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We show that the power-law decay modes found in linear perturbations of Schwarzschild black
holes, generally called tails, do not produce caustics on a naturally defined family of null surfaces
in the neighbourhood of i+ of a black hole horizon.

I. INTRODUCTION

A new framework for the dynamical description of the
late phase of gravitational collapse has been recently pro-
posed [1, 2]. In this framework one introduces physical
null coordinates based on the assumption that a suit-
able family of null surfaces are caustic free in a neigh-
bourhood of timelike infinity containing a portion of the
black hole horizon H and future null infinity I +. We
consider an asymptotically flat spacetime at future null
infinity (M , gab) containing a black hole. Its conformal
diagram is depicted in Figure 1. In the past of an open
set of future null infinity (I +)—defined by those points
for which their Bondi1 retarded time u is in the range
u ∈ (u0,∞)—we require the existence of a regular null
function w such that: w = 0 at the horizon H, and w < 0
in the region of interest.

Choosing a Bondi coordinate u that coincides with the
center of mass Bondi cuts[1, 3] in the regime u → ∞
limit, we can uniquely fix the function w, if we assume
the topology of the black hole (BH) event horizon H is
S2 × R in that region. Thus, there exists a smooth null
function w = w(u) (unique up to constant scaling in the
region where one neglects O(w2) effects) such that w = 0
at the horizon H, ẇ ≡ dw

du > 0, w < 0 for all u, and
lim
u→∞

w = 0.

This construction is precisely described in [4], where
spacetimes satisfying this assumption are defined as soli-
tary black holes (SBBs). In a few lines, the null geodesic

congruence defined by ˜̀ = du allows for the introduc-
tion of an affine parameter r used as a radial coordinate
which is fixed by the requirement that it coincides asymp-
totically with the luminosity distance (see equation (11)
below for a precise statement of this condition). The sur-
faces (r, u) =constant are spheres which inherit natural
spherical coordinates defined in the Bondi cuts at I +

which label null rays of the congruence ˜̀. All this pro-
vides a coordinate system (u, r, θ, φ) in the exterior of the
BH horizon.

However, the above coordinate system is not well be-
haved near the horizon (u → ∞). A good coordinate

1 A Bondi retarded time u is such that the sections u=constant at
I + (referred to as Bondi cuts) have an intrinsic metric given by
(minus) the metric of the unit sphere.

system can be constructed if one follows similar lines as
above but describing the null geodesic congruence instead
in terms of ` = dw. One can introduce an affine pa-
rameter y along ` and fix the ambiguity in such choice
by requiring that the spheres (w, y) =constant coincide
with the (u, r) =constant in the interior of the spacetime.
Thus the angular coordinates can be defined exactly in
the same way as in the previous paragraph. With this
one obtains the following relationship between the affine
parameters r and y:

r = ẇy + r0(w), (1)

where ẇ ≡ (dw/du). The coordinate y will be used in
what follows.

Under mild regularity conditions SBHs are then shown
to posses a smooth global vector field

χ ≡ ∂

∂u
, (2)

which is a null geodesic generator at I + and a null
geodesic generator of the horizon H. Moreover, at the
horizon H, χ satisfies the equation,

χa∇aχb ≡ κχb;

where κ is a generalized surface gravity. Finally, one can
show that

w(u) = − exp (−κ(u− u0)) + O(exp (2au)), (3)

where exp(−κu0) is the rescaling freedom associated with
the choice of origin for the Bondi retarded time u. The
last equation is a generalization of the Kruskal coordinate
transformation that appears in Schwarzschild and Kerr
geometries.

SBHs have thus remarkable global features that can
provide additional structure in the study of the late
phase of gravitational collapse in terms of the full non-
linear regime of Einstein’s equations. The key question
is whether the assumption of the existence of the phys-
ical null function w(u) is too restrictive admitting only
situations of little physical interest. The whole formal-
ism rests on the assumption that there are no caustics,
in a small enough neighbourhood of i+, in the congru-
ence of generators of the null surfaces u = constant as
one goes from I + towards the past, containing a final
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portion of H and I +. We will see that this problem
does not appear in the final phase collapse provided by
the scenario developed in the framework of linear per-
turbations of stationary BH spacetimes. This provides a
strong indication that our assumptions are mild enough
to admit physically interesting situations.

