$ is a finitely generated free \mathcal{Z}^{+}-module. Hence $\operatorname{gr} \mathcal{L}_{\mathfrak{q}}$ is Noetherian and so is $\mathcal{L}_{\mathfrak{q}}$.

We compute either from Lemma 4.6 or else from Lemma 4.13 the GelfandKirillov dimension of $\mathcal{L}_{\mathfrak{q}}$.

Proposition 4.15. GKdim $\mathcal{L}_{\mathfrak{q}}=\left|\mathfrak{O}_{\mathfrak{q}}\right|$.

5. Quantum divided power algebras

5.1. Definition. Let $\mathfrak{q},(V, c)$ be as above with $\operatorname{dim} \mathcal{B}_{\mathfrak{q}}<\infty$. Let $W=V^{*}$, with matrix \mathfrak{q}^{t}, see footnote 2 , and let $\left\{z_{\beta}^{(n)}: \beta \in \Delta_{+}^{\mathfrak{q}}, n \in \mathbb{N}\right\}$ be the generators of $\mathcal{L}_{\mathfrak{q}^{t}}$. Here we consider $W \in{\underset{\mathbf{k}}{ } \mathbb{Z}^{\theta}}_{\mathbf{k} \mathbb{Y}^{\theta} \mathcal{D} \text { via the equivalence of }}$ categories between $\underset{\left(\mathbf{k} \mathbb{Z}^{\theta}\right)^{*}}{\left(\mathbf{k} \mathbb{Z}^{\theta}\right)^{*}} \mathcal{D}$ and $\underset{\mathbf{k} \mathbb{Z}^{\theta}}{\mathbf{k} \mathbb{Y}^{\theta} \mathcal{D} \text {. Then we have a natural evaluation }}$ map such that $\left\langle w \otimes w^{\prime}, v \otimes v^{\prime}\right\rangle=\left\langle w \otimes v^{\prime}\right\rangle\left\langle w^{\prime} \otimes v\right\rangle$. In this section we define the quantum divided power algebra $\mathcal{U}_{\mathfrak{q}}$ of (V, c) and we establish some of its basic properties.

Let Γ and Λ be two copies of \mathbb{Z}^{θ}, generated by $\left(K_{i}\right)_{i \in \mathbb{I}}$ and $\left(L_{i}\right)_{i \in \mathbb{I}}$ respectively; so that $\left(K_{i}^{ \pm 1}\right)_{i \in \mathbb{I}}$ and $\left(L_{i}^{ \pm 1}\right)_{i \in \mathbb{I}}$ are the generators of $\mathbf{k} \Gamma$ and $\mathbf{k} \Lambda$, respectively. Set $K_{\alpha}=K_{1}^{a_{1}} \ldots K_{\theta}^{a_{\theta}}$ and $L_{\alpha}=L_{1}^{a_{1}} \ldots L_{\theta}^{a_{\theta}}$ for $\alpha=$ $\left(a_{1}, \ldots, a_{\theta}\right) \in \mathbb{Z}^{\theta}$. Then $\mathcal{L}_{\mathfrak{q}} \in \underset{\mathbf{k} \Gamma}{\mathbf{k} \Gamma} \mathcal{Y} \mathcal{D}, \mathcal{L}_{\mathfrak{q}^{t}} \in{ }_{\mathbf{k} \Lambda}^{\mathbf{k} \Lambda} \mathcal{Y} \mathcal{D}$ with structure determined by the formulae

$$
\begin{array}{ll}
K_{\alpha}^{ \pm 1} \cdot y_{\beta}^{(n)}=q_{\alpha \beta}^{ \pm n} y_{\beta}^{(n)}, & \rho\left(y_{\beta}^{(n)}\right)=K_{\beta}^{n} \otimes y_{\beta}^{(n)} \\
L_{\alpha}^{ \pm 1} \cdot z_{\beta}^{(n)}=q_{\beta \alpha}^{ \pm n} z_{\beta}^{(n)}, & \rho\left(z_{\beta}^{(n)}\right)=L_{\beta}^{n} \otimes y_{\beta}^{(n)}
\end{array}
$$

