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Abstract In 2012, the second author introduced and stud-1

ied in Sankappanavar (Sci Math Jpn 75(1):21–50, 2012)2

the variety I of algebras, called implication zroupoids, that3

generalize De Morgan algebras. An algebra A = 〈A,→,4

0〉, where → is binary and 0 is a constant, is called an5

implication zroupoid (I-zroupoid, for short) if A satis-6

fies: (x → y) → z ≈ [(z′ → x) → (y → z)′]′7

and 0′′ ≈ 0, where x ′ := x → 0. The present authors8

devoted the papers, Cornejo and Sankappanavar (Alegbra9

Univers, 2016a; Stud Log 104(3):417–453, 2016b. doi:10.10

1007/s11225-015-9646-8; and Soft Comput: 20:3139–3151,11

2016c. doi:10.1007/s00500-015-1950-8), to the investiga-12

tion of the structure of the lattice of subvarieties of I, and13

to making further contributions to the theory of implication14

zroupoids. This paper investigates the structure of the derived15

algebras Am := 〈A,∧, 0〉 and Amj := 〈A,∧,∨, 0〉 of A ∈16

I, where x∧y := (x → y′)′ and x∨y := (x ′∧y′)′, as well as17

the lattice of subvarieties of I. The varieties I2,0, RD, SRD,18

C, CP , A, MC, and CLD are defined relative to I, respec-19

tively, by: (I2,0) x ′′ ≈ x , (RD) (x → y) → z ≈ (x → z) →20

(y → z), (SRD) (x → y) → z ≈ (z → x) → (y → z),21

(C) x → y ≈ y → x , (CP) x → y′ ≈ y → x ′, (A)22

(x → y) → z ≈ x → (y → z), (MC) x ∧ y ≈ y ∧ x ,23
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(CLD) x → (y → z) ≈ (x → z) → (y → x). The 24

purpose of this paper is two-fold. Firstly, we show that, 25

for each A ∈ I, Am is a semigroup. From this result, we 26

deduce that, for A ∈ I2,0 ∩ MC, the derived algebra Amj
27

is a distributive bisemilattice and is also a Birkhoff sys- 28

tem. Secondly, we show that CLD ⊂ SRD ⊂ RD and 29

C ⊂ CP ∩A∩MC∩CLD, both of which are much stronger 30

results than were announced in Sankappanavar (Sci Math Jpn 31

75(1):21–50, 2012). 32

Keywords Implication zroupoid · Derived algebras · 33

Distributive bisemilattice · Birkhoff system · Subvarieties · 34

Left distributive law · Right distributive law · Semigroup 35

1 Introduction 36

Bernstein (1934) gave a system of axioms for Boolean alge- 37

bras in terms of implication only; however, his original 38

axioms were not equational. A quick look at his axioms 39

would reveal that, with an additional constant, they could 40

easily be translated into equational ones. In 2012, the second 41

author of this paper extended this modified Bernstein’s theo- 42

rem to De Morgan algebras in Sankappanavar (2012). Indeed, 43

it is shown in Sankappanavar (2012) that the varieties of De 44

Morgan algebras, Kleene algebras, and Boolean algebras are 45

term-equivalent, to varieties whose defining axioms use only 46

the implication → and the constant 0. 47

The primary role played by the identity (I): (x → y) → 48

z ≈ [(z′ → x) → (y → z)′]′, where x ′ := x → 0, which 49

occurs as an axiom in the definition of each of those new 50

varieties motivated the second author of this paper to intro- 51

duce a new (equational) class of algebras called “implication 52

zroupoids” in Sankappanavar (2012). 53
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An algebra A = 〈A,→, 0〉, where → is binary and 0 is a54

constant, is called a zroupoid. Let x ′ := x → 0. A zroupoid55

A = 〈A,→, 0〉 is an implication zroupoid (I-zroupoid, for56

short) if A satisfies:57

(I) (x → y) → z ≈ [(z′ → x) → (y → z)′]′,58

(I0) 0′′ ≈ 0.59

Throughout this paper I denotes the variety of implication60

zroupoids.61

It is proved in Sankappanavar (2012) that the variety I is62

a generalization of the variety of De Morgan algebras. It also63

exhibits several interesting properties of I; for example, the64

identity x ′′′ → y ≈ x ′ → y holds in I. Several new and65

interesting subvarieties of I are also introduced and investi-66

gated in Sankappanavar (2012). The (still largely unexplored)67

lattice of subvarieties of I seems to be fairly complex. Prob-68

lem 6 of Sankappanavar (2012) asks for the investigation of69

the structure of the lattice of subvarieties of I.70

The varieties I1,0, I2,0, I3,1, ID, Z , MID, J ID, MC,71

C, CP , SCP , A, RD, LAP , SRD, T II , CLD, WCP ,72

DM, KL, and BA are defined relative to I, respectively, as73

follows, where x ∧ y := (x → y′)′ and x ∨ y := (x ′ ∧ y′)′:74

(I1,0) x ′ ≈ x , (I2,0) x ′′ ≈ x , (I3,1) x ′′′ ≈ x ′,75

(ID) x → x ≈ x ,76

(Z) x → y ≈ 0, (MID) x ∧ x ≈ x ,77

(JID) x ∨ x ≈ x ,78

(MC) x ∧ y ≈ y ∧ x . (C) x → y ≈ y → x ,79

(CP) x → y′ ≈ y → x ′,80

(SCP) x → y ≈ y′ → x ′,81

(A) (x → y) → z ≈ x → (y → z),82

(RD) (x → y) → z ≈ (x → z) → (y → z),83

(LAP) (x → x) → x ≈ x ,84

(SRD) (x → y) → z ≈ (z → x) → (y → z),85

(TII) 0′ → (x → y) ≈ (x → y),86

(CLD) x → (y → z) ≈ (x → z) → (y → x),87

(WCP) x ′ → y ≈ y′ → x ,88

(DM) (x → y) → x ≈ x (De Morgan Algebras),89

(KL) (x → x) → (y → y) ≈ (y → y) (Kleene90

algebras), and91

(BA) x → x ≈ 0′ (Boolean algebras).92

The reader can see the interrelationships among these vari-93

eties given in the Hasse diagram at the end of Sect. 5.94

The paper (Cornejo and Sankappanavar 2016a) is a con-95

tinuation of Sankappanavar (2012) and presents further96

relationships among some of the varieties mentioned above.97

(We should point out here that the algebras in I are referred98

to in Cornejo and Sankappanavar (2016a) as “implicator99

groupoids”.) It is proved there that I2,0 = MID = J ID100

and SCP ⊂ MC, and the varieties of Boolean algebras and101

Kleene algebras are characterized as suitable subvarieties of102

I2,0. It is shown that a Glivenko-like theorem holds for impli- 103

cation zroupoids. It is also proved that Z ⊂ C ⊂ A ⊂ I3,1 104

and I1,0 = ID ∩ A. The varieties generated by the three 105

2-element implication zroupoids are characterized. It turns 106

out that the congruence lattices of implication zroupoids do 107

not satisfy any nontrivial lattice identities. It is also shown 108

that MC ∩ ID = MC ∩ MID ∩ A = C ∩ I1,0 = SL. 109

For an implication zroupoid A, the following are equivalent: 110

(i) the derived algebra Amj = 〈A,∧,∨, 0〉 is a lattice with 111

0, (ii) the absorption identity holds in Amj, (iii) A is a De 112

Morgan algebra, and (iv) A satisfies the identities x ∧ 0 ≈ 0 113

and x ′′ ≈ x . 114

Cornejo and Sankappanavar (2016b) is a further contribu- 115

tion to the theory of implication zroupoids, continuing the 116

work of Sankappanavar (2012) and Cornejo and Sankap- 117

panavar (2016a). The importance of the variety I2,0, which 118

contains the varieties SL and DM, is highlighted by the fact 119

that the variety I2,0 is a maximal subvariety of I with respect 120

to the property that the relation �, defined by: 121

x � y if and only if (x → y′)′ = x , for x, y ∈ A and A∈I, 122

is a partial order. The problem of determining the number 123

of nonisomorphic chains in I2,0 (I2,0-chains) that can be 124

defined on an n-element set, n being a natural number, is then 125

answered by proving that there are exactly n nonisomorphic 126

I2,0-chains of size n, for each n ∈ N. 127

Continuing the investigations done in Sankappanavar 128

(2012), Cornejo and Sankappanavar (2016a, b), the paper 129

(Cornejo and Sankappanavar 2016c) describes the simple 130

algebras and semisimple subvarieties of I. It is shown that 131

there are, up to isomorphism, five (nontrivial) simple alge- 132

bras in I, namely the 2-element trivial implication zroupoid 133

2z, where x → y := 0, the 2-element ∨-semilattice 2s with 134

the least element 0, the 2-element Boolean algebra 2b, the 135

3-element Kleene algebra 3k, and the 4-element De Morgan 136

algebra 4d. From this description it follows that the semi- 137

simple subvarieties of I are precisely the subvarieties of the 138

variety V(2z, 2s, 4d) and hence are locally finite. It also fol- 139

lows that the lattice of semisimple varieties of implication 140

zroupoids is isomorphic to the direct product of a 4-element 141

Boolean lattice and a 4-element chain. 142

Given an I-zroupoid A, there are naturally induced oper- 143

ations ∧ and ∨ on A as follows: 144

• x ∧ y := (x → y′)′, and 145

• x ∨ y := (x ′ ∧ y′)′. 146

With each implication zroupoid A, we associate the fol- 147

lowing algebras, referred to as “derived algebras”: 148

• Am := 〈A,∧, 0〉, 149

• Aj := 〈A,∨, 0〉, 150
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• Amj := 〈A,∧,∨, 0〉.151

