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In this work we study the behavior of the voltage profile of a 1D quantum wire with an impurity when

transport is induced by two ac voltages that oscillating with a phase lag define a quantum pump. The

voltage profile sensed along the wire by the voltage probe, that we assume weakly coupled to the

system, exhibits a Friedel’s oscillations structure inside the region delimited by the position of the two

ac voltages that induce transport. On the other hand, outside this region the oscillations are suppressed.

Using perturbation theory in the coupling constant of the voltage probe we derived analytical

expressions for the DC current valid for the adiabatic regime. We also compare our analytical results

with the exact numerical calculations using Keldysh non-equilibrium Green’s functions formalism.

& 2009 Published by Elsevier B.V.
Dynamical transport in mesoscopic structures attracts pre-
sently a considerable amount of research. In particular, applying
time dependent fields to a mesoscopic conductor opens up new
possibilities for electronic transport, specially when the electric
fields are time periodic and operate with a phase lag. It is well
known that when a phase coherent conductor is subjected to
periodically varying voltages a DC current could be pumped even
in the absence of a net external bias [1–4].

Several theoretical works have been devoted to study the
details of the voltage drop between the contacts in systems where
the transport is induced by means of a stationary DC voltage bias
[5,6], and as an extension, to study the DC four point resistance
(R4t) which could reveal the genuine resistive behavior of the
mesoscopic sample [7,8].

However, only recently the analysis of the R4t has been
extended to pumping setups. In Ref. [9] we have calculated the
voltage profile and the four point resistance of a wire with two
barriers at which the ac voltages are applied [9]. We have shown
that R4t for the full device, including the barriers coincides with
the one obtained in stationary transport, i.e. induced by a DC
voltage applied to the reservoirs.

It this communication we analyze an alternative setup where,
instead of having two barriers, we have a single impurity within
the wire. Our goal is to derive analytical expressions for the DC
voltage profile and to determine if the signature of the well known
Friedel like oscillations induced by the impurity are still present
when transport is induced by quantum pumps. Our analytical
calculations could be compared to experimental measurements
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performed in the adiabatic regime, that is when transport is
induced by slowly oscillating fields.

We consider as a model of the quantum pump, a quantum wire
coupled to left and right reservoirs at the same fixed chemical
potential. Oscillating voltages are applied at two narrow gates
with a phase-lag. A fixed impurity, located inside the wire
between both quantum pumps serves as an elastic scatterer to
the electrons traveling along the sample. The scheme of the setup
can be seen in Fig. 1.

The device for a four terminal measurement of the voltage
drop consists of two non-invasive voltage probes weakly coupled
to the wire. The chemical potential mi (i ¼ P; P0) of each probe is
adjusted to maintain zero net current through the respective
contact. As the voltage probes are weakly coupled, the measure-
ment made with one probe is independent of the second one and
its location. We start by considering only one voltage probe which
is modeled as a third reservoir coupled to the central system at
position P. For this system the specific Hamiltonian reads

H ¼ Hleads þ HP þ HCðtÞ �wLða
y

Lc1 þ H:c:Þ

�wRða
y

RcN þ H:c:Þ �wPða
y

PcP þ H:c:Þ, (1)

with HCðtÞ denoting the Hamiltonian for the central piece that we
model as a 1D tight-binding chain of length N with two dynamical
impurities at sites A and B and one static impurity located at
site b:

HCðtÞ ¼ V cosðO0t þ dÞcyAcA þ
XN

l¼1

�lc
y

l cl

�wh

XN

l¼1

ðcyl clþ1 þ H:c:Þ þ V cosðO0tÞcyBcB, (2)
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Fig. 1. (Color on-line) Scheme of the setup. The central device is the wire with an

impurity at xb of height Eb , with two out of phase quantum pumps attached at sites

xA and xB which induce a DC current Jdc . The wire is also attached to L and R

reservoirs. See text for more details.
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with wh the hopping parameter and the profile �b ¼ Eb, �l ¼ 0,
l ¼ 1; . . . ;Nab. The time dependent ac potentials act locally at the
position of the sites A and B. They oscillate with amplitude V ,
frequency O0 and phase difference d. We denote with Hleads the
Hamiltonians of two semi-infinite tight-binding chains with
hopping wl, which play the role of the L and R reservoirs, which
we assume are at the same chemical potential m. These two leads
are connected to the central device at sites 1;N, respectively.
Similarly, HP is the Hamiltonian of the voltage probe that we also
model as a particle reservoir with chemical potential mP that is
fixed to satisfy the condition of net zero DC current through the
probe P [10]. The contacts between the central system and the L

and R leads and the probe P are described by the last three terms
of Eq. (1), where the fermionic operators aa (a ¼ L;R; P) denote
degrees of freedom for the L;R and P reservoirs, respectively.