Therefore, we can consider the bosonizations $\mathcal{L}_{\mathfrak{q}} \# \mathbf{k} \Gamma$ and $\mathcal{L}_{\mathfrak{q}^{t}} \# \mathbf{k} \Lambda$.
We define next the quantum double of $\mathcal{L}_{\mathfrak{q}} \# \mathbf{k} \Gamma$ and $\mathcal{L}_{\mathfrak{q}^{t}} \# \mathbf{k} \Lambda$ following [J, 3.2.2]. For this we need a Hopf pairing between them.

Lemma 5.1. There is a unique bilinear form $(\mid): T^{c}(V) \times\left(T^{c}(W)\right)^{\text {cop }} \rightarrow \mathbf{k}$ such that $(1 \mid 1)=1$,

$$
\begin{array}{lr}
\left(y_{i} \mid z_{j}\right)=\delta_{i j}, & i, j \in \mathbb{I} ; \\
\left(y \mid z z^{\prime}\right)=\left(y^{(1)} \mid z\right)\left(y^{(2)} \mid z^{\prime}\right), & y \in T^{c}(V), z, z^{\prime} \in T^{c}(W) \\
\left(y y^{\prime} \mid z\right)=\left(y \mid z^{(1)}\right)\left(y^{\prime} \mid z^{(2)}\right), & y, y^{\prime} \in T^{c}(V), z \in T^{c}(W) \\
(y \mid z)=0, & |y| \neq|z|, y \in T^{c}(V), z \in T^{c}(W)
\end{array}
$$

Proof. Let $\mathbf{T}^{n}=\sum_{\sigma \in \mathbb{S}_{n}} s(\sigma):\left(T^{c}\right)^{n}(W) \rightarrow T^{n}(W)$, where $s: \mathbb{S}_{n} \rightarrow \mathbb{B}_{n}$ is the Matsumoto section, see $[A G, \S 3.2]$. Let $\langle\rangle:, T^{c}(V) \otimes T(W)^{\mathrm{op}} \rightarrow \mathbf{k}$ be the evaluation map. We define $(1 \mid 1)=1$,

$$
\begin{array}{lr}
(y \mid z)=\left\langle y, \mathbf{T}^{n}(z)\right\rangle, & y \in\left(T^{c}\right)^{n}(V), z \in\left(T^{c}\right)^{n}(W) \\
(y \mid z)=0, & y \in\left(T^{c}\right)^{n}(V), z \in\left(T^{c}\right)^{m}(W), n \neq m .
\end{array}
$$

Note that $\mathbf{T}^{i+j}=\mathbf{T}_{i, j}\left(\mathbf{T}^{i} \otimes \mathbf{T}^{j}\right)$ with $\mathbf{T}_{i, j}=\sum s\left(\sigma^{-1}\right)$ where the sum is over all (i, j)-shuffles σ. Then, for $y \in\left(T^{c}\right)^{n}(V), z \in\left(T^{c}\right)^{n-i}(W), z^{\prime} \in$ $\left(T^{c}\right)^{i}(W)$,

$$
\begin{aligned}
\left(y \mid z z^{\prime}\right) & =\left\langle y, \mathbf{T}^{n}\left(z^{\prime} z\right)\right\rangle=\left\langle y, \mathbf{T}_{i, n-i}\left(\mathbf{T}^{i} \otimes \mathbf{T}^{n-i}\right)\left(z^{\prime} z\right)\right\rangle \\
& =\left\langle y, \mathbf{T}_{i, n-i}\left(\mathbf{T}^{i}\left(z^{\prime}\right) \otimes \mathbf{T}^{n-i}(z)\right)\right\rangle=\left\langle y^{(1)}, \mathbf{T}^{n-i}(z)\right\rangle\left\langle y^{(2)}, \mathbf{T}^{i}\left(z^{\prime}\right)\right\rangle \\
& =\left(y^{(1)} \mid z\right)\left(y^{(2)} \mid z^{\prime}\right)
\end{aligned}
$$