The present paper is a further addition to the152

series (Sankappanavar 2012; Cornejo and Sankappanavar153

2016a, b, c) and studies the structure of the derived alge-154

bras Am and Amj, as well as some of the subvarieties of155

I mentioned above. More specifically, the purpose of this156

paper is twofold. First, we show that, for each I-zroupoid157

A, Am is a semigroup. From this result, using Cornejo and158

Sankappanavar (2016a, Theorem 7.3), we deduce that, for159

A ∈ I2,0 ∩ MC, the derived algebra Amj is both a distrib-160

utive bisemilattice and a Birkhoff system. Second, we show161

that CLD ⊂ SRD ⊂ RD and C ⊂ CP ∩ A ∩ MC ∩ CLD,162

both of which are much stronger results than were announced163

in Sankappanavar (2012).164

We would like to acknowledge that the software “Prover165

9/Mace 4” developed by McCune (2005–2010) have been166

useful to us in some of our findings presented in this paper.167

We have used them to find examples and to check some con-168

jectures.169

2 Preliminaries170

We refer the reader to the textbooks Balbes and Dwinger171

(1974), Burris and Sankappanavar (1981), and Rasiowa172

(1974) for the concepts and results assumed in this paper.173

In this section we give results (some old and some new) use-174

ful in the rest of the paper. To start, we wish to note that, in175

a De Morgan algebra, one defines x → y := x ′ ∨ y.176

Lemma 2.1 Sankappanavar (2012, Theorem 8.15) Let A be177

an I-zroupoid and a ∈ A. Then the following are equivalent:178

(a) 0′ → a = a,179

(b) a′′ = a,180

(c) (a → a′)′ = a,181

(d) a′ → a = a.182

Lemma 2.2 Sankappanavar (2012, Lemma 8.13) Let A ∈183

I2,0. Then A satisfies:184

(a) x ′ → 0′ ≈ 0 → x,185

(b) 0 → x ′ ≈ x → 0′.186

Lemma 2.3 Sankappanavar (2012, Lemma 7.5(b)) Let A187

be an I-zroupoid. Then A satisfies (x → y′′)′ ≈ (x → y)′.188

Lemma 2.4 Cornejo and Sankappanavar (2016a, Lemma189

2.8(2)) Let A be an I-zroupoid. Then A satisfies:190

(a) (x → y) → z ≈ [(x → y) → z]′′,191

(b) (x → y)′ ≈ (x ′′ → y)′.192

Lemma 2.5 Sankappanavar (2012, Corollary 7.7) Let A be 193

an I-zroupoid. Then A satisfies x ′′′′ ≈ x ′′. 194

Theorem 2.6 Cornejo and Sankappanavar (2016a, Theo- 195

rem 4.2(a)) Let A = 〈A,→, 0〉 ∈ I and let A′′ := {x ′′ : 196

x ∈ A}. Then 〈A′′,→, 0〉 ∈ I2,0. 197

Lemma 2.7 Let A ∈ I2,0. Then A satisfies: 198

(a) (x → 0′) → y ≈ (x → y′) → y, 199

(b) x → (0 → x)′ ≈ x ′, 200

(c) (x → y) → (0 → y)′ ≈ (x → y)′, 201

(d) [(0 → x) → y] → x ≈ y → x, 202

(e) [x → (y → x)′]′ ≈ (x → y) → x, 203

(f) (y → x) → y ≈ (0 → x) → y, 204

(g) 0 → x ≈ 0 → (0 → x), 205

(h) (0 → x) → (x → y) ≈ x → (x → y), 206

(i) (0 → x) → (0 → y) ≈ x → (0 → y), 207

(j) x → y ≈ x → (x → y), 208

(k) [x ′ → (0 → y)]′ ≈ (0 → x) → (0 → y)′, 209

(l) 0 → (0 → x)′ ≈ 0 → x ′, 210

(m) 0 → (x ′ → y)′ ≈ x → (0 → y′), 211

(n) 0 → (x → y) ≈ x → (0 → y), 212

(o) (x → y) → y′ ≈ y → (x → y)′, 213

(p) 0 → [(0 → x) → y] ≈ x → (0 → y), 214

(q) 0 → (x → y′)′ ≈ 0 → (x ′ → y), 215

(r) [(0 → x) → y]′ ≈ y → (x → y)′, 216

(s) [(x → y) → x] → [(y → x) → y] ≈ x → y, 217

(t) x → (y → x ′) ≈ y → x ′, 218

(u) (z → x) → (y → z) ≈ (0 → x) → (y → z), 219

(v) 0 → [(x → y)′ → z] ≈ 0 → [x → (y′ → z)], 220

(w) [(0 → x) → y] → (z → x) ≈ y → (z → x), 221

(x) [(x → y) → (y → z)]′ ≈ (0 → x) → (y → z)′. 222

Proof For items (a), (b), (c), (e), (f), (g), (k), (l), (m), (n), (o), 223

(q), (s), (t), (u) we refer the interested reader to the appendix 224

of the arxiv version, arXiv:1509.03774v2 [math.LO] 9 Jun 225

2016, of Cornejo and Sankappanavar (2016a) which is avail- 226

able online at http://www.arxiv.org, where detailed proofs are 227

given. The proof of items (d), (i), (j), (p), (r) are in Cornejo 228

and Sankappanavar (2016a) and of items (h), (v), (w), (x) are 229

in Cornejo and Sankappanavar (2016c). � 230

The following lemma is proved in Appendix. 231

Lemma 2.8 Let A ∈ I2,0. Then A satisfies: 232

(1) (x → y)′ → y ≈ x → y, 233

(2) (0 → y) → (x ′ → u) ≈ [x → (y → x)′] → u, 234

(3) (x → y) → (y → z) ≈ (0 → x ′) → (y → z), 235

(4) [(x → y) → z] → (z → u) ≈ (0 → x) → [(y → 236

z) → (z → u)], 237

(5) [y → (0 → z)] → x ≈ [y → (x → z)] → x, 238

(6) (0 → x) → [y → (x → z)] ≈ x → [y → 239

(x → z)], 240
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(7) x → [y → (x → z)] ≈ y → (x → z),241

(8) (x → y) → (0 → y′) ≈ (x → y) → 0′,242

(9) y → (0 → x)′ ≈ [y′ → (0 → x ′)′]′,243

(10) x → [y → (0 → x)′] ≈ y → x ′,244

(11) (x ′ → y) → z ≈ [(x → z) → y] → z,245

(12) (x ′ → y) → (x → z) ≈ (0 → y) → (x → z),246

(13) x → [(0 → x) → y] ≈ x → y,247

(14) (x → 0′) → (y → z) ≈ [(0 → x) → y] → z,248

(15) [(x → y) → (z → x)] → u ≈ (y → 0′) → [(z →249

x) → u],250

(16) (0 → x) → [(y → x) → z] ≈ (y → x) → z,251

(17) (0 → [(x → y) → z)] → [(u → x) → y] ≈ (0 →252

x) → [(y → 0′) → ((0 → z) → ((u → x) → y))],253

(18) [x → ((0 → y) → z)]′ ≈ (x → z) → [(y → (0 →254

z))′],255

(19) [0 → ((x → y) → z)] → u ≈ (0 → x) → [(0 →256

(y → z)) → u],257

(20) [x → ((0 → y) → z)] → y ≈ (x → z) → y,258

(21) (x → 0′) → [y → ((x → z) → u)] ≈ y → [(x →259

z) → u],260

(22) (x → 0′) → (y → z) ≈ y → [(x → (0 → y)) →261

z],262

(23) [x → (0 → y)] → (y → z) ≈ (x → y) → (y → z),263

264

(24) [(x → y) → (z → x)] → y ≈ (z → x) → y.265

3 ∧-Associativity in I2,0266

In this section our goal is to prove the ∧-associativity in I2,0.267

To achieve this goal, we need the following lemmas.268

Lemma 3.1 Let A ∈ I2,0. Then A satisfies (x → y′)′ →269

(y → z) ≈ x → (y → z).270

Proof Let a, b, c ∈ A. Since271

(0 → a) → [b → (a → c)]272

= a → [b → (a → c)] by Lemma 2.8 (6)273

= b → (a → c) by Lemma 2.8 (7),274

it follows that A satisfies275

(0 → x) → [y → (x → z)] ≈ y → (x → z). (3.1)276

Also, we get277

[(x → y) → z]′ → x ≈ (0 → y) → (z′ → x), (3.2)278

from279

(0 → b) → (c′ → a)280

= [c → (b → c)′] → a by Lemma 2.8 (2)281

= [c′′ → (b → c)′] → a 282

= [(c′ → a) → (b → c)′] → a by Lemma 2.8 (11) 283

= [(c′ → a) → (b → c)′]′′ → a 284

= [(a → b) → c]′ → a by (I). 285

We see that the identity 286

[(x → (0 → y)) → z] 287

→ u ≈ (0 → x) → [(0 → y′) → (z → u)], (3.3) 288

holds in A, since 289

(0 → a) → [(0 → b′) → (c → d)] 290

= (a′ → 0′) → [(0 → b′) → (c → d)] 291

by Lemma 2.2 (b) 292

= [(0 → a′) → (0 → b′)] → (c → d) 293

by Lemma 2.8 (14) 294

= [0 → (a′ → b′)] → (c → d) 295

by Lemma 2.7 items (i) and (n) 296

= [0 → (a → b)′] → (c → d) 297

by Lemma 2.7 items (m) and (n) 298

= [(a → b) → 0′] → (c → d) by Lemma 2.2 (b) 299

= [{0 → (a → b)} → c] → d by Lemma 2.8 (14) 300

= [{a → (0 → b)} → c] → d by Lemma 2.7 (n). 301

Observe that 302

(a → b) → [(0 → b) → c] 303

= [{((0 → b) → c)′ → a} → {b → ((0 → b) → c)}′]′ 304

by (I) 305

= [{((0 → b) → c)′ → a} → (b → c)′]′ 306

by Lemma 2.8 (13) 307

= [{((c → b) → c)′ → a} → (b → c)′]′ 308

by Lemma 2.7 (f) 309

= [{(c → (b → c)′) → a} → (b → c)′]′ 310

by Lemma 2.7 (e) 311

= [(b → c) → {c → (b → c)′}] → [a → (b → c)′]′ 312

by (I) 313

= [c → (b → c)′] → [a → (b → c)′]′ 314

by Lemma 2.7 (t) 315

= [(b → c) → c′] → [a → (b → c)′]′ 316

by Lemma 2.7 (o) 317

= [(c′ → a) → (b → c)′]′ by (I) 318

= (a → b) → c by (I), 319
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and, consequently, A satisfies320

