Order in Implication Zroupoids

Juan M. CORNEJO and Hanamantagouda P. SANKAPPANAVAR

Abstract

The variety I of implication zroupoids (using a binary operation \rightarrow and a constant 0) was defined and investigated by Sankappanavar in [7], as a generalization of De Morgan algebras. Also, in [7], several new subvarieties of \mathbf{I} were introduced, including the subvariety $\mathbf{I}_{\mathbf{2}, \mathbf{0}}$, defined by the identity: $x^{\prime \prime} \approx x$, which plays a crucial role in this paper. Some more new subvarieties of \mathbf{I} are studied in [3] that includes the subvariety SL of semilattices with a least element 0 ; and an explicit description of semisimple subvarieties of \mathbf{I} is given in [5].

It is a well known fact that there is a partial order (denote it by \sqsubseteq) induced by the operation \wedge, both in the variety SL of semilattices with a least element and in the variety DM of De Morgan algebras. As both SL and DM are subvarieties of \mathbf{I} and the definition of partial order can be expressed in terms of the implication and the constant, it is but natural to ask whether the relation \sqsubseteq on \mathbf{I} is actually a partial order in some (larger) subvariety of I that includes both SL and DM.

The purpose of the present paper is two-fold: Firstly, a complete answer is given to the above mentioned problem. Indeed, our first main theorem shows that the variety $\mathbf{I}_{\mathbf{2}, \mathbf{0}}$ is a maximal subvariety of \mathbf{I} with respect to the property that the relation \sqsubseteq is a partial order on its members.. In view of this result, one is then naturally led to consider the problem of determining the number of non-isomorphic algebras in $\mathbf{I}_{\mathbf{2}, \mathbf{0}}$ that can be defined on an n-element chain (herein called $\mathbf{I}_{\mathbf{2}, \text { o-chains), }} n$ being a natural number. Secondly, we answer this problem in our second main theorem which says that, for each $n \in \mathbb{N}$, there are exactly n nonisomorphic $\mathbf{I}_{\mathbf{2}, 0^{-c h}}$ chains of size n.

1 Introduction

The widely known fact that Boolean algebras can be defined using only implication and a constant was extended to De Morgan algebras in [7]. The crucial role played by a certain identity, 'called (I), led Sankappanavar, in 2012, to define and investigate, the variety I of implication 'zroupoids (I-zroupoids) generalizing De Morgan algebras. Also, in [7, he introduced several new 'subvarieties of \mathbf{I} and found some relationships among those subvarieties. One of the subvarieties of \mathbf{I}, called $\mathbf{I}_{\mathbf{2}, \mathbf{0}}$, defined by the identity: $x^{\prime \prime} \approx x$ and studied in [7], plays a crucial role in 'this paper. In [3], we introduce several more new subvarieties of \mathbf{I}, including the subvariety $\mathbf{S L}$ 'which is term-equivalent to the (well known) variety of \vee-semilattices with a least element 0 , and describe further relationships among the subvarities of \mathbf{I}. An explicit description of semisimple subvarieties of \mathbf{I} is given in (5).

It is also a well known fact that there is a partial order induced by the operation \wedge, both in the variety SL of semilattices with a least element and in the variety DM of De Morgan algebras. As both SL and DM are subvarieties of \mathbf{I} and the defintion of partial order can be expressed in terms of the implication and constant, it is but natural to ask whether the relation \sqsubseteq (now defined) on \mathbf{I} is actually a partial order in some (larger) subvariety of \mathbf{I} that includes both SL and DM.

The purpose of the present paper is two-fold: Firstly, a complete answer is given to the above mentioned problem. Indeed, our first main theorem shows that the variety $\mathbf{I}_{\mathbf{2}, \mathbf{0}}$ is a maximal subvariety of \mathbf{I} with respect to the property that the relation \sqsubseteq, defined by:

$$
x \sqsubseteq y \text { if and only if }\left(x \rightarrow y^{\prime}\right)^{\prime}=x \text {, for } x, y \in \mathbf{A} \text { and } \mathbf{A} \in \mathbf{I},
$$

is a partial order. In view of this result, one is then naturally led to consider the problem of determining the number of non-isomorphic algebras in $\mathbf{I}_{\mathbf{2}, \mathbf{0}}$ ($\mathbf{I}_{\mathbf{2}, \mathbf{0}}$-chains) that can be defined on an n-element set, n being a nutural number. Secondly, we answer this problem in our second main result which says that, for each $n \in \mathbb{N}$, there are exactly n nonisomorphic $\mathbf{I}_{\mathbf{2}, \mathbf{0}}$-chains of size n.

2 Preliminaries

In this section we recall some definitions and results from [3], 5] and [7] that will be needed for this paper. Basic references are [1] and [2].

Definition $2.1[7]$ groupoid with zero (zroupoid, for short) is an algebra $\mathbf{A}=\langle A, \rightarrow, 0\rangle$, where \rightarrow is a binary operation and 0 is a constant. A zroupoid $\mathbf{A}=\langle A, \rightarrow, 0\rangle$ is an implication zroupoid (I-zroupoid, for short) if the following identities hold in \mathbf{A}, where $x^{\prime}:=x \rightarrow 0$:
(I) $(x \rightarrow y) \rightarrow z \approx\left[\left(z^{\prime} \rightarrow x\right) \rightarrow(y \rightarrow z)^{\prime}\right]^{\prime}$
$\left(\mathrm{I}_{0}\right) 0^{\prime \prime} \approx 0$.
The variety of I-zroupoids is denoted by \mathbf{I}.
In this paper we use the characterizations of De Morgan algebras, Kleene algebras and Boolean algebras (see [7]), and semilattices with least element 0 (see [3]), as definitions.

Definition 2.2 An implication zroupoid $\mathbf{A}=\langle A, \rightarrow, 0\rangle$ is a De Morgan algebra (DM-algebra, for short) if A satisfies the axiom:
(DM) $(x \rightarrow y) \rightarrow x \approx x$.
A DM-algebra $\mathbf{A}=\langle A, \rightarrow, 0\rangle$ is a Kleene algebra (KL-algebra, for short) if \mathbf{A} satisfies the axiom:
$\left(\mathrm{KL}_{1}\right)(x \rightarrow x) \rightarrow(y \rightarrow y)^{\prime} \approx x \rightarrow x$
or, equivalently,
$\left(\mathrm{KL}_{2}\right)(y \rightarrow y) \rightarrow(x \rightarrow x) \approx x \rightarrow x$.
A DM-algebra $\mathbf{A}=\langle A, \rightarrow, 0\rangle$ is a Boolean algebra (BA-algebra, for short) if \mathbf{A} satisfies the axiom:
(BA) $x \rightarrow x \approx 0^{\prime}$.
An implication zroupoid $\mathbf{A}=\langle A, \rightarrow, 0\rangle$ is a semilattice with 0 (SL-algebra, for short) if \mathbf{A} satisfies the axioms:
(SM1) $x^{\prime} \approx x$
(SM2) $x \rightarrow y \approx y \rightarrow x$. (Commutativity).

We denote by $\mathbf{D M}, \mathbf{K L}, \mathbf{B A}$ and $\mathbf{S L}$, respectively, the variety of $\mathbf{D M}$-algebras, $\mathbf{K L}$-algebras, BA-algebras, and SL-algebras.

We recall from [7] the definition of another subvariety of \mathbf{I}, namely $\mathbf{I}_{2,0}$, which plays a fundamental role in this paper.

Definition $2.3 \mathbf{I}_{2,0}$ denotes the subvariety of \mathbf{I} defined by the identity:

$$
x^{\prime \prime} \approx x
$$

We note that $\mathbf{D M}, \mathbf{K L}, \mathbf{B A}$ and $\mathbf{S L}$ are all subvarieties of $\mathbf{I}_{2,0}$ (see [7] and [3]).

Lemma 2.4 [7, Theorem 8.15] Let A be an I-zroupoid. Then the following are equivalent:
(a) $0^{\prime} \rightarrow x \approx x$
(b) $x^{\prime \prime} \approx x$
(c) $\left(x \rightarrow x^{\prime}\right)^{\prime} \approx x$
(d) $x^{\prime} \rightarrow x \approx x$.

Lemma 2.5 7] Let $\mathbf{A} \in \mathbf{I}_{2,0}$. Then
(a) $x^{\prime} \rightarrow 0^{\prime} \approx 0 \rightarrow x$
(b) $0 \rightarrow x^{\prime} \approx x \rightarrow 0^{\prime}$.