The other conditions are clear.
This bilinear form restricts to $\mathcal{L}_{\mathfrak{q}} \times\left(\mathcal{L}_{\mathfrak{q}^{t}}\right)^{\text {cop }}$ and then it can be extended to a bilinear form between their bosonizations. Then we may define a skewHopf pairing between $\mathcal{L}_{\mathfrak{q}} \# \mathbf{k} \Gamma$ and $\mathcal{L}_{\mathfrak{q}^{t}} \# \mathbf{k} \Lambda$, or equivalently:
Corollary 5.2. There is a unique Hopf pairing

$$
(\mid): \mathcal{L}_{\mathfrak{q}} \# \mathbf{k} \Gamma \times\left(\mathcal{L}_{\mathfrak{q}^{t}} \# \mathbf{k} \Lambda\right)^{\mathrm{cop}} \rightarrow \mathbf{k}
$$

such that for all $Y, Y^{\prime} \in \mathcal{L}_{\mathfrak{q}} \# \mathbf{k} \Gamma, Z, Z^{\prime} \in\left(\mathcal{L}_{\mathfrak{q}^{t}} \# \mathbf{k} \Lambda\right)^{\text {cop }}, y_{\alpha}^{(n)} \in \mathcal{L}_{\mathfrak{q}}, K_{\alpha} \in \mathbf{k} \mathbb{Z}^{\theta}$, $z_{\beta}^{(m)} \in \mathcal{L}_{\mathfrak{q}^{t}}$ and $L_{\beta} \in \mathbf{k} \mathbb{Z}^{\theta}$

$$
\begin{aligned}
& \left(Y \mid Z Z^{\prime}\right)=\left(Y_{(1)} \mid Z\right)\left(Y_{(2)} \mid Z^{\prime}\right), \quad\left(Y Y^{\prime} \mid z\right)=\left(Y \mid Z_{(1)}\right)\left(Y^{\prime} \mid Z_{(2)}\right) \\
& \left(y_{\alpha}^{(n)} \mid z_{\beta}^{(m)}\right)=\delta_{n \alpha, m \beta}, \quad\left(y_{\alpha}^{(n)} \mid L_{\beta}\right)=0, \quad\left(K_{\alpha} \mid z_{\beta}^{(m)}\right)=0, \quad\left(K_{\alpha} \mid L_{\beta}\right)=q_{\alpha \beta}
\end{aligned}
$$

Moreover, this pairing satisfies the equation $(y K \mid z L)=(y \mid z)(K \mid L)$.
Let $\mathcal{U}_{\mathfrak{q}}$ be the Drinfeld double of $\mathcal{L}_{\mathfrak{q}} \# \mathbf{k} \Gamma$ and $\left(\mathcal{L}_{\mathfrak{q}^{t}} \# \mathbf{k} \Lambda\right)^{\text {cop }}$ with respect to the Hopf pairing in Corollary 5.2. In other words:

Definition 5.3. Let $\mathcal{U}_{\mathfrak{q}}$ be the unique Hopf algebra such that
(1) $\mathcal{U}_{\mathfrak{q}}=\left(\mathcal{L}_{\mathfrak{q}} \# \mathbf{k} \Gamma\right) \otimes\left(\mathcal{L}_{\mathfrak{q}^{t}} \# \mathbf{k} \Lambda\right)$ as vector spaces,
(2) the maps $Y \mapsto Y \otimes 1$ and $Z \mapsto 1 \otimes Z$ are Hopf algebra morphisms,
(3) the product is given by
$(Y \otimes Z)\left(Y^{\prime} \otimes Z^{\prime}\right)=\left(Y_{(1)}^{\prime} \mid \mathcal{S}\left(Z_{(1)}\right)\right) Y Y_{(2)}^{\prime} \otimes Z_{(2)} Z^{\prime}\left(Y_{(3)}^{\prime} \mid Z_{(3)}\right)$ for all $Y, Y^{\prime} \in \mathcal{L}_{\mathfrak{q}} \# \mathbf{k} \Gamma$ and $Z, Z^{\prime} \in\left(\mathcal{L}_{\mathfrak{q}^{t}} \# \mathbf{k} \Lambda\right)^{\text {cop }}$.
By the construction of $\mathcal{U}_{\mathfrak{q}}$, there is a triangular decomposition, via the multiplication, $\mathcal{U}_{\mathfrak{q}} \simeq \mathcal{U}_{\mathfrak{q}}^{+} \otimes \mathcal{U}^{0} \otimes \mathcal{U}_{\mathfrak{q}}^{-}$where