(x → y) → ((0 → y) → z) ≈ (x → y) → z. (3.4)321

From322

[b → (0 → c)] → [d → (a → b)]323

= [(0 → b) → (0 → c)] → [d → (a → b)]324

by Lemma 2.7 (i)325

= [0 → {(0 → b) → c}] → [d → (a → b)]326

by Lemma 2.7 (n)327

= [(a → b) → {(0 → b) → c}] → [d → (a → b)]328

by Lemma 2.7 (u)329

= [(a → b) → c] → [d → (a → b)]330

by (3.4),331

we conclude that the identity332

[(x → y) → z] → [u → (x → y)]333

≈ [y → (0 → z)] → [u → (x → y)] (3.5)334

is true in A. From Lemma 2.7 (u) and (3.5) we see that A335

satisfies336

[x → (0 → y)] → [z → (u → x)] ≈ (0 → y)337

→ [z → (u → x)]. (3.6)338

From339

b′ → (a → c)340

= (0 → a) → [b′ → (a → c)] by (3.1)341

= [{(a → c) → a} → b]′ → (a → c) by (3.2)342

= [{(0 → c) → a} → b]′ → (a → c)343

by Lemma 2.7 (f)344

= [(c → 0′) → (a → b)]′ → (a → c)345

by Lemma 2.8 (14)346

= [{c → (0 → 0)} → (a → b)]′ → (a → c)347

= [(0 → c) → {(0 → 0′) → (a → b)′}] → (a → c)348

by (3.3)349

= [(0 → c) → {0′ → (a → b)′}] → (a → c)350

by Lemma 2.1 (d)351

= [(0 → c) → (a → b)′] → (a → c)352

by Lemma 2.1 (a)353

= (c → 0′) → [(a → b)′ → (a → c)]354

by Lemma 2.8 (15)355

= (a → b)′ → (a → c) by (3.6) and by Lemma 2.1 (a),356

we have that A satisfies 357

(x → y)′ → (x → z) ≈ y′ → (x → z). (3.7) 358

Also, the identity 359

[x → (y → z)′] → z ≈ (x → y) → z (3.8) 360

holds in A, since 361

[a → (b → c)′] → c 362

= [(c′ → a) → {(b → c)′ → c}′]′ by (I) 363

= [(c′ → a) → (b → c)′]′ by Lemma 2.8 (1) 364

= (a → b) → c by (I). 365

Therefore, we have 366

(a → b′)′ → (b → c) 367

= [b → {a → (0 → b)′}]′ → (b → c) 368

by Lemma 2.8 (10) 369

= [a → (0 → b)′]′ → (b → c) 370

by (3.7) with x = b, y = a → (0 → b)′ 371

= [a′ → (0 → b′)′]′′ → (b → c) by Lemma 2.8 (9) 372

= [a′ → (0 → b′)′] → (b → c) 373

= [a′ → (b → 0′)′] → (b → c) by Lemma 2.2 (b) 374

= [a′ → {(b → 0′)′ → (b → c)}′] → (b → c) 375

by (3.8) with x = a′, y = (b → 0′)′, z = b → c 376

= [a′ → {0′′ → (b → c)}′] → (b → c) 377

by (3.7) with y = 0′
378

= [a′ → {0 → (b → c)}′] → (b → c) 379

= (a′ → 0) → (b → c) by (3.8) 380

= a → (b → c). 381

This completes the proof. � 382

Lemma 3.2 Let A ∈ I2,0. Then A satisfies (x → y) → 383

(y → z) ≈ y → ((x → y) → z). 384

Proof Let a, b, c ∈ A. Then 385

b → [(a → b) → c] 386

= b → [c′ → {(a → b) → c}] by Lemma 2.7 (t) 387

= (b → c′′)′ → [c′ → {(a → b) → c}] 388

by Lemma 3.1 with y = c′ and z = (a → b) → c 389

= (b → c)′ → [c′ → {(a → b) → c}] 390

= (b → c)′ → {(a → b) → c} 391

by Lemma 2.7 (t) 392

= (b → c)′ → [(c′ → a) → (b → c)′]′ by (I) 393
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= [{(b → c)′′ → 0} → {(c′ → a) → (b → c)′}′]′′394

= [{0 → (c′ → a)} → (b → c)′]′ by (I)395

= [(0 → c) → [(0 → 0′) → {(0 → a) → (b → c)′}]]′396

by Lemma 2.8 (17) with x = c, y = 0, u = b.397

= [(0 → c) → {(0 → a) → (b → c)′}]′398

since 0 → 0′ ≈ 0′ and 0′ → x ≈ x399

= [[{(0 → a) → (b → c)′}′ → 0]400

→ [c → {(0 → a) → (b → c)′}]′]′′ by (I)401

= [(0 → a) → (b → c)′]402

→ [c → {(0 → a) → (b → c)′}]′ using x ≈ x ′′
403

= [(0 → a) → (b → c)′]404

→ [c → [(0 → c) → {(0 → a) → (b → c)′}]]′405

by Lemma 2.8 (13) with x = c and y406

= (0 → a) → (b → c)′407

= [(0 → a) → (b → c)′]408

→ [{c → ((c′ → 0′) → {(0 → a) → (b → c)′))}′]409

by Lemma 2.2 (b)410

= [(0 → a) → (b → c)′]411

→ [{c → (((0 → c′) → (0 → a)) → (b → c)′)}′]412

by Lemma 2.8 (14)413

= [(0 → a) → (b → c)′]414

→ [(c → ((c′ → (0 → a)) → (b → c)′))′]415

by Lemma 2.7 (i)416

= [(0 → a) → (b → c)′]417

→ [{c → (((0 → a) → b) → c)′}′] by (I)418

= [(0 → a) → (b → c)′]419

→ [{(0 → ((0 → a) → b)) → c}′′]420

by Lemma 2.7 (r)421

= [(0 → a) → (b → c)′]422

→ [{0 → ((0 → a) → b)} → c]423

= [(0 → a) → (b → c)′]424

→ [{(0 → a) → (0 → b)} → c]425

by Lemma 2.7 (n)426

= [(0 → a) → (b → c)′]427

→ [{a → (0 → b)} → c]428

by Lemma 2.7 (i)429

= (a → 0′) → [(b → c)′430

→ [{a → (0 → b)} → c]]431

by Lemma 2.8 (15) with x = 0, y = a, z = b → c and432

u = (a → (0 → b)) → c433

= (b → c)′ → [{a → (0 → b)} → c]434

by Lemma 2.8 (21) with x = b, y = (b → c)′,435

z = 0 → b and u = c 436

= [(b → c) → [0 → {(a → (0 → b)) → c}]′] 437

→ [{a → (0 → b)} → c] 438

by Lemma 2.8 (20) with x = b → c, 439

y = (a → (0 → b)) → c, z = 0 440

= [(b → c) → [0 → {(0 → (a → b)) → c}]′] 441

→ [{a → (0 → b)} → c] 442

by Lemma 2.7 (n) 443

444

445

= [(b → c) → {(0 → (a → b)) → (0 → c)}′] 446

→ [{a → (0 → b)} → c] 447

by Lemma 2.7 (n) 448

= [(b → c) → {(a → b) → (0 → c)}′] 449

→ [{a → (0 → b)} → c] 450

by Lemma 2.7 (i) 451

= [b → {(0 → (a → b)) → c}]′ 452

→ [{a → (0 → b)} → c] 453

by Lemma 2.8 (18) with x = b, y = a → b, z = c 454

= {b → [(a → (0 → b)) → c]}′ 455

→ [(a → (0 → b)) → c] 456

by Lemma 2.7 (n) 457

= b → [{a → (0 → b)} → c] 458

by Lemma 2.8 (1) 459

= b → [{(a → (0 → b))′ → (0 → b)} → c] 460

by Lemma 2.8 (1) 461

= [{a → (0 → b)}′ → 0′] → (b → c) 462

by Lemma 2.8 (22) 463

= [0 → {a → (0 → b)}] → (b → c) 464

by Lemma 2.2 (b) 465

= [a → (0 → (0 → b))] → (b → c) 466

by Lemma 2.7 (n) 467

= [a → (0 → b)] → (b → c) 468

by Lemma 2.7 (g) 469

= (a → b) → (b → c) 470

by Lemma 2.8 (23) 471

= [(a → b)′ → b] → (b → c) 472

by Lemma 2.8 (1) 473

= [0 → (a → b)] → [(0 → b) → (b → c)] 474

by Lemma 2.8 (4) with y = 0, 475

x = a → b, z = b, u = c 476

= [{(0 → b) → (b → c)} → (a → b)] 477

→ [(0 → b) → (b → c)] 478

by Lemma 2.7 (f) 479

= [{b → ((0 → b) → (b → c))} → (a → b)] 480
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→ [(0 → b) → (b → c)]481