Several identities true in $\mathbf{I}_{2,0}$ are given in [3], [5] and [7]. Some of those that are needed for this paper are listed in the next lemma, which also presents some new identities of $\mathbf{I}_{2,0}$ that will be useful later in this paper. The proof of the lemma is given in the Appendix.

Lemma 2.6 Let $\mathbf{A} \in \mathbf{I}_{2,0}$. Then \mathbf{A} satisfies:
(1) $\left(x \rightarrow 0^{\prime}\right) \rightarrow y \approx\left(x \rightarrow y^{\prime}\right) \rightarrow y$
(2) $\left(0 \rightarrow x^{\prime}\right) \rightarrow(y \rightarrow x) \approx y \rightarrow x$
(3) $(y \rightarrow x)^{\prime} \approx(0 \rightarrow x) \rightarrow(y \rightarrow x)^{\prime}$
(4) $\left[x \rightarrow(y \rightarrow x)^{\prime}\right]^{\prime} \approx(x \rightarrow y) \rightarrow x$
(5) $(y \rightarrow x) \rightarrow y \approx(0 \rightarrow x) \rightarrow y$
(6) $0 \rightarrow x \approx 0 \rightarrow(0 \rightarrow x)$
(7) $0 \rightarrow\left[(0 \rightarrow x) \rightarrow\left(0 \rightarrow y^{\prime}\right)^{\prime}\right] \approx 0 \rightarrow(x \rightarrow y)$
(8) $\left[x^{\prime} \rightarrow(0 \rightarrow y)\right]^{\prime} \approx(0 \rightarrow x) \rightarrow(0 \rightarrow y)^{\prime}$
(9) $0 \rightarrow(0 \rightarrow x)^{\prime} \approx 0 \rightarrow x^{\prime}$
(10) $0 \rightarrow\left(x^{\prime} \rightarrow y\right)^{\prime} \approx x \rightarrow\left(0 \rightarrow y^{\prime}\right)$
(11) $\left[\left(x \rightarrow 0^{\prime}\right) \rightarrow y\right]^{\prime} \approx(0 \rightarrow x) \rightarrow y^{\prime}$
(12) $0 \rightarrow\left[(0 \rightarrow x) \rightarrow y^{\prime}\right] \approx x \rightarrow\left(0 \rightarrow y^{\prime}\right)$
(13) $0 \rightarrow(x \rightarrow y) \approx x \rightarrow(0 \rightarrow y)$
(14) $(x \rightarrow y) \rightarrow y^{\prime} \approx y \rightarrow(x \rightarrow y)^{\prime}$
(15) $\left(x^{\prime} \rightarrow y\right) \rightarrow\left[(0 \rightarrow z) \rightarrow x^{\prime}\right] \approx(0 \rightarrow y) \rightarrow\left[(0 \rightarrow z) \rightarrow x^{\prime}\right]$
(16) $0 \rightarrow\left(x \rightarrow y^{\prime}\right)^{\prime} \approx 0 \rightarrow\left(x^{\prime} \rightarrow y\right)$
(17) $x \rightarrow\left(y \rightarrow x^{\prime}\right) \approx y \rightarrow x^{\prime}$
(18) $[(0 \rightarrow x) \rightarrow y] \rightarrow x \approx y \rightarrow x$
(19) $[0 \rightarrow(x \rightarrow y)] \rightarrow x \approx(0 \rightarrow y) \rightarrow x$
$(20)(0 \rightarrow x) \rightarrow(0 \rightarrow y) \approx x \rightarrow(0 \rightarrow y)$
(21) $x \rightarrow y \approx x \rightarrow(x \rightarrow y)$
(22) $[\{x \rightarrow(0 \rightarrow y)\} \rightarrow z]^{\prime} \approx z \rightarrow[(x \rightarrow y) \rightarrow z]^{\prime}$
(23) $[0 \rightarrow(x \rightarrow y)] \rightarrow y^{\prime} \approx y \rightarrow(x \rightarrow y)^{\prime}$
(24) $x \rightarrow[(y \rightarrow z) \rightarrow x]^{\prime} \approx(0 \rightarrow y) \rightarrow\left[x \rightarrow(z \rightarrow x)^{\prime}\right]$
(25) $0 \rightarrow[(0 \rightarrow x) \rightarrow y] \approx x \rightarrow(0 \rightarrow y)$
(26) $x \rightarrow(y \rightarrow x)^{\prime} \approx\left(y \rightarrow 0^{\prime}\right) \rightarrow x^{\prime}$
(27) $\left[\left(x^{\prime} \rightarrow y\right) \rightarrow(z \rightarrow x)^{\prime}\right] \rightarrow[(y \rightarrow z) \rightarrow x] \approx(y \rightarrow z) \rightarrow x$
(28) $\left[\left\{0 \rightarrow(x \rightarrow y)^{\prime}\right\} \rightarrow\left(0 \rightarrow y^{\prime}\right)^{\prime}\right]^{\prime} \approx 0 \rightarrow(x \rightarrow y)^{\prime}$
(29) $\left[[0 \rightarrow\{(x \rightarrow y) \rightarrow z\}] \rightarrow\{0 \rightarrow(y \rightarrow z)\}^{\prime}\right]^{\prime} \approx 0 \rightarrow\{(x \rightarrow y) \rightarrow z\}$
(30) $\left[x \rightarrow(0 \rightarrow y)^{\prime}\right]^{\prime} \approx x^{\prime} \rightarrow\left(y \rightarrow 0^{\prime}\right)^{\prime}$
(31) $[(0 \rightarrow x) \rightarrow y]^{\prime} \approx y \rightarrow(x \rightarrow y)^{\prime}$
(32) $\left[x \rightarrow\left(y \rightarrow 0^{\prime}\right)^{\prime}\right]^{\prime} \approx x^{\prime} \rightarrow(0 \rightarrow y)^{\prime}$
(33) $(x \rightarrow y)^{\prime} \rightarrow(0 \rightarrow x)^{\prime} \approx y^{\prime} \rightarrow x^{\prime}$
(34) $(0 \rightarrow x)^{\prime} \rightarrow(0 \rightarrow y)^{\prime} \approx 0 \rightarrow\left(x^{\prime} \rightarrow y^{\prime}\right)$
(35) $\left[(x \rightarrow y)^{\prime} \rightarrow\left\{y \rightarrow(x \rightarrow y)^{\prime}\right\}^{\prime}\right]^{\prime} \approx(x \rightarrow y)^{\prime}$
(36) $\left[\{(0 \rightarrow x) \rightarrow y\} \rightarrow(x \rightarrow y)^{\prime}\right]^{\prime} \approx(0 \rightarrow x) \rightarrow y$
(37) $\left[\left\{x \rightarrow(y \rightarrow x)^{\prime}\right\} \rightarrow x\right]^{\prime} \approx x \rightarrow(y \rightarrow x)^{\prime}$.

3 Partial order in Implication Zroupoids

Let $\mathbf{A}=\langle A ; \rightarrow, 0\rangle \in \mathbf{I}$. We define the operations \wedge and \vee on \mathbf{A} by:

- $x \wedge y:=\left(x \rightarrow y^{\prime}\right)^{\prime}$,
- $x \vee y:=\left(x^{\prime} \wedge y^{\prime}\right)^{\prime}$.

Note that the above definition of \wedge is a simultaneous generalization of the \wedge operation of De Morgan algebras and that of $\mathbf{S L}(=$ semilattices with least element 0). It is, of course, well known that the meet operation induces a partial order on both DM and SL, which naturally leads us to the following definition of a binary relation \sqsubseteq on algebras in \mathbf{I}.

Definition 3.1 Let $\mathbf{A} \in \mathbf{I}$. We define the relation \sqsubseteq on A as follows:

$$
x \sqsubseteq y \text { if and only if } x \wedge y=x \quad\left(\text { equivalently },\left(x \rightarrow y^{\prime}\right)^{\prime}=x\right)
$$

For $a, b \in A$, we write

- $a \sqsubset b$ if $a \sqsubseteq b$ and $a \neq b$,
- $a \sqsupseteq b$ if $b \sqsubseteq a$, and
- $a \sqsupset b$ if $a \sqsupseteq b$ and $a \neq b$.