$$
\mathcal{U}_{\mathfrak{q}}^{+} \simeq \mathcal{L}_{\mathfrak{q}}, \quad \mathcal{U}_{\mathfrak{q}}^{-} \simeq \mathcal{L}_{\mathfrak{q}^{t}}, \quad \mathcal{U}^{0} \simeq \mathbf{k}\left(\mathbb{Z}^{\theta} \times \mathbb{Z}^{\theta}\right)
$$

We give a presentation of the algebra $\mathcal{U}_{\mathfrak{q}}$ by generators and relations. The tensor product signs in elements of $\mathcal{U}_{\mathfrak{q}}$ will be omitted.

Proposition 5.4. The algebra $\mathcal{U}_{\mathfrak{q}}$ is generated by the elements $y_{\beta}^{(n)}$, $z_{\beta}^{(n)}$, $K_{\beta}^{ \pm 1}, L_{\beta}^{ \pm 1}$ for $\beta \in \Delta_{+}^{\mathfrak{q}}, n \in \mathbb{N}$; and relations (18), ..., (22) between the $y_{\beta}^{(n)}$, s, similar relations for the $z_{\beta}^{(n)}$,s plus the relations

$$
\begin{array}{rr}
K_{\beta} K_{\beta}^{-1}=L_{\beta}^{-1} L_{\beta}=1, & K_{\beta}^{ \pm 1} L_{\alpha}^{ \pm 1}=L_{\alpha}^{ \pm 1} K_{\beta}^{ \pm 1} \\
K_{\alpha} y_{\beta}^{(n)}=q_{\alpha \beta}^{n} y_{\beta}^{(n)} K_{\alpha}, & L_{\alpha} y_{\beta}^{(n)}=q_{\beta \alpha}^{-n} y_{\beta}^{(n)} L_{\alpha}, \\
K_{\alpha} z_{\beta}^{(n)}=q_{\alpha \beta}^{-n} z_{\beta}^{(n)} K_{\alpha}, & L_{\alpha} z_{\beta}^{(n)}=q_{\beta \alpha}^{n} z_{\beta}^{(n)} L_{\alpha}, \\
z y=\left(y^{(1)} \mid \mathcal{S}\left(z^{(3)}\right)\right)\left(K_{2} K_{3} \mid L_{3}^{-1}\right)\left(y^{(3)} \mid z^{(1)}\right) y^{(2)} K_{3} z^{(2)} L_{3}, \tag{26}
\end{array}
$$

for all $\alpha, \beta \in \Delta_{+}^{\mathfrak{q}}, n, m \in \mathbb{N}$. Here in (26) $y=y_{\beta}^{(n)} \in \mathcal{L}_{\mathfrak{q}}, z=z_{\alpha}^{(m)} \in \mathcal{L}_{\mathfrak{q}^{t}}$, and denote $K_{i}=\left(y^{(i)}\right)_{(-1)}$ and $L_{i}=\left(z^{(i)}\right)_{(-1)}$ for the coactions of $\mathbf{k} \Gamma$ and $\mathbf{k} \Lambda$ respectively.