by Lemma 2.8 (7)482

= (a → b) → [(0 → b) → (b → c)]483

by Lemma 2.8 (24) with y = (0 → b) → (b → c)484

= (a → b) → [b → (b → c)]485

by Lemma 2.7 (h)486

= (a → b) → (b → c)487

by Lemma 2.7 (j).488

489

�490

Lemma 3.3 Let A ∈ I2,0. Then A satisfies491

(x → y′)′ → z ≈ x → (y → z).492

Proof Let a, b, c ∈ A. Then493

a → (b → c)494

= a → [(0 → a) → (b → c)] by Lemma 2.8 (13)495

= a → [b → {(0 → a) → (b → c)}]496

by Lemma 2.8 (7)497

= (a → b′)′ → [b → {(0 → a) → (b → c)}]498

by Lemma 3.1499

= (a → b′)′ → [(0 → a) → (b → c)]500

by Lemma 2.8 (7)501

= (a → b′)′ → [(0 → a) → (b′′ → c)]502

= (a → b′)′ → [{b′ → (a → b′)′} → c]503

by Lemma 2.8 (2) with x = b′, y = a, u = c504

= [b′ → (a → b′)′] → [(a → b′)′ → c]505

by Lemma 3.2 with x = b′, y = (a → b′)′, z = c506

= [(a → b′) → b] → [(a → b′)′ → c]507

by Lemma 2.7 (o)508

= [(a → b′)′′ → b] → [(a → b′)′ → c]509

= (0 → b) → [(a → b′)′ → c] by Lemma 2.8 (12)510

= (b′ → 0′) → [(a → b′)′ → c] by Lemma 2.2 (b)511

= [(0 → b′) → (a → b′)′] → c by Lemma 2.8 (14)512

= [(0 → b′) → (a → b′)′]′′ → c513

= [(b → 0′) → (a → b′)′]′′ → c by Lemma 2.2 (b)514

= [(0′ → a) → b′]′ → c by (I)515

= (a → b′)′ → c by Lemma 2.1 (a).516

517

�518

Theorem 3.4 Let A ∈ I2,0. Then A satisfies the identity:519

(x ∧ y) ∧ z ≈ x ∧ (y ∧ z).520

Proof Let a, b, c ∈ A. Then521

(a ∧ b) ∧ c522

= [(a → b′)′ → c′]′ by definition of ∧523

= [a → (b → c′)]′ by Lemma 3.3524

= [a → (b → c′)′′]′ by x ≈ x ′′
525

= a ∧ (b ∧ c) by definition of ∧ . 526

527

� 528

4 ∧-Associativity in I 529

For a certain class of identities, in order to prove their validity 530

in I, it suffices to prove their validity in I2,0. To this effect, 531

we will prove a Transfer Theorem in this section and give 532

some applications of that theorem in this and the following 533

sections. 534

Let x represent the n-sequence x1, x2, . . . , xn of variables, 535

a = a1, a2, . . . , an ∈ An , and let a′′ = a′′
1 , a′′

2 , . . . , a′′
n . 536

Lemma 4.1 Let A ∈ I and t (x) a term in the language of 537

I-zroupoids, Then 538

A |� (t A(a))′′ ≈ t A(a′′). 539

Proof We will proceed by induction on the term t (x). 540

• If t (x) = 0, then t A(a′′) = 0′′ = 0 = (t A(a))′′. 541

• If t (x) = xi with 1 ≤ i ≤ n, then (t A(a))′′ = a′′
i = 542

t A(a′′). 543

• If t (x) = t1(x) → t2(x) then 544

(t A(a))′′ 545

= [(t A
1 (a) → t A

2 (a)]′′ 546

= [(t A
1 (a) → (t A

2 (a))′′]′′ by Lemma 2.4 547

= [(t A
1 (a))′′ → (t A

2 (a))′′]′′ by Lemma 2.4 (b) 548

= [{(t A
1 (a))′ → 0} → (t A

2 (a))′′]′′ 549

= [((t A
1 (a))′ → 0] → (t A

2 (a))′′ by Lemma 2.4 (a) 550

= (t A
1 (a))′′ → (t A

2 (a))′′ 551

= t A
1 (a′′) → t A

2 (a′′) by induction 552

= t A(a′′), 553

554
proving the lemma. � 555

Theorem 4.2 (Transfer Theorem) Let ti (x), i = 1, . . . , 6 be 556

terms and V a subvariety of I. If 557

V ∩ I2,0 |� [t1(x) → t2(x)] → t3(x) 558

≈ [t4(x) → t5(x)] → t6(x), 559

then 560

V |� [t1(x) → t2(x)] → t3(x) 561

≈ [t4(x) → t5(x)] → t6(x). 562
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Proof Let A ∈ V . Then563

[t A
1 (a) → t A

2 (a)] → t A
3 (a)564

= [{t A
1 (a) → t A

2 (a)} → t A
3 (a)]′′ by Lemma 2.4 (a)565

= [t A
1 (a′′) → t A

2 (a′′)] → t A
3 (a′′) by Lemma 4.1566

Using Lemma 2.5 we have that a′′
1 , a′′

2 , . . . , a′′
n ∈ A′′, and by567

Theorem 2.6, A′′ ∈ V ∩ I2,0. Then568

[t A
1 (a) → t A

2 (a)] → t A
3 (a)569

= [t A
1 (a′′) → t A

2 (a′′)] → t A
3 (a′′)570

by the conclusion above571

= [t A
4 (a′′) → t A

5 (a′′)] → t A
6 (a′′)572

by hypothesis, since A′′ ∈ V ∩ I2,0573

= [{t A
4 (a) → t A

5 (a)} → t A
6 (a)]′′ by Lemma 4.1574

= [t A
4 (a) → t A

5 (a)] → t A
6 (a) by Lemma 2.4 (a).575

This completes the proof. �576

Corollary 4.3 Let ri (x), i = 1, . . . , 4, be terms. If577

I2,0 |� r1(x) → r2(x) ≈ r3(x) → r4(x),578

then579

I |� [r1(x) → r2(x)]′ ≈ [r3(x) → r4(x)]′.580

Proof Let I2,0 |� r1(x) → r2(x) ≈ r3(x) → r4(x). Then,581

I2,0 |� [r1(x) → r2(x)]′ ≈ [r3(x) → r4(x)]′,582

which implies583

I2,0 |� [r1(x) → r2(x)] → 0 ≈ [r3(x) → r4(x)] → 0.584

Now we apply Theorem 4.2, using V := I, t1(x) := r1(x),585

t2(x) := r2(x), t3(x) := 0, t4(x) := r3(x), t5(x) := r4(x)586

and t6(x) := 0. Hence, we have that587

I |� [r1(x) → r2(x)] → 0 ≈ [r3(x) → r4(x)] → 0,588

proving the corollary. �589

We are now ready to present our first main result.590

Theorem 4.4 Let A ∈ I. Then Am is a semigroup.591

Proof By Theorem 3.4 we have that592

I2,0 |� x ∧ (y ∧ z) ≈ (x ∧ y) ∧ z.593

Then, using the definition of ∧, we get594

I2,0 |� (x → (y ∧ z)′)′ ≈ ((x ∧ y) → z′)′.595

Applying Corollary 4.3, 596

I |� (x → (y ∧ z)′)′ ≈ ((x ∧ y) → z′)′. 597

Hence, 598

I |� x ∧ (y ∧ z) ≈ (x ∧ y) ∧ z, 599

proving the theorem. � 600

We remark here that the above theorem implies that 601

[x → (y → z′)′′]′ ≈ [(x → y′)′ → z′]′. 602

For A an I-zroupoid, Amj is a bisemigroup if Am and Aj
603

are semigroups. 604

Theorem 4.5 Let A ∈ I. Then Aj is a semigroup. 605

Proof Let a, b, c ∈ A. 606

a ∨ (b ∨ c) 607

= [a′ ∧ (b′ ∧ c′)′′]′ by definition of ∨ 608

= [a′ → (b′ → c′′)′′′′]′′ by definition of ∧ 609

= [a′ → (b′ → c′′)′′]′′ by Lemma 2.5 610

= [(a′ → b′′)′ → c′′]′′ 611

by (the remark after) Theorem 4.4 612

= [(a′ ∧ b′) → c′′]′′ by definition of ∧ 613

= [(a′ ∧ b′)′′ → c′′]′′ by Lemma 2.4 (b) 614

= (a ∨ b) ∨ c by definition of ∨. 615

� 616

Corollary 4.6 Let A ∈ I. Then Amj is a bisemigroup. 617

The following theorem is proved in Cornejo and Sankap- 618

panavar (2016a, Theorem 7.3). 619

Theorem 4.7 Let A ∈ I2,0 ∩ MC. Then Amj satisfies: 620

(a) x ∧ x ≈ x, 621

(b) x ∨ x ≈ x, 622

(c) x ∨ y ≈ y ∨ x, 623

(d) x ∧ (y ∨ z) ≈ (x ∧ y) ∨ (x ∧ z), 624

(e) x ∨ (y ∧ z) ≈ (x ∨ y) ∧ (x ∨ z), 625

(f) x ∧ (x ∨ y) ≈ x ∨ (x ∧ y). 626

In Plonka (1967), Plonka introduced the class of dis- 627

tributive quasilattices, which are now known as distributive 628

bisemilattices. A bisemilattice is an algebra 〈B,∧,∨〉 such 629

that 〈B,∧〉 and 〈B,∨〉 are both semilattices. A distributive 630

bisemilattice (DBS) is a bisemilattice in which the distribu- 631

tive laws hold: 632

x ∧ (y ∨ z) ≈ (x ∧ y) ∨ (x ∧ z); 633

x ∨ (y ∧ z) ≈ (x ∨ y) ∧ (x ∨ z). 634
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The following corollaries are immediate from Corollary635

4.6 and Theorem 4.7 and give interesting properties of the636

variety I2,0 ∩ MC.637

Corollary 4.8 Let A in the variety I2,0 ∩ MC. Then Amj is638

a distributive bisemilattice.639

A Birkhoff system is a bisemilattice satisfying the Birk-640

hoff’s identity:641

(B R) x ∧ (x ∨ y) ≈ x ∨ (x ∧ y).642

Corollary 4.9 Let A ∈ I2,0 ∩ MC. Then Amj is a Birkhoff643

system.644

Thus, if A ∈ I2,0 ∩ MC, then Amj is both a distributive645

bisemilattice and a Birkhoff system.646

5 Varieties SRD, RD, C, CP , and CLD647

Let A be an I-zroupoid. Recall that A is strong right distrib-648

utive if the following condition holds in A:649

(x → y) → z ≈ (z → x) → (y → z). (SRD)650
651

A is right distributive if A satisfies:652

(x → y) → z ≈ (x → z) → (y → z). (RD)653
654

Recall also that SRD and RD denote the variety of strong655

right distributive and right distributive implication zroupoids,656

respectively.657

Lemma 5.1 Let A ∈ I2,0 ∩ SRD then A satisfies the fol-658

lowing identities:659

(a) 0′ ≈ 0,660

(b) x ′ ≈ x,661

(c) (x → y) → z ≈ (x → z) → (y → z).662

Proof Let a, b, c ∈ A.663

(a)

0 = 0′′
664

= (0 → 0) → 0665

= (0 → 0) → (0 → 0) by (SRD)666

= 0′ → 0′
667

= 0′ by Lemma 2.1 (a).668

(b)

a = a′′
669

= (a → 0) → 0670

= (0 → a) → (0 → 0) by (SRD) 671

= (0 → a) → 0′
672

= (0 → a) → 0 by (a) 673

= (0′ → a) → 0 by (a) 674

= a → 0 by Lemma 2.1 (a). 675

(c)

(a → b) → c 676

= (c → a) → (b → c) by (SRD) 677

= (0 → a) → (b → c) by Lemma 2.7 (u) 678

= (a′ → 0′) → (b → c) by Lemma 2.2 (b) 679

= (a → 0) → (b → c) by (b) 680

= [(b → c) → a] → [0 → (b → c)] by (SRD) 681

= [(b → c) → a] → [(b → c)′ → 0′] 682

by Lemma 2.2 (b) 683

= [(b → c) → a] → [(b → c) → 0] by (b) 684

= [(b → c) → a] → (b → c) by (b) 685

= [(b → c) → a] → [c′ → (b → c)] 686

by Lemma 2.7 (t) 687

= [(b → c) → a] → [c → (b → c)] by (b) 688

= (a → c) → (b → c) by (SRD). 689

� 690

The following Theorem is immediate from Theorem 4.2 691

and Lemma 5.1 (c) and the example that follows. 692

Theorem 5.2 SRD ⊂ RD. 693

The following example, as can be easily verified, is in RD 694

but fails to satisfy (SRD) (at x = a, y = 0, z = 0). 695

→: 0 a b
0 0 a b
a b a b
b a a b

696

Recall that an implication zroupoid A is 697

• commutative if the following condition holds in A: 698

x → y ≈ y → x, (C) 699
700

• contrapositive if the following condition holds in A: 701

x → y′ ≈ y → x ′, (CP) 702
703

The variety CLD is defined, relative to I, by 704

x → (y → z) ≈ (x → z) → (y → x). (CLD) 705
706
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[CLD was formerly referred to as SLD in Sankappanavar707