We already know from [3] that $\langle A ; \wedge, \vee\rangle$ is a lattice if and only if \mathbf{A} is a De Morgan Algebra, implying that \sqsubseteq is a partial order on A. We know (see [3]) that \sqsubseteq is also a partial order on algebras in SL. This fact led us naturally to consider the possibility of the existence of a subvariety \mathbf{V} of \mathbf{I}, containing both $\mathbf{S L}$ and $\mathbf{D M}$, such that, for every algebra \mathbf{A} in \mathbf{V}, the relation \sqsubseteq on \mathbf{A} is actually a partial order.

In this section we will prove our first main result which says that the subvariety $\mathbf{I}_{\mathbf{2}, \mathbf{0}}$, is a maximal subvariety of \mathbf{I} with respect to the property that the relation \sqsubseteq is a partial order on every member of that variety. To achieve this end, we need to, first, prove that \sqsubseteq is indeed a partial order on every member of $\mathbf{I}_{\mathbf{2}, \mathbf{0}}$, which will be done using the following lemmas.

Lemma 3.2 Let $\mathbf{A} \in \mathbf{I}_{2,0}$. Then the relation \sqsubseteq is antisymmetric on \mathbf{A}.
Proof Let $a, b \in A$ such that $a \sqsubseteq b$ and $b \sqsubseteq a$. Let $c \in A$ be arbitrary. Then, using (I) and the hypothesis, one observes that $(c \rightarrow a) \rightarrow b^{\prime}=\left[(b \rightarrow c) \rightarrow\left(a \rightarrow b^{\prime}\right)^{\prime}\right]^{\prime}=[(b \rightarrow c) \rightarrow a]^{\prime}$. Consequently,

$$
\begin{equation*}
(c \rightarrow a) \rightarrow b^{\prime}=[(b \rightarrow c) \rightarrow a]^{\prime}, \text { where } c \in A \tag{3.1}
\end{equation*}
$$

Hence,

$$
\begin{aligned}
a^{\prime} & =(a \wedge b)^{\prime} & & \text { by hypothesis } \\
& =\left(a \rightarrow b^{\prime}\right)^{\prime \prime} & & \text { by definition of } \wedge \\
& =a \rightarrow b^{\prime} & & \\
& =\left(a^{\prime} \rightarrow a\right) \rightarrow b^{\prime} & & \text { using Lemma } 2.4(\sqrt{d}) \\
& =\left[\left(b \rightarrow a^{\prime}\right) \rightarrow a\right]^{\prime} & & \text { from (3.1) with } c=a^{\prime} \\
& =\left[\left(b \rightarrow a^{\prime}\right)^{\prime \prime} \rightarrow a\right]^{\prime} & & \\
& =\left(b^{\prime} \rightarrow a\right)^{\prime} & & \text { by hypothesis, }
\end{aligned}
$$

and, therefore,
(3.2) $a^{\prime}=\left(b^{\prime} \rightarrow a\right)^{\prime}$.

Now,

$$
\begin{aligned}
b^{\prime} & =\left[b \rightarrow a^{\prime}\right]^{\prime \prime} & & \text { by hypothesis } \\
& =b \rightarrow a^{\prime} & & \\
& =\left(0 \rightarrow a^{\prime \prime}\right) \rightarrow\left(b \rightarrow a^{\prime}\right) & & \text { by Lemma [2.6 (2) }) \text { with } x=a^{\prime}, y=b \\
& =(0 \rightarrow a) \rightarrow\left(b \rightarrow a^{\prime}\right)^{\prime \prime} & & \\
& =(0 \rightarrow a) \rightarrow b^{\prime} & & \text { by hypothesis. }
\end{aligned}
$$

Thus,
(3.3) $b^{\prime}=(0 \rightarrow a) \rightarrow b^{\prime}$.

Therefore,

$$
\begin{array}{rlrl}
a^{\prime} & =\left[b^{\prime} \rightarrow a\right]^{\prime} & & \text { from (3.2) } \\
& =[(b \rightarrow 0) \rightarrow a]^{\prime} & \\
& =(0 \rightarrow a) \rightarrow b^{\prime} & & \text { from (3.1) with } c=0 \\
& =b^{\prime} & & \text { by (3.3). }
\end{array}
$$

Consequently, we have that $a=a^{\prime \prime}=b^{\prime \prime}=b$, thus proving that \sqsubseteq is antisymmetric on \mathbf{A}.
Now, we turn to proving the transitivity of the relation \sqsubseteq. For this, we need the following lemmas. The proof of the following (technical) lemma is given in the Appendix.

Lemma 3.3 Let $\mathbf{A} \in \mathbf{I}_{2,0}$ with $a, b \in A$ such that $a \sqsubseteq b$. Let $d \in A$ be arbitrary. Then
(1) $\left(0 \rightarrow a^{\prime}\right) \rightarrow b=a^{\prime} \rightarrow b$
(2) $b \rightarrow a^{\prime}=(0 \rightarrow b) \rightarrow a^{\prime}$
(3) $b \rightarrow a^{\prime}=a^{\prime}$
(4) $0 \rightarrow\left(a^{\prime} \rightarrow b\right)=0 \rightarrow a$
(5) $[(b \rightarrow d) \rightarrow a]^{\prime}=(d \rightarrow a) \rightarrow b^{\prime}$
(6) $(0 \rightarrow d) \rightarrow a^{\prime}=\left[\left\{d \rightarrow\left(0 \rightarrow b^{\prime}\right)\right\} \rightarrow a\right]^{\prime}$
(7) $a \rightarrow\left[\left(a^{\prime} \rightarrow d\right) \rightarrow\left\{(0 \rightarrow a) \rightarrow b^{\prime}\right\}\right]=(0 \rightarrow d) \rightarrow a^{\prime}$
(8) $a \rightarrow\left[(d \rightarrow a) \rightarrow b^{\prime}\right]=a \rightarrow(d \rightarrow a)^{\prime}$
(9) $[0 \rightarrow(b \rightarrow d)] \rightarrow a=(0 \rightarrow d) \rightarrow a$
(10) $[b \rightarrow(a \rightarrow d)] \rightarrow a=(0 \rightarrow d) \rightarrow a$
$(11) b \rightarrow\left(0 \rightarrow a^{\prime}\right)=0 \rightarrow a^{\prime}$
(12) $\left[(d \rightarrow a) \rightarrow b^{\prime}\right]^{\prime}=(b \rightarrow d) \rightarrow a$
(13) $a^{\prime} \rightarrow b=b^{\prime} \rightarrow a$
(14) $\left(d \rightarrow a^{\prime}\right) \rightarrow b=\left(d \rightarrow 0^{\prime}\right) \rightarrow\left(a^{\prime} \rightarrow b\right)$
(15) $\left[\left(0 \rightarrow a^{\prime}\right) \rightarrow b\right]^{\prime}=(0 \rightarrow a) \rightarrow b^{\prime}$
(16) $\left(a^{\prime} \rightarrow b\right)^{\prime}=(0 \rightarrow a) \rightarrow b^{\prime}$
(17) $b^{\prime} \rightarrow[(b \rightarrow d) \rightarrow a] \sqsubseteq 0 \rightarrow b$.

Lemma 3.4 Let $\mathbf{A} \in \mathbf{I}_{2,0}$ and let $a, b, e \in A$ such that $\left(a \rightarrow b^{\prime}\right)^{\prime}=a$ and $\left(0 \rightarrow e^{\prime}\right) \rightarrow b=b$, and let $d \in A$ be arbitrary. Then
(a) $b \rightarrow d=(0 \rightarrow(d \rightarrow e)) \rightarrow(b \rightarrow d)$
(b) $(0 \rightarrow e) \rightarrow a^{\prime}=a^{\prime}$
(c) $\left(0 \rightarrow e^{\prime}\right) \rightarrow a=a$.
(d) $(0 \rightarrow e) \rightarrow[a \rightarrow(a \rightarrow d)]=a \rightarrow d$.