Note that if $y=y_{\alpha_{i}}, z=z_{\alpha_{j}}$ with $\alpha_{i}, \alpha_{j} \in \Pi_{\mathfrak{q}}$, then y, z are primitives and relation (26) is $z y-y z=\delta_{i j}\left(K_{i}-L_{i}\right)$.
5.2. Basic properties. Proceeding as in [DP, A3], we will prove that the algebra $\mathcal{U}_{\mathfrak{q}}$ is Noetherian. For each $\mathbf{h}, \mathbf{j} \in H, K \in \Gamma, L \in \Lambda$, set

$$
\begin{aligned}
d_{1}\left(\mathbf{y}_{\mathbf{h}} K L \mathbf{z}_{\mathbf{j}}\right) & =\sum_{i \in \mathbb{I}_{M}}\left(h_{i}+j_{i}\right) \operatorname{ht}\left(\beta_{i}\right) \\
d\left(\mathbf{y}_{\mathbf{h}} K L \mathbf{z}_{\mathbf{j}}\right) & =\left(d_{1}\left(\mathbf{y}_{\mathbf{h}} K L \mathbf{z}_{\mathbf{j}}\right), h_{1}, \ldots, h_{M}, j_{1}, \ldots, j_{M}\right) \in \mathbb{N}_{0}^{2 M+1}
\end{aligned}
$$

Consider the lexicographic order in $\mathbb{N}_{0}^{2 M+1}$. If $\mathbf{u} \in \mathbb{N}_{0}^{2 M+1}$, then we set

$$
\mathcal{U}_{\mathfrak{q}}(\mathbf{u})=\operatorname{span} \text { of }\left\{\mathbf{y}_{\mathbf{h}} K L \mathbf{z}_{\mathbf{j}}: \mathbf{h}, \mathbf{j} \in \mathrm{H}, K \in \Gamma, L \in \Lambda, d\left(\mathbf{y}_{\mathbf{h}} K L \mathbf{z}_{\mathbf{j}}\right) \leq \mathbf{u}\right\}
$$

Lemma 5.5. $\left(\mathcal{U}_{\mathfrak{q}}(\mathbf{u})\right)_{\mathbf{u} \in \mathbb{N}_{0}^{2 M+1}}$ is an $\mathbb{N}_{0}^{2 M+1}$-algebra filtration of $\mathcal{U}_{\mathfrak{q}}$.
Proof. It is enough to prove that $\left(\mathbf{y}_{\mathbf{h}} K L \mathbf{z}_{\mathbf{j}}\right)\left(\mathbf{y}_{\mathbf{h}^{\prime}} K^{\prime} L^{\prime} \mathbf{z}_{\mathbf{j}^{\prime}}\right) \in \mathcal{U}_{\mathfrak{q}}\left(\mathbf{u}+\mathbf{u}^{\prime}\right)$ for all $\mathbf{h}, \mathbf{j}, \mathbf{h}^{\prime}, \mathbf{j}^{\prime} \in \mathbf{H}, K, K^{\prime} \in \Gamma$ and $L, L^{\prime} \in \Lambda$ where $d\left(\mathbf{y}_{\mathbf{h}} K L \mathbf{z}_{\mathbf{j}}\right)=\mathbf{u}$ and $d\left(\mathbf{y}_{\mathbf{h}^{\prime}} K^{\prime} L^{\prime} \mathbf{z}_{\mathbf{j}^{\prime}}\right)=\mathbf{u}^{\prime}$.