(2012).]708

Recall that C and CP denote the varieties of commutative709

and contrapositive implication zroupoids, respectively.710

Lemma 5.3 Let A ∈ C then A satisfies the following identi-711

ties:712

(a) (x → y) → z ≈ x → (y → z)713

(b) x → y′ ≈ y → x ′
714

(c) x ∧ y ≈ y ∧ x.715

Proof Let a, b ∈ A.716

(a) It follows from Cornejo and Sankappanavar (2016a, The-717

orem 8.2).718

(b)

a → b′ = a → (b → 0)719

= (a → b) → 0 by (a)720

= (b → a) → 0 by the identity (C)721

= b → (a → 0) by (a)722

= b → a′.723

(c)

a ∧ b = (a → b′)′724

= (b → a′)′ by (b)725

= b ∧ a.726

�727

Lemma 5.4 Let A ∈ I2,0 ∩ C then A satisfies the following728

identities:729

(a) 0′ ≈ 0,730

(b) x ′ ≈ x,731

(c) (x → y) → z ≈ (z → x) → (y → z).732

Proof Let a, b, c ∈ A.733

(a)

0 = 0′′
734

= (0 → 0) → 0735

= 0 → (0 → 0) by (C)736

= 0 → 0′
737

= 0′ → 0 by (C)738

= 0′ by Lemma 2.1 (a).739

((b))

a = a′′
740

= (a → 0) → 0741

= (a → 0′) → 0 by (a) 742

= (0′ → a) → 0 by (C) 743

= a → 0 by Lemma 2.1 (a). 744

(c)

(a → b) → c = [(c′ → a) → (b → c)′]′ by (I) 745

= (c → a) → (b → c) by ((b)). 746

� 747

Theorem 5.5 C ⊂ CP ∩ A ∩ MC ∩ CLD. 748

Proof By Lemma 5.3 we have that C ⊂ CP ∩ A ∩ MC. 749

Using Theorem 4.2 and Lemma 5.4, we have 750

C ⊂ SRD. (∗) 751
752

Let A ∈ C and a, b, c ∈ A. Hence, 753

a → (b → c) 754

= (b → c) → a by (C) 755

= (c → b) → a by (C) 756

= (a → c) → (b → a) by (∗). 757

Thus, C ⊆ CLD. The following 4-element I-zroupoid shows 758

that the inclusion in the previous statement is proper. � 759

→: 0 a b c
0 0 0 0 0
a 0 0 0 0
b 0 c 0 0
c 0 0 0 0

760

Theorem 5.6 CLD ⊂ SRD. 761

Proof Let A ∈ CLD∩I2,0 and let a, b, c ∈ A. Using Lemma 762

2.1 (a) and (CLD), we get 0′ = 0 → 0 = 0 → (0′ → 0) = 763

(0 → 0) → (0′ → 0) = 0′ → 0 = 0. Hence, 764

0′ = 0. (5.1) 765

So, a′ = a → 0 = a → 0′. Then by (5.1), (CLD) and 766

Lemma 2.1 (d), we have a′ = a → 0 = a → 0′ = (a → 767

0) → (0 → a) = a′ → (0′ → a) = a′ → a = a, thus A 768

satisfies: 769

x ′ ≈ x . (5.2) 770

Now, using (5.1) and (5.2), and Lemma 2.1 (a), and (CLD), 771

we obtain b → a = 0′ → (b → a) = 0 → (b → a) = 772

0 → (b′ → a) = (0 → a) → (b′ → 0) = (0′ → a) → 773

b′′ = a → b. Thus, the following identity is true in A: 774
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x → y ≈ y → x . (5.3)775

Hence, we have776

(a → b) → c = c → (a → b)777

= (c → b) → (a → c) by (CLD)778

= (a → c) → (c → b) by (5.3)779

= (c → a) → (b → c) by (5.3).780
781

Thus, we have proved that if A ∈ CLD ∩ I2,0, then A |�782

(S R D). Now, apply Theorem 4.2 to finish off the proof. �783

In view of Theorem 5.2 and Theorem 5.6 we have the 784

following result. 785

Corollary 5.7 CLD ⊂ SRD ⊂ RD. 786

The following picture describes the Hasse diagram of the 787

poset of the subvarieties (known so far) of I under ⊆. Each 788

nonobvious link is augmented either by a reference (where 789

it was first proved or where it is proved in this paper) or by 790

the mark “(*),” in which case the proof will be presented in 791

the forthcoming paper (Cornejo and Sankappanavar 2016e). 792

The proof of the statement, WCP = MC, will also be pre- 793

sented in Cornejo and Sankappanavar (2016e). We note that 794

T denotes the trivial variety. 795

POSET OF (KNOWN) SUBVARIETIES OF I under ⊆

BA

[San12]

KA

[San12]

DM

[San12, 4.3]

SCP

[San12, 8.5]

[San12, 8.19]
CP

[CS16, 6.2]

[San12, 8.10]

WCP = MC

T

SL

[CS16]

[CS16]

Z

[CS16]

I1,0

[CS16, 10.3]

[CS16]

ID

[San12, 8.23]

LAP
[San12, 8.19]

I2,0

T II

[San12, 8.3]

I3,1

I

C

5.5

5.5

CLD

(*)

A

[CS16, 6.2]

(*)

SRD

5.2

RD
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Appendix808

Proof of Lemma 2.8 In the proofs below we sometimes use809

· for → for convenience.810

Let a, b, c, d, e ∈ A.811

(1)

(a → b)′ → b812

= [[b′ → (a → b)] → [0 → b]′]′ by (I)813

= [a → b] → [0 → b]′]′ by Lemma 2.7 (t)814

= (a → b)′′ by Lemma 2.7 (c)815

= a → b.816

(2) Since817

[(a → b′) → b] → d818

= [(a → 0′) → b] → d by Lemma 2.7 (a)819

= [(0 → a′) → b] → d by Lemma 2.2 (b)820

= [{d ′ → (0 → a′)} → (b → d)′]′ by (I)821

= [{0 → (d ′ → a′)} → (b → d)′]′822

by Lemma 2.7 (n)823

= [{(d ′ → a′)′ → 0′} → (b → d)′]′824

by Lemma 2.2 (b)825

= [{(b → d) → (d ′ → a′)′} → {0′ → (b → d)′}′]′′826

by (I)827

= [(b → d) → (d ′ → a′)′] → [0′ → (b → d)′]′828

= [(b → d) → (d ′ → a′)′] → (b → d)829

by Lemma 2.1 (a) and x ′′ ≈ x830

= [0 → (d ′ → a′)′] → (b → d) by Lemma 2.7 (f)831

= [d → (0 → a)] → (b → d) by Lemma 2.7 (m)832

= [{(b → d)′ → d} → [(0 → a) → (b → d)]′]′ by (I)833

= [(b → d) → {(0 → a) → (b → d)}′]′ by (1)834

= [(b → d) → (0 → a)] → (b → d) by Lemma 2.7 (e)835

= [0 → (0 → a)] → (b → d) by Lemma 2.7 (f) 836

= (0 → a) → (b → d) by Lemma 2.7 (g), 837

A satisfies 838

[(x → y′) → y] → u ≈ (0 → x) → (y → u). (5.4) 839

Hence, 840

(0 → b) → (a′ → d) 841

= [(b → a) → a′] → d by (5.4) 842

= [a → (b → a)′] → d by Lemma 2.7 (o). 843

(3)

(a → b) → (b → c) 844

= [{(b → c)′ → a} → {b → (b → c)}′]′ 845

= [{(b → c)′ → a} → (b → c)′]′ by Lemma 2.7 (j) 846

= [{(b → c)′ → a} → {0′ → (b → c)}′]′ 847

by Lemma 2.1 (a) 848

= (a → 0′) → (b → c) 849

= (0 → a′) → (b → c) by Lemma 2.2 (b). 850

(4) From 851

(0 → b) → (c → d)′ 852

= [(b → c) → (c → d)]′ by Lemma 2.7 (x) 853

= [(0 → b′) → (c → d)]′ by (3), 854

we can conclude that A satisfies 855

(0 → y) → (z → u)′ ≈ [(0 → y′) → (z → u)]′. (5.5) 856

Hence, 857

[(a · b) · c] · (c · d) 858

= [0 · (a · b)′] · (c · d) by (3) 859

= [a′ · (0 · b′)] · (c · d) by Lemma 2.7 (m) 860

= [(0 · a′) · (0 · b′)] · (c · d) by Lemma 2.7 (i) 861

= [{(c · d)′ · (0 · a′)} · {(0 · b′) · (c · d)}′]′ 862

= [[{(0 · b′) · (c · d)} · (c · d)′] · [(0 · a′) · {(0 · b′) 863

·(c · d)}′]′]′′ by (I) 864

= [[(0 · b′) · (c · d)] · (c · d)′] · [(0 · a′) · {(0 · b′) 865

·(c · d)}′]′ 866

= [[(0 · b′) · (c · d)′′] · (c · d)′] · [(0 · a′) · [(0 · b′) 867

·(c · d)]′]′ 868

= [[(0 · b′) · 0′] · (c · d)′] · [(0 · a′) · [(0 · b′) 869

·(c · d)]′]′ 870

by Lemma 2.7 (a) 871
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= [[(b · 0′) · 0′] · (c · d)′] · [(0 · a′) · [(0 · b′)872

·(c · d)]′]′873

by Lemma 2.2 (b)874

= [[(b · 0′′) · 0′] · (c · d)′] · [(0 · a′) · [(0 · b′)875

·(c · d)]′]′876

by Lemma 2.7 (a)877

= [[(b · 0) · 0′] · (c · d)′] · [(0 · a′) · [(0 · b′)878

·(c · d)]′]′879

= [[b′ · 0′] · (c · d)′] · [(0 · a′) · [(0 · b′)880

·(c · d)]′]′881

= [(0 · b) · (c · d)′] · [(0 · a′) · [(0 · b′)882

·(c · d)]′]′883

by Lemma 2.2 (b)884

= [(0 · b′) · (c · d)]′ · [(0 · a′) · [(0 · b′)885

·(c · d)]′]′ by (5.5)886

= [[[(0 · b′) · (c · d)]′ · (0 · a′)]887

·[(0 · b′) · (c · d)]′]′888

by Lemma 2.7 (e)889

= [{0 · (0 · a′)} · {(0 · b′) · (c · d)}′]′890

by Lemma 2.7 (f)891

= [(0 · a′) · [(0 · b′) · (c · d)]′]′892

by Lemma 2.7 (g)893

= [(0 · a) · {(0 · b′) · (c · d)}]′′ by (5.5)894

= (0 · a) · [(0 · b′) · (c · d)]895

= (0 · a) · [(b · c) · (c · d)] by (3).896

(5)