We employ the formalism of Keldysh non-equilibrium Green’s
functions technique, which is a convenient tool in transport
theory on multiterminal structures driven by time-periodic fields
[4]. Following Ref. [4] we employ the Floquet representation
GR

l;l0 ðt;oÞ ¼
P1

k¼�1Gðk;oÞe�ikO0t where GR
l;l0 ðt;oÞ is the Fourier

transform with respect to t � t0 of the retarded Green’s function.
The DC component of the charge current flowing through a lead
from the central system towards the probe P, can be written
(in units of e=h) as [4]

Jdc
P ¼

X
a¼L;P;R

X1
k¼�1

Z 1
�1

do
2p fGaðoÞGPðoþ kO0Þ

�jGlP ;la ðk;oÞj
2½f aðoÞ � f Pðoþ kO0Þ�g, (3)

where la are the sites of the central system at which the reservoirs
a ¼ L;R; P are attached, while GaðoÞ ¼ jwaj

2raðoÞ is the spectral
function associated to the self-energies due to the coupling to
these reservoirs. raðoÞ is the corresponding density of states and
f aðoÞ ¼ 1=ðebaðo�maÞ þ 1Þ the Fermi function of the reservoir a,
which we assume to be at the temperature 1=ba ¼ 0.

The voltage profile sensed by the probe can be exactly
evaluated under general conditions from the solution mP that
satisfies Jdc

P ¼ 0 in the above expression. To derive analytical
expressions for the voltage profile we analyze the case of low
driving frequency O0 and small pumping amplitude V [2].

As we already mentioned, we are interested in the behavior
of the voltage profile sensed by ‘‘non-invasive probes’’. This
corresponds to probes weakly coupled to the central system, in
such a way that they do not introduce neither inelastic nor elastic
scattering processes for the electronic propagation between L and
R reservoirs. Below we derive an analytical expression, valid under
these conditions, for the voltage profile mP .

In order to obtain the expressions for the Green’s functions we
solved perturbatively, up to first order in the pumping amplitude
V , the Dyson’s equation using the Floquet representation [4]:

Gl;l0 ð0;oÞ�G0
l;l0 ðoÞ,
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Gl;l0 ð�1;oÞ�V

2
½G0

l;Aðo�O0ÞG
0
A;l0 ðoÞ

þ e�idG0
l;Bðo�O0ÞG

0
B;l0 ðoÞ�. (4)

For weak coupling to the probes, Eq. (3) is evaluated with Green’s
functions up to the first order in wP . After imposing the condition
of zero net DC current and using the fact that only Floquet
components with k ¼ 0;�1 enter in Eq. (4), the voltage sensed by
the probe P casts

mP ¼ mþO
Vwh sin y

2

� �2

½jGP;1ð1;oÞj2 þ jGP;Nð1;oÞj2

� jGP;1ð�1;oÞj2 � jGP;Nð�1;oÞj2�. (5)

At the lowest order of perturbation in wP , the functions G0
l;l0 ðoÞ

entering the above expressions are the equilibrium retarded
Green’s functions of the central system attached only to the L and
R reservoirs. For perfect matching to the reservoirs (wL ¼ wR ¼

wl ¼ wh) and for an static impurity with low amplitude Ebpwh,
these functions can be written in the following simple form:
G0

l;l0 ðoÞ ¼ gl;l0 ðyÞ þ Ebgl;bðyÞgb;l0 ðyÞ, with gl;l0 ðyÞ ¼ i e�ijl�l0 jy=ð2wh sin yÞ,
being o ¼ 2wh cos y [12]. Using these Green’s functions to
evaluate Eq. (4), substituting the result in Eq. (3) and considering
the adiabatic (/ O0) contribution in the resulting Jdc

P we get when
the probe is located outside the pumping centers:

mo
P ¼ m�O0V2 sin d½ð2wh sin kF Þâð2xA; kF Þ � Ebaðxb; kF Þ�,

xP4xB; xPoxA, (6)

and

mi
P ¼ m�O0V2 sin d½bðxP ; kF Þ � EbðaðxP ; kF Þ

� b̂ðxb; kF Þ � b̂ðxP ; kF ÞÞ�; xAoxPoxB; xP4xb; xPoxb (7)

for the case in which the probe is located between the two
pumping centers. We denote by xj ðj ¼ A;B; P;bÞ the position of the
pumps, the probe and the static impurity, respectively, in units of
the lattice parameter of the tight-binding model. The upper and
lower signs of Eq. (6) correspond, respectively, to the voltage
probe located at the left (xPoxA) and at the right (xP4xB) side of
the pumping region. In Eq. (7) the upper and lower signs
correspond to the voltage probe located between the pumps at
the left (xPoxb) and at the right (xP4xb) side of the static
impurity, respectively.

We have defined the Fermi vector (in units of the lattice
parameter) as kF � yðmÞ as well as the following functions:

aðx; kF Þ ¼
sin½kF ðxA � xBÞ� sin½kF ð2x� xA � xBÞ�

ð2wh sin kF Þ
3

,

âðx; kF Þ ¼
sin½kF ðxA � xBÞ� cos½kF ð2x� xA � xBÞ�

ð2wh sin kF Þ
3

,

bðx; kF Þ ¼
cos½kF ðxA � xBÞ� sin½kF ð2x� xA � xBÞ�

ð2wh sin kF Þ
3

,

b̂ðx; kF Þ ¼
cos½kF ðxA � xBÞ� cos½kF ð2x� xA � xBÞ�

ð2wh sin kF Þ
3

. (8)

Fig. 2 shows the benchmark of the analytical result, Eqs. (6) and
(7), against the exact voltage profile obtained numerically from
Eq. (11) in the regime of weak V , O0 and wP , and a moderate Eb. A
good agreement of the qualitative behavior is observed. In
particular, the exact profile mP exhibits Friedel’s oscillations with
period 2kF as a function of the probe position xP as predicted by
Eq. (7) and only a slight disagreement is found in the amplitude of
the envelope function.