Proof

(a)

$$
\begin{aligned}
b \rightarrow d & =\left[\left(0 \rightarrow e^{\prime}\right) \rightarrow b\right] \rightarrow d & & \text { by hypothesis } \\
& =\left[\left\{d^{\prime} \rightarrow\left(0 \rightarrow e^{\prime}\right)\right\} \rightarrow(b \rightarrow d)^{\prime}\right] \rightarrow\left[\left\{\left(0 \rightarrow e^{\prime}\right) \rightarrow b\right\} \rightarrow d\right] & & \text { by Lemma [2.6 (27) } \\
& =\left[\left\{d^{\prime} \rightarrow\left(0 \rightarrow e^{\prime}\right)\right\} \rightarrow(b \rightarrow d)^{\prime}\right] \rightarrow(b \rightarrow d) & & \text { using } x=d, y=0 \rightarrow e^{\prime}, z=b \\
& =\left[\left\{d^{\prime} \rightarrow\left(0 \rightarrow e^{\prime}\right)\right\} \rightarrow 0^{\prime}\right] \rightarrow(b \rightarrow d) & & \text { by Lemma [2.6 (11) } \\
& =\left[0 \rightarrow\left\{d^{\prime} \rightarrow\left(0 \rightarrow e^{\prime}\right)\right\}^{\prime}\right] \rightarrow(b \rightarrow d) & & \text { by Lemma (2.5) (田) } \\
& =\left[0 \rightarrow\left\{(0 \rightarrow d) \rightarrow\left(0 \rightarrow e^{\prime}\right)^{\prime}\right\}\right] \rightarrow(b \rightarrow d) & & \text { by Lemma (2.6 (8) } \\
& =[0 \rightarrow(d \rightarrow e)] \rightarrow(b \rightarrow d) & & \text { by Lemma (2.6 (7). }
\end{aligned}
$$

(b) Using Lemma (3.3 (3) (twice), and (a) with $d=a^{\prime}$, we obtain $\left[0 \rightarrow\left(a^{\prime} \rightarrow e\right)\right] \rightarrow a^{\prime}=[0 \rightarrow$ $\left.\left(a^{\prime} \rightarrow e\right)\right] \rightarrow\left(b \rightarrow a^{\prime}\right)=b \rightarrow a^{\prime}=a^{\prime}$. Hence,
(3.4) $\left[0 \rightarrow\left(a^{\prime} \rightarrow e\right)\right] \rightarrow a^{\prime}=a^{\prime}$.

Then,

$$
\begin{aligned}
(0 \rightarrow e) \rightarrow a^{\prime} & =\left[0 \rightarrow\left(a^{\prime} \rightarrow e\right)\right] \rightarrow a^{\prime} \\
& \text { by Lemma (2.6 (19) using } x=a^{\prime}, y=e \\
& =a^{\prime}
\end{aligned}
$$

(c)

$$
\begin{aligned}
\left(0 \rightarrow e^{\prime}\right) \rightarrow a & =\left[0 \rightarrow(0 \rightarrow e)^{\prime}\right] \rightarrow a & & \text { by Lemma [2.6 (9) } \\
& =\left[(0 \rightarrow e) \rightarrow 0^{\prime}\right] \rightarrow a & & \text { by Lemma [2.5) (a) } \\
& =\left[(0 \rightarrow e) \rightarrow a^{\prime}\right] \rightarrow a & & \text { by Lemma 2.6 (1) } \\
& =a^{\prime} \rightarrow a & & \text { by (b) } \\
& =a & & \text { by Lemma 2.4 (d) } .
\end{aligned}
$$

(d)

$$
\begin{aligned}
a \rightarrow d & =\left[\left(0 \rightarrow e^{\prime}\right) \rightarrow a\right] \rightarrow d & & \text { by item ((c)) } \\
& =\left[\left\{d^{\prime} \rightarrow\left(0 \rightarrow e^{\prime}\right)\right\} \rightarrow(a \rightarrow d)^{\prime}\right] \rightarrow\left[\left\{\left(0 \rightarrow e^{\prime}\right) \rightarrow a\right\} \rightarrow d\right] & & \text { by Lemma (2.6 (227) with } \\
& =\left[\left\{d^{\prime} \rightarrow\left(0 \rightarrow e^{\prime}\right)\right\} \rightarrow(a \rightarrow d)^{\prime}\right] \rightarrow(a \rightarrow d) & & x=d, y=0 \rightarrow e^{\prime}, z=a \\
& =\left[\left\{d^{\prime} \rightarrow\left(0 \rightarrow e^{\prime}\right)\right\} \rightarrow 0^{\prime}\right] \rightarrow(a \rightarrow d) & & \text { by item (1c) } \\
& =\left[0 \rightarrow\left\{d^{\prime} \rightarrow\left(0 \rightarrow e^{\prime}\right)\right\}^{\prime}\right] \rightarrow(a \rightarrow d) & & \text { by Lemma (2.6) (1) } \\
& =\left[0 \rightarrow\left\{(0 \rightarrow d) \rightarrow\left(0 \rightarrow e^{\prime}\right)^{\prime}\right\}\right] \rightarrow(a \rightarrow d) & & \text { by Lemma (2.5 ((a)) } \\
& =[0 \rightarrow(d \rightarrow e)] \rightarrow(a \rightarrow d) & & \text { by Lemma (2.6 (8) with } \\
& & & x=d, y=e^{\prime} \\
& & & \text { by Lemma (2.6 (17) }
\end{aligned}
$$

Thus,
(3.5) $a \rightarrow d=[0 \rightarrow(d \rightarrow e)] \rightarrow(a \rightarrow d)$.

Now,

$$
\begin{aligned}
(0 \rightarrow e) \rightarrow[a \rightarrow(a \rightarrow d)]= & {[0 \rightarrow[\{a \rightarrow(a \rightarrow d)\} \rightarrow e]] \rightarrow[a \rightarrow(a \rightarrow d)] } \\
& \quad \text { by Lemma 2.6 (19) with } x=a \rightarrow(a \rightarrow d), y=e \\
= & {[0 \rightarrow[\{a \rightarrow(a \rightarrow d)\} \rightarrow e]] \rightarrow[a \rightarrow\{a \rightarrow(a \rightarrow d)\}] } \\
& \quad \text { by Lemma 2.6 (21) } \\
= & a \rightarrow[a \rightarrow(a \rightarrow d)] \\
& \quad \text { by (3.5) replacing } d \text { with } a \rightarrow(a \rightarrow d) \\
= & a \rightarrow d
\end{aligned}
$$

by Lemma 2.6 (21).

Thus, (d) is proved and the proof of the lemma is complete.
Each of the next three lemmas prove a crucial step in the proof of transitivity of \sqsubseteq.
Lemma 3.5 Let $\mathbf{A} \in \mathbf{I}_{2,0}$ and let $a, b, c \in A$ such that $a \sqsubseteq b$ and $b \sqsubseteq c$. Let $d, e, f \in A$ be arbitrary. Then
(1) $\left(0 \rightarrow c^{\prime}\right) \rightarrow b=b$
(2) $(0 \rightarrow c) \rightarrow[a \rightarrow(a \rightarrow d)]=a \rightarrow d$
(3) $(0 \rightarrow c) \rightarrow(a \rightarrow d)=a \rightarrow d$
(4) $\left[0 \rightarrow\left((0 \rightarrow b) \rightarrow c^{\prime}\right)\right] \rightarrow b=b$
(5) $\left\{d^{\prime} \rightarrow\left[0 \rightarrow\left((0 \rightarrow b) \rightarrow c^{\prime}\right)\right]\right\} \rightarrow(b \rightarrow d)^{\prime}=(b \rightarrow d)^{\prime}$
(6) $(b \rightarrow d) \rightarrow[e \rightarrow(b \rightarrow d)]^{\prime}=\left[e \rightarrow 0^{\prime}\right] \rightarrow(b \rightarrow d)^{\prime}$
(7) $\left[b \rightarrow\left(a \rightarrow c^{\prime}\right)\right] \rightarrow a=a$
(8) $(0 \rightarrow b) \rightarrow(a \rightarrow d)=a \rightarrow d$
(9) $0 \rightarrow[b \rightarrow(a \rightarrow d)]=0 \rightarrow(a \rightarrow d)$
(10) $0 \rightarrow[\{b \rightarrow(a \rightarrow d)\} \rightarrow e]=0 \rightarrow[(a \rightarrow d) \rightarrow e]$
(11) $\left[0 \rightarrow\left(d^{\prime} \rightarrow c\right)\right] \rightarrow(0 \rightarrow b)^{\prime}=(0 \rightarrow d) \rightarrow(0 \rightarrow b)^{\prime}$
(12) $0 \rightarrow\left(a^{\prime} \rightarrow c\right) \sqsubseteq 0 \rightarrow b$
(13) $(0 \rightarrow a) \rightarrow(0 \rightarrow b)^{\prime}=(0 \rightarrow a)^{\prime}$
(14) $0 \rightarrow\left(a^{\prime} \rightarrow c\right)=0 \rightarrow a$
(15) $(d \rightarrow e) \rightarrow\left[\{b \rightarrow(a \rightarrow f)\}^{\prime} \rightarrow(0 \rightarrow a)^{\prime}\right]=(d \rightarrow e) \rightarrow\left[\left(a^{\prime} \rightarrow b\right) \rightarrow\left(f^{\prime} \rightarrow a^{\prime}\right)\right]$.