[b → (0 → c)] → a897

= [(a′ → b) → {(0 → c) → a}′]′ by (I)898

= [(a′ → b) → {(a → c) → a}′]′899

by Lemma 2.7 (f)900

= [b → (a → c)] → a by (I).901

(6) Observe that A satisfies902

[0 → {x → (y → z)}] → y ≈ [x → (y → z)] → y,903

(5.6)904

since905

[0 → {a → (b → c)}] → b906

= [a → {0 → (b → c)}] → b907

by Lemma 2.7 (n)908

= [(b′ → a) → {(0 → (b → c)) → b}′]′ by (I)909

= [(b′ → a) → {(b → (b → c)) → b}′]′ 910

by Lemma 2.7 (f) 911

= [a → {b → (b → c)}] → b by (I) 912

= [a → (b → c)] → b 913

by Lemma 2.7 (j). 914

Then we have that 915

(0 · a) · [b · (a · c)] 916

= [{b · (a · c)} · a] · [b · (a · c)] 917

by Lemma 2.7 (f) 918

= [{b · (a · c)} · a] · [{(b · (a · c)) · a} · (b · (a · c))] 919

by Lemma 2.7 (j) 920

= ((b · (a · c)) · a) · [((b · (0 · c)) · a) · (b · (a · c))] 921

by (5) 922

= ([0 · (b · (a · c))] · a) · [((b · (0 · c)) · a) 923

·(b · (a · c))] 924

by (5.6) 925

= ([a · (b · (a · c))] · a) · [((b · (0 · c)) · a) 926

·(b · (a · c))] 927

by Lemma 2.7 (f) 928

= [{a · (b · (a · c))} · a] · [((b · (a · c)) · a) 929

·(b · (a · c))] 930

by (5) 931

= a · [b · (a · c)] by Lemma 2.7 (s). 932

(7) The identity 933

((x → (0 → y)) → z) 934

→ (z → (x → y)) ≈ z → (x → y) (5.7) 935

follows from 936

((a · (0 · b)) · c) · (c · (a · b)) 937

= (0 · (a · (0 · b))′) · (c · (a · b)) by (3) 938

= (0 · (0 · (a · b))′) · (c · (a · b)) 939

by Lemma 2.7 (n) 940

= (0 · (0′ · (a · b)′)) · (c · (a · b)) 941

by (m) and (n) of Lemma 2.7 942

= (0 · (a · b)′) · (c · (a · b)) by Lemma 2.1 (a) 943

= [[(c · (a · b))′ · 0] · [(a · b)′ · (c · (a · b))]′]′ by (I) 944

= [(c · (a · b)) · [(a · b)′ · (c · (a · b))]′]′ 945

= [(c · (a · b)) · (c · (a · b))′]′ by Lemma 2.7 (t) 946

= (c · (a · b))′′ by Lemma 2.1 (d) 947

= c · (a · b). 948
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Hence, we have949

c → (a → b)950

= ((a → (0 → b)) → c) → (c → (a → b))951

by (5.7)952

= (0 → a) → [((0 → b) → c) → (c → (a → b))]953

by (4)954

= (0 → a) → [(0 → 0) → [(b → c)955

→ (c → (a → b))]] by (4)956

= (0 → a) → [(b → c) → (c → (a → b))]957

by Lemma 2.1. (a).958

We, therefore, can conclude that the algebra A satisfies959

(0 → x) → ((y → z) → (z → (x → y)))960

≈ z → (x → y). (5.8)961

Also, from962

(a → b) → (b → (c → a))963

= (0 → 0) → [(a → b) → (b → (c → a))]964

by Lemma 2.1 (a)965

= [(0 → a) → b] → (b → (c → a)) by (4)966

= [(0 → a) → b] → (((0 → a) → b) → (c → a))967

by Lemma 2.7 (w)968

= ((0 → a) → b) → (c → a)969

by Lemma 2.7 (j)970

= b → (c → a) by Lemma 2.7 (w),971

we see that A satisfies972

(x → y) → (y → (z → x)) ≈ y → (z → x). (5.9)973

Consequently,974

c → (a → b)975

= (0 → a) → ((b → c) → (c → (a → b)))976

by (5.8)977

= (0 → a) → (c → (a → b)) by (5.9)978

= a → (c → (a → b)) by (6).979

(8)

(a → b) → (0 → b′)980

= [[(0 → b′)′ → a] → [b → (0 → b′)]′]′ by (I)981

= [[(0 → b′)′ → a] → (0 → b′)′]′ by Lemma 2.7 (t)982

= [[0 → a] → (0 → b′)′]′ by Lemma 2.7 (f)983

= [[0 → a] → (b → 0′)′]′ by Lemma 2.2 (b) 984

= (a → b) → 0′. 985

(9)

b → (0 → a)′ 986

= (0′ → b) → (0 → a)′ by Lemma 2.1 (a) 987

= [[(0 → a) → 0′] → [b → (0 → a)′]′]′ 988

= [[0 → (0 → a)′] → [b → (0 → a)′]′]′ 989

by Lemma 2.2 (b) 990

= [[0 → a′] → [b → (0 → a)′]′]′ by Lemma 2.7 (l) 991

= [[0 → (a → a′)] → [b → (0 → a)′]′]′ 992

by Lemma 2.1 (d) 993

= [[(0 → a) → (0 → a′)] → [b → (0 → a)′]′]′ 994

by Lemma 2.7 (i) and by Lemma 2.7 (n) 995

= [(0 → a′) → b] → (0 → a)′ by (I) 996

= [(0 → a′) → b] → (0 → (0 → a′)′)′ 997

by Lemma 2.7 (l) 998

= [[(0 → a′) → b] → (0 → (0 → a′)′)′]′′ 999

= [b′ → (0 → a′)′]′ by (I). 1000

(10)

b → a′
1001

= b′′ → a′
1002

= (b′ → 0) → a′
1003

= [(a → b′) → (0 → a′)′]′ by (I) 1004

= [[(0 → a′) → a] → [b′ → (0 → a′)′]′]′′ by (I) 1005

= [(0 → a′) → a] → [b′ → (0 → a′)′]′ 1006

= [(0 → a′) → a] → [b → (0 → a)′] by (9) 1007

= [(a → a′) → a] → [b → (0 → a)′] 1008

by Lemma 2.7 (f) 1009

= [a′ → a] → [b → (0 → a)′] by Lemma 2.1 (d) 1010

= a → [b → (0 → a)′] by Lemma 2.1 (d). 1011

(11) Since 1012

((0 → b′) → c) → (d → b)′ 1013

= [[(d → b) → (0 → b′)] → [c → (d → b)′]′]′ 1014

= [[(d → b) → 0′] → [c → (d → b)′]′]′ by (8) 1015

= (0′ → c) → (d → b)′ by (I) 1016

= c → (d → b)′ by Lemma 2.1 (a), 1017

we have that the following identity holds in A: 1018

((0 → y′) → z) → (u → y)′ ≈ z → (u → y)′. 1019

(5.10) 1020
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Then1021

[(a · ((0 · b′) · c)) · d] · b1022

= [[b′ · (a · ((0 · b′) · c))] · [d · b]′]′ by (I)1023

= [[[d · b] · b′] · [(a · ((0 · b′) · c)) · [d · b]]′]′′ by (I)1024

= [[d · b] · b′] · [(a · ((0 · b′) · c)) · [d · b]]′1025

= [[d · b] · b′] · [[[d · b]′ · a] · [((0 · b′) · c)1026

·[d · b]]′]′′ by (I)1027

= [[d · b] · b′] · [[[d · b]′ · a] · [((0 · b′) · c) · [d · b]]′]1028

= [[d · b] · b′] · [[[d · b]′ · a] · [c · (d · b)′]′]1029

by (5.10)1030

= [[d · b] · b′] · [[[d · b]′ · a] · [c · (d · b)′]′]′′1031

= [[d · b] · b′] · [(a · c) · (d · b)′]′ by (I)1032

= [[[d · b] · b′] · [(a · c) · (d · b)′]′]′′1033

= [[b′ · (a · c)] · (d · b)′]′ by (I)1034

= ((a · c) · d) · b by (I);1035

and, consequently, A satisfies1036

[(x → ((0 → y′) → z)) → u] → y1037

≈ [(x → z) → u] → y. (5.11)1038

Notice that1039

[(a′ → b) → c] → a1040

= [[a′ → (a′ → b)] → [c → a]′]′ by (I)1041

= [[a′ → b] → [c → a]′]′ by Lemma 2.7 (j)1042

= (b → c) → a.1043

So, the identity1044

[(x ′ → y) → z] → x ≈ (y → z) → x (5.12)1045

holds in A. Hence,1046

(a′ → b) → c1047

= ((a → 0) → b) → c1048

= [[a → (0 → c′)′] → b] → c by (5.11)1049

= [[c′ → [a → (0 → c′)′]] → b] → c by (5.12)1050

= [(a → c′′) → b] → c by (10)1051

= [(a → c) → b] → c.1052

(12)

(a′ → b) → (a → c)1053

= [(a → (a → c)) → b] → (a → c) by (11)1054

= [(a → c) → b] → (a → c) by Lemma 2.7 (j)1055

= (0 → b) → (a → c) by Lemma 2.7 (f).1056

(13)

a · ((0 · a) · b) 1057

= [[a · ((0 · a) · b)] · a] · [[((0 · a) · b) · a] 1058

·((0 · a) · b)] by Lemma 2.7 (s) 1059

= [[0 · ((0 · a) · b)] · a] · [[((0 · a) · b) · a] 1060

·((0 · a) · b)] by Lemma 2.7 (f) 1061

= [[(0 · a) · (0 · b)] · a] · [[((0 · a) · b) · a] 1062

·((0 · a) · b)] by Lemma 2.7 (n) 1063

= [[a · (0 · b)] · a] · [[((0 · a) · b) · a] 1064

·((0 · a) · b)] by Lemma 2.7 (i) 1065

= [[0 · (a · b)] · a] · [[((0 · a) · b) · a] 1066

·((0 · a) · b)] by Lemma 2.7 (n) 1067

= [[a · (a · b)] · a] · [[((0 · a) · b) · a] 1068

·((0 · a) · b)] by Lemma 2.7 (f) 1069

= [[a · b] · a] · [[((0 · a) · b) · a] 1070

·((0 · a) · b)] by Lemma 2.7 (j) 1071

= [[a · b] · a] · [[0 · a] 1072

·((0 · a) · b)] by Lemma 2.7 (f) 1073

= [[a · b] · a] · ((0 · a) · b) by Lemma 2.7 (j) 1074

= [[a · b] · a] · ((b · a) · b) by Lemma 2.7 (f) 1075

= a · b by Lemma 2.7 (s). 1076

(14)