As we have seen, there are two coordinates and null
tetrad system that one can use near the black hole; the
tilde system that comes from the asymptotic description
of the black hole, and the un-tilde system that it is reg-
ular at the horizon. In what follows we work in the tilde
system, in order to make contact with calculations of
other authors.

We will study in detail the behavior of the optical
scalars (ρ̃, σ̃) which depend explicitly on the incoming

gravitational radiation Ψ̃0, the in-falling of matter Φ̃00,
and implicitly in the outgoing gravitational radiation
field Ψ̃0

4. Since we center the discussion in the behaviour
of the optical scalars in a neighborhood of the horizon,
we will concentrate on the dependence on the fields Ψ̃0

and Φ̃00 directly. In this work we will consider whether
fields with typical tail behaviour[5, 6] are admitted in our
setting.

FIG. 1. Conformal diagram representing the gravitational
collapse producing a solitary black hole. There is w0 < 0 such
that for w0 < w < 0 there is a caustic free neighbourhood
around i+ containing a portion of the horizon H and I +, if
the spacetime decays towards its final stationary state suffi-
ciently rapidly.

In figure 1 it is shown the horizonH, future null infinity
I +, timelike infinity i+ and the region of interest that
is for w > w0 and y > y0; where the hypersurface w0 is
denoted by a dash line and y0 by a thick black line. It is
important for the study to understand the behaviour of
the fields in a neighbourhood of the horizon but for finite
values of y.

In [1] we point out that Ψ0 = ẇ2Ψ̃0 and Φ00 = ẇ2Φ̃00

must go as y−3 on the horizon in order for the area of the
horizon to have an asymptotic finite value, in the limit
y →∞.

Since we have not found in the literature a general dis-
cussion regarding the behaviour of Ψ̃0 in the same asymp-
totic region near the horizon; from our knowledge on the
behaviour of Ψ0 at the horizon and the behaviour of Ψ̃0

in the asymptotic region, we will assume the worst possi-
ble scenario. At the horizon we know that Ψ0 can behave
as y−3, and for w 6= 0 this means2 that y−3 ∼ ẇ3v−3.
In the asymptotic region, for r →∞ one knows that Ψ̃0

behaves as r−5; which means v−5. So we will assume
the worst admissible behaviour in the region of interest;
which is to take Ψ̃0 ∼ v−3.

We will show in Section IV that the late time be-
haviour predicted by the study of matter fields on the
Schwarzschild background imply that Φ̃00 going as v−4,
i.e.; even faster than required by the above general argu-
ment. Thus, in what follows we assume

Ψ̃0 ∼ v−3 and Φ̃00 ∼ v−4. (4)

The article is organized as follows. In the following
section we analyze the conditions for caustic formation.
In order to illustrate a way in which we could easily vio-
late our assumptions—and in order to provide a clear-cut
intuition—we will provide what is probably the simplest
manner in which one can introduce caustics that invali-
date our construction in Section III. We also argue in that
section why such possibility is not of interest in the study
of the final phase of gravitational collapse. In Section IV
we briefly review the results of [5]. In Section IV A we
show that the late time behaviour of gravitational col-
lapse expected from the linear perturbation technology
is admited by our assumptions.

II. THE CAUSTIC FREENESS CONDITIONS

The optical scalars equations can be expressed as

∂ρ̃

∂r
= ρ̃2 + σ̃ ¯̃σ + Φ̃00, (5)

∂σ̃

∂r
= 2ρ̃ σ̃ + Ψ̃0, (6)

where r is an affine parameter along the null geodesics
˜̀= ∂r which we will take to coincide with the luminocity
distance as one approaches future null infinity along the
geodesics.