Proof By hypothesis, we have $\left(a \rightarrow b^{\prime}\right)^{\prime}=a$ and $\left(b \rightarrow c^{\prime}\right)^{\prime}=b$.
(1)

$$
\begin{aligned}
\left(0 \rightarrow c^{\prime}\right) \rightarrow b & =\left(c \rightarrow 0^{\prime}\right) \rightarrow b & & \text { by Lemma [2.5 (a) } \\
& =\left[\left(b^{\prime} \rightarrow c\right) \rightarrow\left(0^{\prime} \rightarrow b\right)^{\prime}\right]^{\prime} & & \text { by (I) } \\
& =\left[\left(b^{\prime} \rightarrow c\right) \rightarrow b^{\prime}\right]^{\prime} & & \text { by Lemmaa [2.4 ((a)) } \\
& =\left[(0 \rightarrow c) \rightarrow b^{\prime}\right]^{\prime} & & \text { by Lemma [2.6 (55) } \\
& =\left[\left(c^{\prime} \rightarrow 0^{\prime}\right) \rightarrow b^{\prime}\right]^{\prime} & & \text { by Lemma [2.5 (a) } \\
& =\left[\left(b^{\prime \prime} \rightarrow c^{\prime}\right) \rightarrow\left(0^{\prime} \rightarrow b^{\prime}\right)^{\prime}\right]^{\prime \prime} & & \text { from (I) } \\
& =\left(b^{\prime \prime} \rightarrow c^{\prime}\right) \rightarrow\left(0^{\prime} \rightarrow b^{\prime}\right)^{\prime} & & \\
& =\left(b \rightarrow c^{\prime}\right) \rightarrow\left(0^{\prime} \rightarrow b^{\prime}\right)^{\prime} & & \\
& =\left(b \rightarrow c^{\prime}\right) \rightarrow b^{\prime \prime} & & \text { by Lemmaa (2.4 (a) } \\
& =\left(b \rightarrow c^{\prime}\right) \rightarrow b & & \text { by hypothesis } \\
& =b^{\prime} \rightarrow b & & \text { by Lemma [2.4 (d). }
\end{aligned}
$$

(2) This is immmediate from (1) and Lemma 3.4 (d) with $e=c$.
(3) Using Lemma [2.6 (21) and (2) we have that $(0 \rightarrow c) \rightarrow(a \rightarrow d)=(0 \rightarrow c) \rightarrow[a \rightarrow(a \rightarrow$ $d)]=a \rightarrow d$, implying (3).
(4)

$$
\begin{aligned}
{\left[0 \rightarrow\left((0 \rightarrow b) \rightarrow c^{\prime}\right)\right] \rightarrow b } & =\left\{\left(b^{\prime} \rightarrow 0\right) \rightarrow\left[\left((0 \rightarrow b) \rightarrow c^{\prime}\right) \rightarrow b\right]^{\prime}\right\}^{\prime} & & \text { by (I) } \\
& =\left\{b \rightarrow\left[\left((0 \rightarrow b) \rightarrow c^{\prime}\right) \rightarrow b\right]^{\prime}\right\}^{\prime} & & \\
& =\left\{b \rightarrow\left(c^{\prime} \rightarrow b\right)^{\prime}\right\}^{\prime} & & \text { by Lemma 2.6 (18)) (18) } \\
& =\left\{\left(b^{\prime} \rightarrow b\right) \rightarrow\left(c^{\prime} \rightarrow b\right)^{\prime}\right\}^{\prime} & & \text { by Lemma (2.4 (d) } \\
& =\left(b \rightarrow c^{\prime}\right) \rightarrow b & & \text { by (I) } \\
& =\left(b \rightarrow c^{\prime}\right)^{\prime \prime} \rightarrow b & & \\
& =b^{\prime} \rightarrow b & & \text { by hypothesis } \\
& =b & & \text { by Lemma 2.4 (d). }
\end{aligned}
$$

(5)

$$
\begin{aligned}
\left\{d^{\prime} \rightarrow\left[0 \rightarrow\left((0 \rightarrow b) \rightarrow c^{\prime}\right)\right]\right\} \rightarrow(b \rightarrow d)^{\prime} & =\left\{\left[\left[0 \rightarrow\left((0 \rightarrow b) \rightarrow c^{\prime}\right)\right] \rightarrow b\right] \rightarrow d\right\}^{\prime} & \text { by (I) } \\
& =(b \rightarrow d)^{\prime} & \text { by (4). } .
\end{aligned}
$$

（6）

$$
\begin{array}{rll}
(b \rightarrow d) \rightarrow[e \rightarrow(b \rightarrow d)]^{\prime} & =[e \rightarrow(b \rightarrow d)] \rightarrow(b \rightarrow d)^{\prime} & \\
& \text { by Lemma 2.6 (14) with } \\
& =\left[e \rightarrow 0^{\prime}\right] \rightarrow(b \rightarrow d)^{\prime} & \\
& \text { by Lemma } 2.6 \text { (1). }
\end{array}
$$

$$
\begin{align*}
{\left[b \rightarrow\left(a \rightarrow c^{\prime}\right)\right] \rightarrow a } & =\left[\left(a^{\prime} \rightarrow b\right) \rightarrow\left\{\left(a \rightarrow c^{\prime}\right) \rightarrow a\right\}^{\prime}\right]^{\prime} & & \text { by (I) } \tag{7}\\
& =\left[\left(a^{\prime} \rightarrow b\right) \rightarrow\left\{\left(0 \rightarrow c^{\prime}\right) \rightarrow a\right\}^{\prime}\right]^{\prime} & & \text { by Lemma [2.6 (5) } \\
& =\left[\left(a^{\prime} \rightarrow b\right) \rightarrow a^{\prime}\right]^{\prime} & & \text { by (11) and Lemma [3.4 ((c)) } \\
& =\left[(0 \rightarrow b) \rightarrow a^{\prime}\right]^{\prime} & & \text { by Lemma [2.6 (5) } \\
& =(a \rightarrow 0) \rightarrow\left(b \rightarrow a^{\prime}\right)^{\prime} & & \text { by (I) } \\
& =a^{\prime} \rightarrow\left(b \rightarrow a^{\prime}\right)^{\prime} & & \\
& =a^{\prime} \rightarrow a^{\prime \prime} & & \\
& =a^{\prime} \rightarrow a & & \\
& =a & & \text { by Lemma [2.4 (d) } .
\end{align*}
$$

（8）

$$
\begin{aligned}
\left(0 \rightarrow b^{\prime}\right) \rightarrow b & =\left(0 \rightarrow 0^{\prime}\right) \rightarrow b & & \text { by Lemma 2.6 (1) } \\
& =\left(0^{\prime \prime} \rightarrow 0^{\prime}\right) \rightarrow b & & \\
& =0^{\prime} \rightarrow b & & \text { by Lemma (2.4) (d) } \\
& =b & & \text { by Lemma 2.4 (四). }
\end{aligned}
$$