Within the lowest order of perturbation in the coupling
constant wP , the effect of an additional second voltage probe P0

can be considered completely uncorrelated from the first one,
since the associated interference effects involve second order
16/j.physb.2009.06.086
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Fig. 2. Local voltage mP sensed by the voltage probe P as a function of the probe

position xP along the 1D wire of N ¼ 40 sites with an impurity of height Eb ¼ 0:2

located at xb ¼ 20. The positions of the two quantum pumps at xA ¼ 10 and xB ¼

30 are indicated by the vertical dashed lines. The pumping parameters are

V ¼ 0:01, O0 ¼ 0:01 and d ¼ p=2. Red squares correspond to Eqs. (6)–(7) the

analytical solution for the adiabatic pumping regime and a weakly connected

probe. Black circles correspond to the exact numerical solution obtained equating

Eq. (3) to zero with wP ¼ 0:01. The chemical potential is m ¼ 0:4, which

corresponds to kF ¼ 1:36. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)
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processes in wP . At this level of approximation let us call mP0 the
local voltage sensed by the additional probe at P0 and DmPP0 �

mP0 � mP the corresponding voltage drop. In a setup in which the
probe P is located at the left side of xA and the probe P0 at the right
side of xB, the voltage drop between both probes is, from Eq. (7),

DomPP0 ¼ 2O0V2 sin dfð2wh sin kF Þâð2xA; kF Þ

þ Eb½að2xB; kF Þ þ b̂ðxb; kF Þ�g. (9)

Another possible measurement corresponds to locate the
voltage probes P and P0 inside the region delimited by the
quantum pumps at both sides of the static impurity. In this case,
the voltage drop between the two probes explicitly depends on
the probe positions xP and xP0 as follows:

DimPP0 ¼ 2O0V2 sin dfð2wh sin kF Þb̂ðx̄; kF Þ

� sinðkF DxÞ þ Eb½b̂ðx̄; kF Þ sinðkF DxÞ

þ bðx̄; kF Þ sinðkF DxÞ þ âðx̄; kF Þ cosðkF DxÞ�g, (10)

with

x̄ ¼
xP þ xP0

2
; Dx ¼ xP � xP0 ,

where, as before, we have employed the superscripts o; ðiÞ to
distinguish configurations with the probes outside (inside) the
pumps (located at xA and xB).

Interestingly, Eq. (7) shows the characteristic pattern of the
Friedel oscillations with a period 2kF , and remarkably these
oscillations are only present at positions lying between the two
quantum pumps. In fact the oscillatory terms of expressions of Eq.
(6)–(7) depend on the position of the static scatterer, xb, and on
the pumping positions xA and xB. Notice, however, that these
Friedel’s oscillations can be identified as interference processes
involving the static as well as the two dynamical impurities. This is
in contrast with the behavior found for the Friedel’s oscillations
Please cite this article as: F. Foieri, et al., Physica B (2009), doi:10.10
induced by a single static impurity under stationary driving [11],
which only depend on the position of the impurity. On the other
hand, the voltage drop measured when both probes are located
outside the pumping region does not depend on the specific
position, and its sign determines the direction of the DC current.
Under the conditions assumed in the derivation of Eq. (7), i.e. low
V ;O0;wP and Eb, the DC current flowing through wire reads

Jdc
ffi

4G0
LG

0
RO0V2 sin d

ð2wh sin kF Þ
2
fwhðsin kF Það2xB; kF Þ

þ Eb½aðxA; kF Þ � bð2xA; kF Þ � b̂ð2xb; kF Þ�g, (11)

with G0
a � G0

aðmÞ; a ¼ L;R.
The four terminal resistance can be evaluated straightfor-

wardly by evaluating the quotient between Eqs. (10) and (11).
Unlike the case considered in our previous work [9] this estimate
of R4t does not coincide with the corresponding one to a single
impurity placed between two stationary reservoirs with an
equivalent voltage difference. The reason is that the interference
effects introduced in the pumping setup by the two additional
dynamical impurities cannot be captured in the stationary setup.

To conclude we have derived analytical expressions for the dc
voltage profile and the DC current of a quantum pump with an
static impurity valid in the adiabatic regime. At this level of
approximation we found that the Friedel’s oscillations sensed by
the voltage probes appear only inside the region delimited by the
quantum pumps, while the voltage measured outside this
region remains constant and unambiguously determines the
direction of the dc current. We have found a good agreement
between our analytical expressions derived for weak driving and
the results of the exact numerical calculations. However, the
result for R4pt is different from the one corresponding to the
stationary counterpart.

We thank the support of CONICET and PICT 03-13829 from
Argentina.
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