Let us concentrate in the behavior of ρ̃ and study the
points in which it has a divergent behavior: caustics.
Then one can write (5) as

− ∂

∂r

(
1

ρ̃

)
=

1

ρ̃2

∂ρ̃

∂r
= 1 +

σ̃ ¯̃σ + Φ̃00

ρ̃2
. (7)

The previous equation is equivalent to the following in-
tegral equation

− 1

ρ̃(r∞)
+

1

ρ̃(r)
= r∞ − r +

∫ r∞

r

σ̃ ¯̃σ + Φ̃00

ρ̃2
dr′. (8)

2 Note that at the horizon, i.e. when w = 0, the relation between
v and y is logarithmic. However, our study only concerns the
region w 6= 0.
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We would like to study this equation in the limit r∞ →
∞. Now, because we have chosen r to agree with the
notion of luminocity distance in the large r limit (which
is possible if the spacetime is asymptotically flat at future
null infinity), one has that

ρ̃ = −1

r
(1 +

ρ̃1

r2
+O(r−3)) (9)

this implies that

1

ρ̃
= − r

(1 + ρ̃1
r2 +O(r−3))

= −r +O(r−1) (10)

The previous equation implies that

lim
r∞→∞

(
1

ρ̃(r∞)
+ r∞

)
= 0. (11)

In fact the previous condition is the precise definition of r
being asymptotically the luminocity distance. Therefore,
equation (8) implies

ρ̃(r) = − 1

r −
∫∞
r

σ̃ ¯̃σ+Φ̃00

ρ̃2 dr′
. (12)

Thus the condition that caustics appear at r = rc be-
comes simply ∫ ∞

rc

σ̃ ¯̃σ + Φ̃00

ρ̃2
dr = rc (13)

From the previous equation and from the positivity of the
integrand involved one can conclude that the condition∫ ∞

r1

σ̃ ¯̃σ + Φ̃00

ρ̃2
dr ≤ r1 (14)

guaranties the absence of caustics in the interval r ∈
(rc < r1,∞). However, the presence of the expansion
itself in the previous equation makes this condition a bit
cumbersome. We can turn the previous criterion for the
absence of caustics into a sufficient condition of a sim-
pler and more useful form thanks to the validity of the
following statement.

Lemma: In the caustic free region r ∈ (rc,∞) the fol-
lowing inequality holds

|ρ̃| ≥ 1

r
. (15)

The proof follows directly from equation (12), the fact

that 0 ≤ σ̃ ¯̃σ + Φ̃00, and the fact that r ∈ (rc,∞). More
explicitly,

|ρ̃| ≥ 1

r
⇐⇒ −ρ̃ ≥ 1

r

⇐⇒ r ≥ r −
∫ ∞
r

σ̃ ¯̃σ + Φ̃00

ρ̃2
dr′ ≥ 0, (16)

where we have used the positivity stated in the last
inequality which follows from the condition that r ∈
(rc,∞). The condition that one is in the caustic free
region is essential �.

Using the previous result we can write a sufficient con-
dition for the non existence of caustics in the interval
r ∈ (r1,∞) as follows∫ ∞

r1

(σ̃ ¯̃σ + Φ̃00)r2dr ≤ r1. (17)

The previous condition on the strength of σ̃ ¯̃σ + Φ̃00 is
clearly stronger than (14). This is why in contrast to the
latter this is a sufficient condition (its violation may not
imply that there are caustics in (rc < r1,∞)). However,
if (17) is satisfied then we can assure that there are no
caustics in the region of interest. This last condition will
be central in the proof of our main result in the following
section.

III. DUST

In this section we show that a grain of sand can de-
stroy our construction. This simple example will provide
intuition on what the nature of our problem is. At the
same time we shall see by the end of this section that this
example is physically irrelevant for the physical situation
that one would like to describe in our framework.

We can model a grain of sand (or a planet) at some
coordinate rd(w) > rH outside de BH horizon by a Ricci
spinor component

Φ00 =
ε

rH
δ(r − rd(w)), (18)

where ε is a dimensionless parameter measuring the
strength of the dust particle. For the next discussion
it is enough to use the fact that σ̃ is bounded by α

r2 , in
the asymptotic region, for an appropriate α; however for
simplicity we will assume next that σ̃ = 0. This will not
change the qualitative aspects of the discussion. Then,
condition (13) becomes

ε
r2
d

rH
≤ rc. (19)

In order to define the region where we will proof that
there are no caustics we need to recall that

r = ẇy + rH

= − w

2rH
y + rH . (20)