Hence，by the hypothesis，together with Lemma 3.4 （d），we obtain that $(0 \rightarrow b) \rightarrow\{a \rightarrow$ $(a \rightarrow d)\}=a \rightarrow d$ ．Hence，by Lemma［2．6（21），we have $(0 \rightarrow b) \rightarrow(a \rightarrow d)=a \rightarrow d$ ．
（9）

$$
\begin{aligned}
0 \rightarrow(a \rightarrow d) & =0 \rightarrow[(0 \rightarrow b) \rightarrow(a \rightarrow d)] & & \text { by (8) } \\
& =b \rightarrow[0 \rightarrow(a \rightarrow d)] & & \text { by Lemma (2.6 (25) with } x=b, y=a \rightarrow d \\
& =0 \rightarrow[b \rightarrow(a \rightarrow d)] . & & \text { by Lemma [2.6 (13). }
\end{aligned}
$$

$$
\begin{align*}
0 \rightarrow[\{b \rightarrow(a \rightarrow d)\} \rightarrow e] & =[b \rightarrow(a \rightarrow d)] \rightarrow(0 \rightarrow e) & & \text { by Lemma (2.6 (13) } \tag{10}\\
& =0 \rightarrow[[0 \rightarrow\{b \rightarrow(a \rightarrow d)\}] \rightarrow e] & & \text { by Lemma (2.6 (25) } \\
& =0 \rightarrow[\{0 \rightarrow(a \rightarrow d)\} \rightarrow e] & & \text { by (9) } \\
& =(a \rightarrow d) \rightarrow(0 \rightarrow e) & & \text { by Lemma (2.6 (25) (25) } \\
& =0 \rightarrow[(a \rightarrow d) \rightarrow e] & & \text { by Lemma (2.6 (13). }
\end{align*}
$$

$$
\begin{align*}
& {\left[0 \rightarrow\left(d^{\prime} \rightarrow c\right)\right] \rightarrow(0 \rightarrow b)^{\prime}=\left[0 \rightarrow\left(d^{\prime} \rightarrow c\right)\right] \rightarrow\left(b^{\prime} \rightarrow 0^{\prime}\right)^{\prime} \quad \text { by Lemma } 2.5 \text { (回) }} \tag{11}\\
& =\left[\left\{\left(d^{\prime} \rightarrow c\right) \rightarrow b^{\prime}\right\} \rightarrow 0^{\prime}\right]^{\prime} \quad \text { by (I) } \\
& =\left[\left\{\left(b \rightarrow d^{\prime}\right) \rightarrow\left(c \rightarrow b^{\prime}\right)^{\prime}\right\}^{\prime} \rightarrow 0^{\prime}\right]^{\prime} \quad \text { by (I) } \\
& =\left[\left\{\left(b \rightarrow d^{\prime}\right) \rightarrow b^{\prime \prime}\right\}^{\prime} \rightarrow 0^{\prime}\right]^{\prime} \quad \text { by Lemma } 3.3 \text { (3) } \\
& =\left[\left\{\left(b \rightarrow d^{\prime}\right) \rightarrow b\right\}^{\prime} \rightarrow 0^{\prime}\right]^{\prime} \\
& =\left[\left\{\left(0 \rightarrow d^{\prime}\right) \rightarrow b\right\}^{\prime} \rightarrow 0^{\prime}\right]^{\prime} \quad \text { by Lemma } 2.6 \text { (5) } \\
& =\left[0 \rightarrow\left\{\left(0 \rightarrow d^{\prime}\right) \rightarrow b\right\}\right]^{\prime} \quad \text { by Lemma } 2.5 \text { (a) } \\
& =\left[\left(0 \rightarrow d^{\prime}\right) \rightarrow(0 \rightarrow b)\right]^{\prime} \quad \text { by Lemma } 2.6 \text { (13) } \\
& =\left[\left(d \rightarrow 0^{\prime}\right) \rightarrow(0 \rightarrow b)\right]^{\prime} \\
& =(0 \rightarrow d) \rightarrow(0 \rightarrow b)^{\prime} \quad \text { by Lemma 2.6 (11). }
\end{align*}
$$

$$
\begin{align*}
0 \rightarrow\left(a^{\prime} \rightarrow c\right) & =0 \rightarrow\left[\left(a \rightarrow b^{\prime}\right)^{\prime \prime} \rightarrow c\right] & & \text { by hyphotesis } \tag{12}\\
& =0 \rightarrow\left[\left(a \rightarrow b^{\prime}\right) \rightarrow c\right] & & \text { lemma (2.6 (29) } \\
& \sqsubseteq 0 \rightarrow\left(b^{\prime} \rightarrow c\right) & & \text { by Lemyhotesis and Lemma 3.3 (4). }
\end{align*}
$$

$$
\begin{align*}
(0 \rightarrow a) \rightarrow(0 \rightarrow b)^{\prime} & =\left[a^{\prime} \rightarrow(0 \rightarrow b)\right]^{\prime} & & \text { by Lemma } 2.6 \text { ((8) } \tag{13}\\
& =\left[0 \rightarrow\left(a^{\prime} \rightarrow b\right)\right]^{\prime} & & \text { by Lemma [2.6 (13)) } \\
& =(0 \rightarrow a)^{\prime} . & & \text { by hyphotesis and Lemma } 3.3 \text { (4). }
\end{align*}
$$

$$
\begin{align*}
0 \rightarrow\left(a^{\prime} \rightarrow c\right) & =\left[\left\{0 \rightarrow\left(a^{\prime} \rightarrow c\right)\right\} \rightarrow(0 \rightarrow b)^{\prime}\right]^{\prime} & & \text { by (122) } \tag{14}\\
& =\left[(0 \rightarrow a) \rightarrow(0 \rightarrow b)^{\prime}\right]^{\prime} & & \text { by (11) with } d=a \\
& =(0 \rightarrow a)^{\prime \prime} & & \text { by (13) }
\end{align*}
$$

$$
=0 \rightarrow a .
$$

(15)

Hence, we have $(d \rightarrow e) \rightarrow\left[\{b \rightarrow(a \rightarrow f)\}^{\prime} \rightarrow(0 \rightarrow a)^{\prime}\right]=(d \rightarrow e) \rightarrow\left[\left(a^{\prime} \rightarrow b\right) \rightarrow\left(f^{\prime} \rightarrow\right.\right.$ $\left.\left.a^{\prime}\right)\right]$.

Lemma 3.6 Let $\mathbf{A} \in \mathbf{I}_{2,0}$ and let $a, b, c \in A$ such that $a \sqsubseteq b$ and $b \sqsubseteq c$. Let $d \in A$ be arbitrary.
Then
(a) $\left[c \rightarrow\left(b \rightarrow a^{\prime}\right)\right] \rightarrow b=\left(0 \rightarrow a^{\prime}\right) \rightarrow b$
(b) $\left(c \rightarrow a^{\prime}\right) \rightarrow b=a^{\prime} \rightarrow b$
(c) $\left(a^{\prime} \rightarrow b\right) \rightarrow\left(c \rightarrow a^{\prime}\right)=c \rightarrow a^{\prime}$
(d) $c \rightarrow a^{\prime}=a \rightarrow\left[b \rightarrow\left(a \rightarrow c^{\prime}\right)\right]$
(e) $0 \rightarrow(a \rightarrow d)=0 \rightarrow[c \rightarrow(a \rightarrow d)]$

$$
\begin{aligned}
& (d \rightarrow e) \rightarrow\left[\left(a^{\prime} \rightarrow b\right) \rightarrow\left(f^{\prime} \rightarrow a^{\prime}\right)\right] \\
& =(d \rightarrow e) \rightarrow\left[\left\{\left(0 \rightarrow a^{\prime}\right) \rightarrow b\right\} \rightarrow\left(f^{\prime} \rightarrow a^{\prime}\right)\right] \\
& \text { by Lemma } 3.3 \text { (1) } \\
& =(d \rightarrow e) \rightarrow\left[\left\{\left(0 \rightarrow a^{\prime}\right) \rightarrow b\right\} \rightarrow\left\{(f \rightarrow 0) \rightarrow a^{\prime}\right\}\right] \\
& =(d \rightarrow e) \rightarrow\left[\left\{\left(0 \rightarrow a^{\prime}\right) \rightarrow b\right\} \rightarrow\left\{(a \rightarrow f) \rightarrow\left(0 \rightarrow a^{\prime}\right)^{\prime}\right\}^{\prime}\right] \\
& \text { by (I) } \\
& =(d \rightarrow e) \rightarrow\left[\{b \rightarrow(a \rightarrow f)\} \rightarrow\left(0 \rightarrow a^{\prime}\right)^{\prime}\right]^{\prime} \\
& \text { by (I) } \\
& =(d \rightarrow e) \rightarrow\left[\{b \rightarrow(a \rightarrow f)\}^{\prime} \rightarrow\left(a^{\prime} \rightarrow 0^{\prime}\right)^{\prime}\right] \\
& \text { by (30) with } x=b \rightarrow(a \rightarrow f) \text { and } y=a^{\prime} \\
& =(d \rightarrow e) \rightarrow\left[\{b \rightarrow(a \rightarrow f)\}^{\prime} \rightarrow(0 \rightarrow a)^{\prime}\right] \\
& \text { by Lemma } 2.5 \text { (图). }
\end{aligned}
$$