(a · 0′) · (b · c) 1077

= (0 · a′) · (b · c) by Lemma 2.2 (b) 1078

= [(b · c) · a′] · (b · c) by Lemma 2.7 (f) 1079

= [(b · c) · ((b · c) · a′)] · (b · c) by Lemma 2.7 (j) 1080

= [(b · c) · ((b · c) · a′)] · (b · c)′′ 1081

= [(b · c) · ((b · c) · a′)] · [0′ · (b · c)′]′ 1082

by Lemma 2.1 (a) 1083

= [[(b · c) · ((b · c) · a′)] · [0′ · (b · c)′]′]′′ 1084

= [[((b · c) · a′) · 0′] · (b · c)′]′ by (I) 1085

= [[0 · ((b · c) · a′)′] · (b · c)′]′ by Lemma 2.2 (b) 1086

= [[0 · ((b · c)′ · a)] · (b · c)′]′ 1087

by (m) and (n) of Lemma 2.7 1088

= [[(0 · (b · c)′) · (0 · a)] · (b · c)′]′ 1089

by Lemma 2.7 (n) and by Lemma 2.7 (i) 1090

= [[(b · c) · (0 · (b · c)′)] · [(0 · a) · (b · c)′]′]′′ 1091

by (I) 1092

= [(b · c) · (0 · (b · c)′)] · [(0 · a) · (b · c)′]′ 1093

= [(b · c) · ((b · c) · 0′)] · [(0 · a) · (b · c)′]′ 1094

by Lemma 2.2 (b) 1095
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= [(b · c) · ((b · c) · (0 · c′))] · [(0 · a) · (b · c)′]′1096

by (8)1097

= [(b · c) · (0 · c′)] · [(0 · a) · (b · c)′]′1098

by Lemma 2.7 (j)1099

= [[(b · c) · (0 · c′)] · [(0 · a) · (b · c)′]′]′′1100

= [[(0 · c′) · (0 · a)] · (b · c)′]′ by (I)1101

= [{c′ · (0 · a)} · (b · c)′]′ by Lemma 2.7 (i)1102

= [(0 · a) · b] · c by (I).1103

(15)

((a → b) → (c → a)) → d1104

= [[(c → a)′ → a] → [b → (c → a)′]′]′ → d1105

by (I)1106

= [(c → a) → [b → (c → a)′]′]′ → d by (1)1107

= [[(c → a) → b] → (c → a)] → d1108

by Lemma 2.7 (e)1109

= [[0 → b] → (c → a)] → d by Lemma 2.7 (f)1110

= (b → 0′) → [(c → a) → d] by (14).1111

(16)

(0 → a) → ((b → a) → c)1112

= (a′ → 0′) → ((b → a) → c) by Lemma 2.2 (b)1113

= [(0 → a′) → (b → a)] → c by (14)1114

= [(a → a′) → (b → a)] → c by Lemma 2.7 (u)1115

= [a′ → (b → a)] → c by Lemma 2.1 (d)1116

= (b → a) → c by Lemma 2.7 (t).1117

(17) Since1118

[0 → ((a → b) → c)] → e1119

= [(a → b) → (0 → c)] → e by Lemma 2.7 (n)1120

= [(a → b) → (c′ → 0′)] → e by Lemma 2.2 (a)1121

= [(0′ → (a → b)) → (c′ → 0′)] → e1122

by Lemma 2.1 (a)1123

= [(a → b) → 0′] → [(c′ → 0′) → e] by (15)1124

= [(a → b) → 0′] → [(0 → c) → e]1125

by Lemma 2.2 (b)1126

= [0 → (a → b)′] → [(0 → c) → e]1127

by Lemma 2.2 (b),1128

we see that A satisfies1129

[0 → ((x → y) → z)] → t1130

≈ [0 → (x → y)′] → [(0 → z) → t]. (5.13)1131

Also, 1132

(0 → a) → [(b → 0′) → e] 1133

= (a′ → 0′) → [(b → 0′) → e] by Lemma 2.2 (b) 1134

= [(0′ → a′) → (b → 0′)] → e by (15) 1135

= [a′ → (b → 0′)] → e by Lemma 2.1 (a) 1136

= [a′ → (0 → b′)]′′ → e 1137

= [(0 → a) → (0 → b′)′]′ → e by Lemma 2.7 (k) 1138

= [(0 → a) → (b → 0′)′]′ → e 1139

= [(a → b) → 0′] → e by (I) 1140

= [0 → (a → b)′] → e by Lemma 2.2 (b). 1141

Hence, the identity 1142

(0 → x) → [(y → 0′) → t] ≈ [0 → (x → y)′] → t 1143

(5.14) 1144

holds in A. Therefore, 1145

(0 → a) → [(b → 0′) → [(0 → c) 1146

→ ((d → a) → b)]] 1147

= [0→(a → b)′]→[(0 → c) → ((d → a) → b)] 1148

by (5.14) with t = (0 → c) → ((d → a) → b) 1149

= [0 → ((a → b) → c)] → ((d → a) → b) 1150

by (5.13) with t = (d → a) → b. 1151

(18) Since 1152

[(a → b) → b′)] → b 1153

= [(a → 0′) → b′)] → b by Lemma 2.7 (a) 1154

= [(a → 0′) → 0′)] → b by Lemma 2.7 (a) 1155

= [(a → 0) → 0′)] → b by Lemma 2.7 (a) 1156

= [a′ → 0′)] → b 1157

= (0 → a) → b by Lemma 2.2 (b), 1158

A satisfies 1159

[(x → y) → y′)] → y ≈ (0 → x) → y. (5.15) 1160

Also, the identity 1161

y′ → [(x → y) → 0′]′ ≈ (0 → x) → y (5.16) 1162

holds in A, because 1163

b′ → [(a → b) → 0′]′ 1164

= [[{(a → b) → 0′} → b] 1165

→ [0 → {(a → b) → 0′}′]′]′ by (I) 1166
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= [[{(a → b) → b′} → b]1167

→ [0 → {(a → b) → 0′}′]′]′ by Lemma 2.7 (a)1168

= [{(0 → a) → b}1169

→ [0 → {(a → b) → 0′}′]′]′ by (5.15)1170

= [{(0 → a) → b}1171

→ [0 → {0 → (a → b)′}′]′]′ by Lemma 2.2 (b)1172

= [{(0 → a) → b}1173

→ {0 → (a → b)′′}′]′ by Lemma 2.7 (l)1174

= [{(0 → a) → b}1175

→ {0 → (a → b)}′]′1176

= [{(0 → a) → b}1177

→ {a → (0 → b)}′]′ by Lemma 2.7 (n)1178

= [{(0 → a) → b}1179

→ {0 → ((0 → a) → b)}′]′ by Lemma 2.7 (p)1180

= [(0 → a) → b]′′ by Lemma 2.7 (b).1181

= (0 → a) → b.1182

Then1183

(0 · (a · b)) · [c · [b′ · [(0 · a) · (b · 0′)′]]]′1184

= (0 · (a · b)) · [c · [b′ · [(0 · a) · (b · 0′)′]′′]]′1185

= (0 · (a · b)) · [c · [b′ · [(a · b) · 0′]′]]′ by (I)1186

= (0 · (a · b)) · [c · [(0 · a) · b]]′ by (5.16)1187

= (a · (0 · b)) · [c · [(0 · a) · b]]′ by Lemma 2.7 (n)1188

= (0 · ((0 · a) · b)) · [c · [(0 · a) · b]]′1189

by Lemma 2.7 (p)1190

= (((0 · a) · b)′ · 0′) · [c · [(0 · a) · b]]′1191

by Lemma 2.2 (b)1192

= [(((0 · a) · b)′ · 0′) · [c · [(0 · a) · b]]′]′′1193

= [(0′ · c) · ((0 · a) · b)]′ by (I)1194

= [c · ((0 · a) · b)]′ by Lemma 2.1 (a).1195

Hence, A satisfies1196

(0→(x → y))→[z →[y′ → [(0→ x)→(y →0′)′]]]′1197

≈ [z → ((0 → x) → y)]′. (5.17)1198

Since1199

(0 · d) · ((0 · (a · b)) · (c · d)′)1200

= (0 · d) · [0′ · ((0 · (a · b)) · (c · d)′)]1201

by Lemma 2.1 (a)1202

= (0 · d) · [(0 · 0′) · ((0 · (a · b)) · (c · d)′)]1203

by Lemma 2.1 (d)1204

= [0 · ((d · 0) · (a · b))] · (c · d)′ by (17)1205

= [0 · (d ′ · (a · b))] · (c · d)′1206

= [d ′ · (0 · (a · b))] · (c · d)′ by Lemma 2.7 (n) 1207

= [[d ′ · (0 · (a · b))] · (c · d)′]′′ 1208

= [[(0 · (a · b)) · c] · d]′ by (I) 1209

= [[(a · (0 · b)) · c] · d]′ by Lemma 2.7 (n), 1210

we can conclude that 1211

(((x → (0 → y)) → z) → u)′ 1212

≈ (0 → u) → ((0 → (x → y)) → (z → u)′) 1213

(5.18) 1214

is valid in the algebra. Also, the identity 1215

(0 → x) → (y → (z → x)′) ≈ y → (z → x)′ (5.19) 1216

is valid in A, since 1217

b → (c → a)′ 1218

= (c → a) → [b → (c → a)′] by Lemma 2.7 (t) 1219

= (0 → a) → [(c → a) → [b → (c → a)′]] 1220

by (16) 1221

= (0 → a) → [b → (c → a)′] by Lemma 2.7 (t). 1222

Hence, from (5.18) and (5.19), it follows that A satisfies 1223

(((x → (0 → y)) → z) → u)′ 1224

≈ (0 → (x → y)) → (z → u)′. (5.20) 1225

Observe that 1226

a′ → ((0 → b) → (c → 0′)′) 1227

= a′ → ((0 → b) → (c → 0′)′)′′ 1228

= a′ → [(b → c) → 0′]′ 1229

= a′ → [0 → (b → c)′]′ by Lemma 2.2 (b) 1230

= [a → (0 → (b → c))′]′ by (9) 1231

= [a → (b → (0 → c))′]′ by Lemma 2.7 (n). 1232

Hence, 1233

(x → (y → (0 → z))′)′ 1234

≈ x ′ → ((0 → y) → (z → 0′)′) (5.21) 1235

holds in A. Since 1236

(c · d) · (a · (0 · b))′ 1237

= [[(a · (0 · b))′′ · c] · [d · (a · (0 · b))′]′]′ by (I) 1238

= [[(a · (0 · b)) · c] · [d · (a · (0 · b))′]′]′ 1239

= (0 · (a · b)) · [c · [d · (a · (0 · b))′]′]′ 1240

by (5.20) with u = [d · (a · (0 · b))′]′ 1241
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= (0 · (a · b)) · [c · [d ′ · [(0 · a) · (b · 0′)′]]]′1242

by (5.21),1243

the identity1244

(0 → (x → y))1245

→ [z → [u′ → [(0 → x) → (y → 0′)′]]]′1246

≈ (z → u) → (x → (0 → y))′ (5.22)1247

is true in A. Hence, from (5.17) and (5.22) the conclu-1248

sion holds.1249

(19)