First we claim that

$$
\begin{equation*}
d_{1}\left(z_{\beta}^{(n)} y_{\alpha}^{(m)}-y_{\alpha}^{(m)} z_{\beta}^{(n)}\right)<m \operatorname{ht}(\alpha)+n \operatorname{ht}(\beta) \tag{27}
\end{equation*}
$$

Indeed, since the coproduct in $\mathcal{L}_{\mathfrak{q}}$ (resp. $\mathcal{L}_{\mathfrak{q}^{t}}$) is graded, we have that $d_{1}\left(\left(y_{\alpha}^{(m)}\right)^{(2)}\right)<m \operatorname{ht}(\alpha)$ if $\left(y_{\alpha}^{(m)}\right)^{(1)} \neq 1$ (resp. $d_{1}\left(\left(z_{\beta}^{(n)}\right)^{(2)}\right)<n \mathrm{ht}(\beta)$ if $\left.\left(z_{\beta}^{(n)}\right)^{(1)} \neq 1\right)$. Hence, for $K \in \Gamma$ and $L \in \Lambda$ we have

$$
d_{1}\left(\left(y_{\alpha}^{(m)}\right)^{(2)} K L\left(z_{\beta}^{(n)}\right)^{(2)}\right) \leq m \operatorname{ht}(\alpha)+n \operatorname{ht}(\beta)
$$

and by Proposition 5.4 the claim follows.
Since $K, L \mathfrak{q}$-commutes with all elements of $\mathcal{L}_{\mathfrak{q}}$ and $\mathcal{L}_{\mathfrak{q}^{t}}$ for all $K \in \Gamma$ and $L \in \Lambda$. We proceed as in Lemma 4.12 and we reduce the proof to the product between $z_{\beta_{i}}^{(n)}$ and $y_{\beta_{j}}^{(m)}$. It follows directly by (27) that

$$
z_{\beta_{i}}^{(n)} y_{\beta_{j}}^{(m)} \in \mathcal{U}_{\mathfrak{q}}\left(m \operatorname{ht}\left(\beta_{j}\right)+n \operatorname{ht}\left(\beta_{i}\right), \delta_{j}, \delta_{i}\right) .
$$

We consider the associated graded algebra $\operatorname{gr} \mathcal{U}_{\mathfrak{q}}=\oplus_{\mathbf{v} \in \mathbb{N}_{0}^{2 M+1}} \mathcal{U}_{\mathfrak{q}} \mathbf{v}$ where $\mathcal{U}_{\mathfrak{q}}{ }^{\mathbf{v}}=\mathcal{U}_{\mathfrak{q}}(\mathbf{v}) / \sum_{\mathbf{u}<\mathbf{v}} \mathcal{U}_{\mathfrak{q}}(\mathbf{u})$.
Corollary 5.6. The algebra $\operatorname{gr} \mathcal{U}_{\mathfrak{q}}$ is presented by generators $\mathrm{y}_{j}^{(n)}, \mathbf{z}_{j}^{(n)}, K_{j}^{ \pm 1}$, $L_{j}^{ \pm 1}, j \in \mathbb{I}_{M}, n \in \mathbb{N}$ and relations

$$
\begin{array}{lr}
R S=S R, & R, S \in\left\{K_{j}^{ \pm 1}, L_{j}^{ \pm 1}: j \in \mathbb{I}_{M}\right\} \\
K_{\beta} K_{\beta}^{-1}=L_{\beta} L_{\beta}^{-1}=1 & \mathrm{y}_{k}^{(n)} \mathbf{z}_{l}^{(m)}=\mathbf{z}_{l}^{(m)} \mathrm{y}_{k}^{(n)} \\
\mathrm{y}_{k}^{\left(N_{k}\right)}=0, \quad \beta_{k} \notin \mathfrak{O}_{\mathfrak{q}}, & \mathbf{z}_{k}^{\left(N_{k}\right)}=0, \quad \beta_{k} \notin \mathfrak{O}_{\mathfrak{q}}, \\
\mathrm{y}_{k}^{(n)} \mathrm{y}_{k}^{(m)}=\binom{n+m}{m}_{q_{\beta_{k} \beta_{k}}} \mathrm{y}_{k}^{(n+m)}, & \mathbf{z}_{k}^{(n)} \mathbf{z}_{k}^{(m)}=\binom{n+m}{m}_{q_{\beta_{k} \beta_{k}}} \mathbf{z}_{k}^{(n+m)}, \\
{\left[\mathrm{y}_{k}^{(n)}, \mathrm{y}_{l}^{(m)}\right]_{c}=0, \quad l<k,} & {\left[\mathbf{z}_{k}^{(n)}, \mathbf{z}_{l}^{(m)}\right]_{c}=0, \quad l<k,} \\
K_{\alpha} y_{\beta}^{(n)}=q_{\alpha \beta}^{n} y_{\beta}^{(n)} K_{\alpha}, & K_{\alpha} z_{\beta}^{(n)}=q_{\alpha \beta}^{-n} z_{\beta}^{(n)} K_{\alpha}, \\
L_{\alpha} y_{\beta}^{(n)}=q_{\beta \alpha}^{-n} y_{\beta}^{(n)} L_{\alpha}, & L_{\alpha} z_{\beta}^{(n)}=q_{\beta \alpha}^{n} z_{\beta}^{(n)} L_{\alpha} .
\end{array}
$$