(f) $(d \rightarrow a) \rightarrow d \sqsubseteq\left(a^{\prime} \rightarrow b\right) \rightarrow d$
(g) $\left(a^{\prime} \rightarrow b\right) \rightarrow c^{\prime}=(0 \rightarrow a) \rightarrow b^{\prime}$
(h) $0 \rightarrow\left(a \rightarrow c^{\prime}\right) \sqsubseteq 0 \rightarrow a^{\prime}$
(i) $0 \rightarrow\left(a \rightarrow c^{\prime}\right)=0 \rightarrow a^{\prime}$.
(j) $c \rightarrow\left(a \rightarrow c^{\prime}\right) \sqsubseteq 0 \rightarrow\left(a \rightarrow c^{\prime}\right)$
$(\mathrm{k}) c \rightarrow\left(a \rightarrow c^{\prime}\right) \sqsubseteq 0 \rightarrow a^{\prime}$
(l) $\left(c \rightarrow\left(a \rightarrow c^{\prime}\right)\right)^{\prime} \rightarrow(0 \rightarrow a)^{\prime}=c \rightarrow\left(a \rightarrow c^{\prime}\right)$
(m) $a \rightarrow\left[b \rightarrow\left(a \rightarrow c^{\prime}\right)\right]=a \rightarrow c^{\prime}$
(n) $c \rightarrow a^{\prime}=a \rightarrow c^{\prime}$.

Proof

(a) Since $\left(b \rightarrow c^{\prime}\right)^{\prime}=b$, by Lemma 3.3 (10) with $d=a^{\prime}$, we have $\left(c \rightarrow\left(b \rightarrow a^{\prime}\right)\right) \rightarrow b=(0 \rightarrow$ $\left.a^{\prime}\right) \rightarrow b$.
(b)

$$
\begin{aligned}
\left(c \rightarrow a^{\prime}\right) \rightarrow b & =\left[c \rightarrow\left(b \rightarrow a^{\prime}\right)\right] \rightarrow b & & \text { by Lemma 3.3 (3) } \\
& =\left(0 \rightarrow a^{\prime}\right) \rightarrow b & & \text { by (固), }
\end{aligned}
$$

from which we get $\left(c \rightarrow a^{\prime}\right) \rightarrow b=\left(0 \rightarrow a^{\prime}\right) \rightarrow b$, which, together with Lemma 3.3 (1), implies $\left(c \rightarrow a^{\prime}\right) \rightarrow b=a^{\prime} \rightarrow b$.
(c)

$$
\begin{aligned}
c \rightarrow a^{\prime} & =(0 \rightarrow a) \rightarrow\left(c \rightarrow a^{\prime}\right) & & \text { by Lemma 2.6 (22) with } x=a^{\prime}, y=c \\
& =\left[0 \rightarrow\left(a^{\prime} \rightarrow b\right)\right] \rightarrow\left(c \rightarrow a^{\prime}\right) & & \text { by Lemma 3.3 (4) } \\
& =\left[0 \rightarrow\left\{\left(c \rightarrow a^{\prime}\right) \rightarrow b\right\}\right] \rightarrow\left(c \rightarrow a^{\prime}\right) & & \text { by (b) } \\
& =\left[\left(c \rightarrow a^{\prime}\right) \rightarrow(0 \rightarrow b)\right] \rightarrow\left(c \rightarrow a^{\prime}\right) & & \text { by Lemma 2.6 (13) } \\
& =[0 \rightarrow(0 \rightarrow b)] \rightarrow\left(c \rightarrow a^{\prime}\right) & & \text { by Lemma 2.6 (5) } \\
& =(0 \rightarrow b) \rightarrow\left(c \rightarrow a^{\prime}\right) & & \text { by Lemma 2.6 (6) } \\
& =\left[\left(c \rightarrow a^{\prime}\right) \rightarrow b\right] \rightarrow\left(c \rightarrow a^{\prime}\right) & & \text { by Lemma 2.6 (5) } \\
& =\left(a^{\prime} \rightarrow b\right) \rightarrow\left(c \rightarrow a^{\prime}\right) & & \text { by (b). }
\end{aligned}
$$

(d)

$$
\begin{aligned}
& c \rightarrow a^{\prime}=(0 \rightarrow a) \rightarrow\left(c \rightarrow a^{\prime}\right) \quad \text { by Lemma 2.6 (2) } \\
& =(0 \rightarrow a) \rightarrow\left[\left(a^{\prime} \rightarrow b\right) \rightarrow\left(c \rightarrow a^{\prime}\right)\right] \quad \text { by (C) } \\
& =(0 \rightarrow a) \rightarrow\left[\left(a^{\prime} \rightarrow b\right) \rightarrow\left(c^{\prime \prime} \rightarrow a^{\prime}\right)\right] \\
& =(0 \rightarrow a) \rightarrow\left[\left\{b \rightarrow\left(a \rightarrow c^{\prime}\right)\right\}^{\prime} \rightarrow(0 \rightarrow a)^{\prime}\right] \quad \text { by Lemma } 3.5 \text { (15) with } \\
& =(0 \rightarrow a) \rightarrow\left[\left\{b \rightarrow\left(a \rightarrow c^{\prime}\right)\right\}^{\prime} \rightarrow\left\{0 \rightarrow\left(a^{\prime} \rightarrow c\right)\right\}^{\prime}\right] \\
& =(0 \rightarrow a) \rightarrow\left[\left\{b \rightarrow\left(a \rightarrow c^{\prime}\right)\right\}^{\prime} \rightarrow\left\{0 \rightarrow\left(a \rightarrow c^{\prime}\right)^{\prime}\right\}^{\prime}\right] \\
& =(0 \rightarrow a) \rightarrow\left[\left\{b \rightarrow\left(a \rightarrow c^{\prime}\right)\right\}^{\prime} \rightarrow\left[0 \rightarrow\left\{b \rightarrow\left(a \rightarrow c^{\prime}\right)\right\}^{\prime}\right]^{\prime}\right] \\
& d=0, e=a, f=c^{\prime} \\
& \text { by Lemma } 3.5 \text { (14) } \\
& \text { by Lemma } 2.6 \text { (16) } \\
& \text { by Lemma 3.5(10) with } \\
& d=c^{\prime}, e=0 \\
& =\left[b \rightarrow\left(a \rightarrow c^{\prime}\right)\right]^{\prime} \rightarrow\left[(a \rightarrow 0) \rightarrow\left\{b \rightarrow\left(a \rightarrow c^{\prime}\right)\right\}^{\prime}\right]^{\prime} \\
& \text { by Lemma } 2.6 \text { (24) with } \\
& x=\left[b \rightarrow\left(a \rightarrow c^{\prime}\right)\right]^{\prime} \text {, } \\
& y=a, z=0 \\
& =\left[\{0 \rightarrow(a \rightarrow 0)\} \rightarrow\left\{b \rightarrow\left(a \rightarrow c^{\prime}\right)\right\}^{\prime}\right]^{\prime} \\
& =\left[\{a \rightarrow(0 \rightarrow 0)\} \rightarrow\left\{b \rightarrow\left(a \rightarrow c^{\prime}\right)\right\}^{\prime}\right]^{\prime} \\
& =\left[\left(a \rightarrow 0^{\prime}\right) \rightarrow\left\{b \rightarrow\left(a \rightarrow c^{\prime}\right)\right\}^{\prime}\right]^{\prime} \\
& =\left[\left\{b \rightarrow\left(a \rightarrow c^{\prime}\right)\right\} \rightarrow\left[a \rightarrow\left\{b \rightarrow\left(a \rightarrow c^{\prime}\right)\right\}\right]^{\prime}\right]^{\prime} \\
& =\left[\left\{b \rightarrow\left(a \rightarrow c^{\prime}\right)\right\} \rightarrow a\right] \rightarrow\left[b \rightarrow\left(a \rightarrow c^{\prime}\right)\right] \\
& =a \rightarrow\left[b \rightarrow\left(a \rightarrow c^{\prime}\right)\right] \\
& \text { with } x=a \rightarrow 0 \text {, } \\
& y=\left[b \rightarrow\left(a \rightarrow c^{\prime}\right)\right]^{\prime} \\
& \text { by Lemma } 2.6 \text { (13) } \\
& \text { by Lemma 3.5(6) with } \\
& e=a, d=a \rightarrow c^{\prime} \\
& \text { by Lemma } 2.6 \text { (4) } \\
& \text { by Lemma 3.5(7). }
\end{aligned}
$$