In order to show that there is a caustic free region around
i+, containing both a portion I + and the black hole
horizon, it is sufficient to show that for a given y1 there
exist an w0 ≤ 0 such that for all w > w0 there are no
caustics in the region

r ∈ (− w

2rH
y1 + rH ,∞). (21)
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Without loss of generality, and in order to simplify some
expressions, we take y1 = 2r2

H from now on. The region
of interest now becomes r ∈ (rH(1−w),∞). Thus, from
(19), the caustic free condition becomes

εrd ≤ rH(1− w). (22)

Conversely, the previous equation tells us that it is very
easy to introduce caustics that would completely invali-
date the construction; it suffices to take a dust particle
that is sufficiently far away and sufficiently strong. In
particular if we take εrd > rH(1 − w) then there will be
a caustic line that goes all the way up to i+.

Therefore, we have shown that our construction breaks
down if a suitable grain of dust is brought in. Is this a se-
rious problem? We now argue that it is not; as the above
situation bears not interest for the study of the physics
of gravitational collapse we plan to study. The reason
is that the problematic grain of sand (which could also
model a planet or a star) must stay outside the black hole
rd > rH for all w; hence, it is a compact object that is
never absorbed by the BH and follows a timelike trajec-
tory all the way up to i+. The only physically acceptable
possibility is then that the object is not gravitationally
bound to the BH. Such possibility is of course physically
viable but it introduces an irrelevant complication to the
problem of studying the final stage of gravitational col-
lapse. Therefore, it is advisable that our definition of
SBH rules out such situation by assumption.

IV. TAILS

Gundlach, Price and Pullin [5] have shown that the
spherical harmonic ` mode of a scalar field φ`0 satisfying
the wave equation on a Schwarzschild background in the
late time behaviour for u→∞ is

φ`0 =
Υ0

vP+2`+1
, (23)

where Υ0 is a constant, where P = 1, 2. If such scalar
field is used as matter source for Einsteins equation then
it produces a Ricci scalar Φ̃00 whose late time behaviour
is

Φ̃00 ≈
1

v4
+O(v−5). (24)

As explained in expression (4), Ψ̃0 goes like 1/v3. From
the optical equations it follows that σ̃ goes like 1/v2. This
means that the late time behaviour of the integrand in

(13) can be expressed as:

[σ̃ ¯̃σ + Φ̃00] =
εr2
H

v4
+O(v−5); (25)

where for future use we have introduced the dimension-
less constant ε to parametrize the leading order term.

A. Caustics in late phase

According to studies of linear perturbations of
Schwarzschild geometries [5, 6] one has that

[σ̃ ¯̃σ + Φ̃00](u→∞, v) =
εr2
H

v4
, (26)

where u = t− r∗ and v = t+ r∗ for

r∗ = r + rH log

(
r − rH
rH

)
(27)

the usual tortoise coordinate, and rH = 2M the radius
of the horizon. From this we get that v = u+ 2r∗ hence

v = u+ 2r + 2rH log

(
r − rH
rH

)
. (28)

By making the same choice of region as underneath Equa-
tion 19 in the previous section, the caustic free condition
(13) becomes

∞∫
rH(1−w)

εr2
Hr

2

v4
dr =

∞∫
rH(1−w)

εr2
Hr

2

[u+ 2r + 2rH log
(
r−rH
rH

)
]4
dr ≤ rH(1− w).

The previous condition can be simplified by introducing
the variable x = r/rH , from which one gets

εF (w) = ε

∞∫
(1−w)

x2

[x+ log
(

1−x
w

)
]4
dx ≤ 16(1− w), (29)

where we used that u = −2rH log(−w). The function
F (w) is shown in figure 2. It is clear from its behaviour
close to w = 0 that there is always some w0 such that
there are no caustics in the region r ∈ (rH(1 − w),∞)
for 0 ≤ w < w0. This concludes the proof that there is a
caustic free region in a neighbourhood of i+ bounded by
a portion of I + and the horizon H.
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FIG. 2. The form of the function F (w) guaranties that there
exists a w0 such that for 0 > w > w0 the caustic free condi-
tion (29) is satisfied. The dashed line represents the function
16(1 − w)/200 which explicitly shows that there is a caustic
free region in the case ε = 200. All the other values of ε look
qualitatively the same.
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