Proof. The proof of this statement is similar to the proof of Lemma 4.13 if we check that $y_{k}^{(n)} z_{l}^{(m)}=z_{l}^{(m)} y_{k}^{(n)}$ for all $y_{k}^{(n)} \in \mathcal{L}_{\mathfrak{q}}$ and $z_{l}^{(m)} \in \mathcal{L}_{\mathfrak{q}^{t}}$; but this follows by (27).

Proposition 5.7. The algebra $\mathcal{U}_{\mathfrak{q}}$ is Noetherian and $\operatorname{GKdim} \mathcal{U}_{\mathfrak{q}}=2\left|\mathfrak{O}_{\mathfrak{q}}\right|+2 \theta$.
Proof. Let \mathcal{Z} be the subalgebra of $\operatorname{gr} \mathcal{U}_{\mathfrak{q}}$ generated by $\left\{K_{i}, L_{i}: i \in \mathbb{I}\right\}$ and $\left\{y_{\beta}^{\left(N_{\beta}\right)}, z_{\beta}^{\left(N_{\beta}\right)}: \beta \in \mathfrak{O}_{q}\right\}$. Then \mathcal{Z} is the localization of a quantum affine space and $\operatorname{gr} \mathcal{U}_{\mathfrak{q}}$ is a free \mathcal{Z}-module of rank $\prod_{i \in \mathbb{I}_{M}} N_{i}$. Therefore $\operatorname{gr} \mathcal{U}_{\mathfrak{q}}$ is Noetherian and so is \mathcal{U}_{q}. Moreover, by [KL, Prop. 6.6],

$$
\mathfrak{G K d i m} \mathcal{U}_{\mathfrak{q}}=G K \operatorname{dim} \operatorname{gr} \mathcal{U}_{\mathfrak{q}}=G \operatorname{GKdim} \mathcal{Z}=2\left|\mathfrak{O}_{\mathfrak{q}}\right|+2 \theta
$$