(0 → a) → [{0 → (b → c)} → d]1250

= (a′ → 0′) → [(0 → (b → c)) → d]1251

by Lemma 2.2 (b)1252

= [(0 → a′) → (0 → (b → c))] → d by (14)1253

= [0 → (a′ → (b → c))] → d1254

by (i) and (n) of Lemma 2.71255

= [0 → [(a′ → b′)′ → c]] → d by Lemma 2.7 (v)1256

= [(0 → (a′ → b′)′) → (0 → c)] → d1257

by (n) and (i) of Lemma 2.71258

= [(0 → (a → b)) → (0 → c)] → d1259

by Lemma 2.7 (q)1260

= (0 → ((a → b) → c)) → d1261

by (i) and (n) of Lemma 2.7.1262

1263

(20)

[a → ((0 → b) → c)] → b1264

= [(b′ → a) → [{(0 → b) → c} → b]′]′ by (I)1265

= [(b′ → a) → [c → b]′]′ by Lemma 2.7 (d)1266

= (a → c) → b by (I).1267

(21) Notice that1268

[{x → (0 → y)} → z] → (x → y)1269

≈ [{0 → (x → y)} → z] → (x → y)1270

by Lemma 2.7 (n)1271

≈ z → (x → y) by Lemma 2.7 (d). (5.23)1272

Also, we have that1273

0 → [(x → (y → z)) → u]1274

≈ 0 → [x ′ → {(y → z) → u}], (5.24)1275

since 1276

0 → [a′ → ((b → c) → d)] 1277

= 0 → [(a′ → (b → c)′)′ → d] 1278

by Lemma 2.7 (v) 1279

= [0 → (a′ → (b → c)′)′] → (0 → d) 1280

by (n) and (i) of Lemma 2.7 1281

= [0 → (a → (b → c))] → (0 → d) 1282

by Lemma 2.7 (q) 1283

= 0 → [{a → (b → c)} → d] 1284

by (n) and (i) of Lemma 2.7. 1285

Observe that 1286

0 → [a → {(0 → b) → c}] 1287

= a → [0 → {(0 → b) → c}] by Lemma 2.7 (n) 1288

= a → [(0 → b) → (0 → c)] by Lemma 2.7 (n) 1289

= a → [0 → (b → c)] 1290

by (n) and (i) of Lemma 2.7 1291

= a → [b → (0 → c)] by Lemma 2.7 (n). 1292

Hence, A satisfies 1293

0 → [x → {(0 → y) → z}] ≈ x → [y → (0 → z)]. 1294

(5.25) 1295

Therefore, we have 1296

u · [(a · b) · c] 1297

= u · [{a · ((0 · c) · b)} · c] by (20) 1298

= [((a · ((0 · c) · b)) · (0 · c)) · u] 1299

·[(a · ((0 · c) · b)) · c] by (5.23) 1300

= (((a · (0 · b)) · (0 · c)) · u) 1301

·((a · ((0 · c) · b)) · c) by (5) 1302

= ((0 · ((a · (0 · b)) · c)) · u) 1303

·((a · ((0 · c) · b)) · c) by Lemma 2.7 (n) 1304

= ((0 · (a′ · ((0 · b) · c))) · u) 1305

·((a · ((0 · c) · b)) · c) by (5.24) 1306

= ((a′ · (b · (0 · c))) · u) 1307

·((a · ((0 · c) · b)) · c) by (5.25) 1308

= ((0 · (a′ · (b · c))) · u) 1309

·((a · ((0 · c) · b)) · c) by Lemma 2.7 (n) (twice) 1310

= ((0 · a) · ((0 · (0 · (b · c))) 1311

·u)) · ((a · ((0 · c) · b)) · c) by (19) 1312

= ((0 · a) · ((0 · (b · c)) · u)) 1313

·((a · ((0 · c) · b)) · c) by Lemma 2.7 (j) 1314
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= [(0 · a) · {(0 · (b · c)) · u}]1315

·[(a · b) · c] by (20);1316

and, consequently, A satisfies1317

((0 → x) → ((0 → (y → z)) → u))1318

→ ((x → y)→ z) ≈ u → ((x → y) → z). (5.26)1319

Also, A satisfies1320

(x → y)′ → (0 → x) ≈ 0 → (x → y), (5.27)1321

since1322

(a → b)′ → (0 → b)1323

= [[(0 → b)′ → (a → b)] → [0 → (0 → b)]′]′1324

by (I)1325

= [[(0 → b)′ → (a → b)] → (0 → b)′]′1326

by Lemma 2.7 (g)1327

= [[0 → (a →b)] → (0→b)′]′ by Lemma 2.7 (f)1328

= [[a → (0→b)] → (0→b)′]′ by Lemma 2.7 (n)1329

= [[a → 0′] → (0 → b)′]′ by Lemma 2.7 (a)1330

= [[0 → a′] → (b′ → 0′)′]′ by Lemma 2.2 (b)1331

= (a′ → b′) → 0′ by (I)1332

= 0 → (a′ → b′)′ by Lemma 2.2 (b)1333

= 0 → (a → b) by (m) and (n) of Lemma 2.7.1334

Therefore, from1335

((0 → a) → b) → (c → a)1336

= [[(c→a)′ →(0→a)] → [b→(c→a)]′]′ by (I)1337

= [[0 → (c → a)] → [b → (c → a)]′]′ by (5.27)1338

= [[(c → a)′ → 0′] → [b → (c → a)]′]′1339

by Lemma 2.2 (b)1340

= (0′ → b) → (c → a) by (I)1341

= b → (c → a) by Lemma 2.1 (a),1342

it follows that the identity1343

((0 → x) → y) → (z → x) ≈ y → (z → x) (5.28)1344

is valid in the algebra. Hence, observe that1345

(a → b) → (c → (d → a))1346

= [(0 → (d → a)) → (a → b)]1347

→ (c → (d → a)) by (5.28)1348

= [((a → b) → (d → a)) → (a → b)]1349

→ (c → (d → a)) by Lemma 2.7 (f)1350

= [((0 → b) → (d → a)) → (a → b)] 1351

→ (c → (d → a)) by Lemma 2.7 (u) 1352

= [(d → a) → (a → b)] 1353

→ (c → (d → a)) by (5.28) 1354

= [0 → (a → b)] → (c → (d → a)) 1355

by Lemma 2.7 (u) with c := d → a, 1356

a := a → b, b := c. 1357

1358Therefore, A satisfies the identity 1359

(0 → (x → y)) → (z → (u → x)) 1360

≈ (x → y) → (z → (u → x)). (5.29) 1361

Also, from 1362

b → (c → a) 1363

= b → (a′ → (c → a)) by Lemma 2.7 (t) 1364

= a′ → [b → (a′ → (c → a))] by (7) 1365

= a′ → (b → (c → a)) by Lemma 2.7 (t), 1366

it follows that A satisfies 1367

x ′ → (y → (z → x)) ≈ y → (z → x). (5.30) 1368

Now notice that the identity 1369

(0 → x) → (y → ((z → x) → u)) 1370

≈ y → ((z → x) → u) (5.31) 1371

is valid in A, since 1372

b → ((c → a) → d) 1373

= (c → a) → [b → ((c → a) → d)] by (7) 1374

= (0 → a) 1375

→ [(c → a) → [b → ((c → a) → d)]] by (16) 1376

= (0 → a) → [b → ((c → a) → d)] by (7). 1377

Hence, 1378

b · ((a · c) · d) 1379

= [(0 · a) · [(0 · (c · d)) · b]] · ((a · c) · d) by (5.26) 1380

= (a · 0′) · [[(0 · (c · d)) · b] · ((a · c) · d)] by (14) 1381

= (a · 0′) · [[(c · d) · 0′] · [b · ((a · c) · d)]] by (14) 1382

= (a · 0′) · [[0 · (c · d)′] · [b · ((a · c) · d)]] 1383

by Lemma 2.2 (b) 1384

= (a · 0′) · [(0 · c) · [(0 · d ′) · [b · ((a · c) · d)]]] 1385

by (19) with z = 0 1386

= (a · 0′) · [(0 · c) · [d ′ · [b · ((a · c) · d)]]] 1387
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by (5.29) with y = 01388

= (a · 0′) · [(0 · c) · [b · ((a · c) · d)]] by (5.30)1389

= (a · 0′) · [b · ((a · c) · d)] by (5.31).1390

(22) From Lemma 2.7 (n) and (13) we have that A satisfies1391

(x → y) → [{x → (0 → y)} → z] ≈ (x → y) → z.1392

(5.32)1393

Therefore, we have1394

b · [{a · (0 · b)} · c]1395

= (a · 0′) · [b · {(a · (0 · b)) · c}]1396

by (21)1397

= (a · 0′) · [b · {((0 · a) · (0 · b)) · c}]1398

by Lemma 2.7 (i)1399

= [(0 · a) · b] · [{(0 · a) · (0 · b)} · c] by (14)1400

= [(0 · a) · b] · c by (5.32)1401

= (a · 0′) · (b · c) by (14).1402

(23)

[a → (0 → b)] → (b → c)1403

= [{(b → c)′ → a} → {(0 → b) → (b → c)}′]′1404

by (I)1405

= [{(b → c)′ → a} → {b → (b → c)}′]′1406

by Lemma 2.7 (h)1407

= (a → b) → (b → c) by (I).1408

(24)

[(a → b) → (c → a)] → b1409

= [(0 → b) → (c → a)] → b by Lemma 2.7 (u)1410

= [{b′ → (0 → b)} → {(c → a) → b}′]′ by (I)1411

= [(0 → b) → {(c → a) → b}′]′1412

by Lemma 2.7 (t)1413

= [(b′ → 0′) → {(c → a) → b}′]′ 1414

by Lemma 2.2 (b) 1415

= [0′ → (c → a)] → b by (I) 1416

= (c → a) → b by Lemma 2.1 (a). 1417
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