References

[A+] N. Andruskiewitsch, I. Angiono, A. García Iglesias, B. Torrecillas, C. Vay. From Hopf algebras to tensor categories, 1-32. Conformal field theories and tensor categories, Mathematical Lectures from Peking University. Bai, C. et al, eds. Springer, 2014.
[AG] N. Andruskiewitsch, M. Graña. Braided Hopf algebras over non-abelian finite groups. Bol. Acad. Nac. Cienc. (Córdoba) 63 (1999), 45-78.
[AS] N. Andruskiewitsch, H.-J. Schneider. Pointed Hopf algebras, New directions in Hopf algebras, MSRI series, Cambridge Univ. Press; 1-68 (2002).
[A1] I. Angiono. A presentation by generators and relations of Nichols algebras of diagonal type and convex orders on root systems. J. Eur. Math. Soc. 17 (2015), 2643-2671.
[A2] On Nichols algebras of diagonal type. J. Reine Angew. Math. 683 (2013), 189-251.
[A3] Distinguished pre-Nichols algebras. Transform. Groups, to appear.
[AY] I. Angiono, H. Yamane. The R-matrix of quantum doubles of Nichols algebras of diagonal type. J. Math. Phys. 56, 021702 (2015) 1-19.
[CH] M. Cuntz, I. Heckenberger. Weyl groupoids with at most three objects. J. Pure Appl. Algebra 213 (2009), 1112-1128.
[DK] C. De Concini, V. Kac. Representations of quantum groups at roots of 1. Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989), 471-506, Progr. Math., 92 (1990), Birkhauser, Boston.
[DKP] C. De Concini, V. Kac, C. Procesi. Quantum coadjoint action. J. Am. Math. Soc. 5 (1992), 151-189.
[DP] C. De Concini, C. Procesi. Quantum groups. D-modules, representation theory, and quantum groups, 31-140, Lecture Notes in Math. 1565, Springer, 1993.
[Dr] V. G. Drinfeld. Quantum groups. Proceedings of the International Congress of Mathematicians, (Berkeley, Calif., 1986), 798-820, Amer. Math. Soc., 1987.
[GH] H. Gu, N. Hu. Loewy filtration and quantum de Rham cohomology over quantum divided power algebra. J. Alg. 435 (2015), 1-32.
[H1] I. Heckenberger. The Weyl groupoid of a Nichols algebra of diagonal type. Invent. Math. 164 (2006), 175-188.
[H2] Classification of arithmetic root systems. Adv. Math. 220 (2009), 59-124.
[H3] _L_Lusztig isomorphisms for Drinfel'd doubles of bosonizations of Nichols algebras of diagonal type. J. Alg. 323 (2010), 2130-2180.
[HY1] I. Heckenberger, H. Yamane. A generalization of Coxeter groups, root systems, and Matsumoto's theorem, Math. Z. 259 (2008), 255-276.
[HY2] _ Drinfel'd doubles and Shapovalov determinants. Rev. Un. Mat. Argentina 51 (2010), 107-146.
[Hu] N. Hu. Quantum divided power algebra, q-derivatives, and some new quantum groups. J. Algebra 232 (2000), 507-540.
[J] A. Joseph. Quantum groups and their primitive ideals. Springer-Verlag (1995).
$[\mathrm{K}]$ V. Kharchenko, A quantum analogue of the Poincaré-Birkhoff-Witt theorem. Algebra and Logic 38 (1999), 259-276.
[KL] G. Krause, T. Lenagan. Growth of algebras and Gelfand-Kirillov dimension. Revised edition. Graduate Studies in Mathematics, 22. American Mathematical Society, Providence, RI, 2000. $\mathrm{x}+212 \mathrm{pp}$
[L1] G. Lusztig. Quantum groups at roots of 1. Geom. Dedicata 35 (1990), 89-113.
[L2] Introduction to quantum groups, Birkhäuser (1993).
[M] A. Masuoka. Abelian and non-abelian second cohomologies of quantized enveloping algebras, J. Algebra 320 (2008), 1-47.
[R] M. Rosso. Quantum groups and quantum shuffles. Inv. Math. 133 (1998), 399-416.
[T] M. Takeuchi. Survey of braided Hopf algebras. Contemp. Math. 267 (2000), 301-323.

FaMAF-CIEM (CONICET), Universidad Nacional de Córdoba, Medina Allende s/n, Ciudad Universitaria, 5000 Córdoba, República Argentina.

E-mail address: (andrus|angiono|rossib)@mate.uncor.edu

[^0]: 2000 Mathematics Subject Classification. 16W30.
 The work was partially supported by CONICET, FONCyT-ANPCyT, Secyt (UNC).

[^1]: ${ }^{1}$ We prefer this identification instead of $\langle f \otimes g, v \otimes w\rangle=\langle f, v\rangle\langle g, w\rangle$ because it gives the right extension to tensor categories.

[^2]: ${ }^{2}$ Here and in Section 5 below, \mathfrak{q}^{t} corresponds to V^{*} when realized as Yetter-Drinfeld module over the dual Hopf algebra.