(e)

$$
\begin{aligned}
0 \rightarrow(a \rightarrow d) & =0 \rightarrow[(0 \rightarrow c) \rightarrow(a \rightarrow d)] & & \text { by Lemma } 3.5(3) \\
& =c \rightarrow[0 \rightarrow(a \rightarrow d)] & & \text { by Lemma } 2.6 \text { (25) } \\
& =0 \rightarrow[c \rightarrow(a \rightarrow d)] & & \text { by Lemma } 2.6 \text { (13). } .
\end{aligned}
$$

(f)

$$
\begin{aligned}
(d \rightarrow a) \rightarrow d & =(0 \rightarrow a) \rightarrow d & & \text { by Lemma 2.6 (5) } \\
& =\left[0 \rightarrow\left(a^{\prime} \rightarrow b\right)\right] \rightarrow d & & \text { by Lemma } 3.3 \text { (4) } \\
& \sqsubseteq\left(a^{\prime} \rightarrow b\right) \rightarrow d & & \text { by Lemma 2.6 (36). }
\end{aligned}
$$

(g)

$$
\begin{aligned}
\left(a^{\prime} \rightarrow b\right) \rightarrow c^{\prime} & =\left[\left(c \rightarrow a^{\prime}\right) \rightarrow\left(b \rightarrow c^{\prime}\right)^{\prime}\right]^{\prime} & & \text { by }(\mathrm{I}) \\
& =\left[\left(c \rightarrow a^{\prime}\right) \rightarrow b\right]^{\prime} & & \text { by hypothesis } \\
& =\left[\left\{c \rightarrow\left(b \rightarrow a^{\prime}\right)\right\} \rightarrow b\right]^{\prime} & & \text { by Lemma (3).3 (3) } \\
& =\left[\left(0 \rightarrow a^{\prime}\right) \rightarrow b\right]^{\prime} & & \text { by Lemma (10.3) with } \\
& =\left[\left(b \rightarrow a^{\prime}\right) \rightarrow b\right]^{\prime} & & d=a^{\prime} \text { since } b \sqsubseteq c \\
& =\left[\left(b \rightarrow a^{\prime}\right) \rightarrow b^{\prime \prime}\right]^{\prime} & & \text { by Lemma 2.6 (5) } \\
& =\left[\left(b \rightarrow a^{\prime}\right) \rightarrow\left(0^{\prime} \rightarrow b^{\prime}\right)^{\prime}\right]^{\prime} & & \text { by Lemma 2.4 (囯) } \\
& =\left(a^{\prime} \rightarrow 0^{\prime}\right) \rightarrow b^{\prime} & & \text { by (I) } \\
& =(0 \rightarrow a) \rightarrow b^{\prime} . & & \text { by Lemma 2.5 (园). }
\end{aligned}
$$

Hence, one has $\left(a^{\prime} \rightarrow b\right) \rightarrow c^{\prime}=(0 \rightarrow a) \rightarrow b^{\prime}$.
(h) From Lemma 3.5 (11), we have $\left(0 \rightarrow c^{\prime}\right) \rightarrow b=b$. Hence, we can use Lemma 3.3. Therefore, we have

$$
\begin{array}{rlrl}
0 \rightarrow\left(a \rightarrow c^{\prime}\right) & & =0 \rightarrow\left[\left\{\left(0 \rightarrow c^{\prime}\right) \rightarrow a\right\} \rightarrow c^{\prime}\right] & \\
& \text { by Lemma } 3.4 \text { (ㄷ) and Lemma 3.5)(11) } \\
& =\left[\left(0 \rightarrow c^{\prime}\right) \rightarrow a\right] \rightarrow\left(0 \rightarrow c^{\prime}\right) & & \text { by Lemma 2.6 (13) } \\
& \sqsubseteq\left(a^{\prime} \rightarrow b\right) \rightarrow\left(0 \rightarrow c^{\prime}\right) & & \text { by (£) with } d=0 \rightarrow c^{\prime} \\
& =0 \rightarrow\left[\left(a^{\prime} \rightarrow b\right) \rightarrow c^{\prime}\right] & & \text { by Lemma 2.6 (13) } \\
& =0 \rightarrow\left[(0 \rightarrow a) \rightarrow b^{\prime}\right] & & \text { by (田) } \\
& =0 \rightarrow\left[(b \rightarrow 0) \rightarrow\left(a \rightarrow b^{\prime}\right)^{\prime}\right]^{\prime} & & \text { by (I) } \\
& =0 \rightarrow\left[b^{\prime} \rightarrow\left(a \rightarrow b^{\prime}\right)^{\prime}\right]^{\prime} & & \\
& =0 \rightarrow\left(b^{\prime} \rightarrow a\right)^{\prime} & & \text { by hypothesis } \\
& =0 \rightarrow\left(b \rightarrow a^{\prime}\right) & & \text { by Lemma [2.6 (16) } \\
& =0 \rightarrow a^{\prime} & & \text { by Lemma } 3.3 \text { (3). } .
\end{array}
$$

（i）

$$
\begin{aligned}
0 \rightarrow a^{\prime} & =0 \rightarrow(a \rightarrow 0) & & \\
& =0 \rightarrow[c \rightarrow(a \rightarrow 0)] & & \text { by (目) } \\
& =0 \rightarrow\left(c \rightarrow a^{\prime}\right) & & \\
& =0 \rightarrow\left[\left(a \rightarrow c^{\prime}\right)^{\prime} \rightarrow(0 \rightarrow a)^{\prime}\right] & & \text { by Lemma 2.6 (33) } \\
& =\left[0 \rightarrow\left(a \rightarrow c^{\prime}\right)\right]^{\prime} \rightarrow(0 \rightarrow a)^{\prime} & & \text { by Lemma 2.6 (34) and Lemma 2.6 (6) } \\
& =\left[0 \rightarrow\left(a \rightarrow c^{\prime}\right)\right]^{\prime} \rightarrow\left(a^{\prime} \rightarrow 0^{\prime}\right)^{\prime} & & \text { by Lemma 2.5 (aa) } \\
& =\left[\left\{0 \rightarrow\left(a \rightarrow c^{\prime}\right)\right\} \rightarrow\left(0 \rightarrow a^{\prime}\right)^{\prime}\right]^{\prime} & & \text { by Lemma 2.5 (30) with } x=0 \rightarrow\left(a \rightarrow c^{\prime}\right), y=a^{\prime} \\
& =0 \rightarrow\left(a \rightarrow c^{\prime}\right) & & \text { by (h). }
\end{aligned}
$$

（j）

$$
\begin{aligned}
& {\left[\left\{c \rightarrow\left(a \rightarrow c^{\prime}\right)\right\} \rightarrow\left\{0 \rightarrow\left(a \rightarrow c^{\prime}\right)\right\}^{\prime}\right]^{\prime}=\left[\left\{0 \rightarrow\left(a \rightarrow c^{\prime}\right)\right\} \rightarrow c\right] \rightarrow\left[\left(a \rightarrow c^{\prime}\right) \rightarrow\left\{0 \rightarrow\left(a \rightarrow c^{\prime}\right)\right\}^{\prime}\right]^{\prime}} \\
& \text { by (I) } \\
& =\left[\left\{0 \rightarrow\left(a \rightarrow c^{\prime}\right)\right\} \rightarrow c\right] \rightarrow\left[\left\{\left(a \rightarrow c^{\prime}\right) \rightarrow 0\right\} \rightarrow\left(a \rightarrow c^{\prime}\right)\right] \\
& \text { by Lemma } 2.6 \text { (4) } \\
& =\left[\left\{0 \rightarrow\left(a \rightarrow c^{\prime}\right)\right\} \rightarrow c\right] \rightarrow\left[\left(a \rightarrow c^{\prime}\right)^{\prime} \rightarrow\left(a \rightarrow c^{\prime}\right)\right] \\
& =\left[\left\{0 \rightarrow\left(a \rightarrow c^{\prime}\right)\right\} \rightarrow c\right] \rightarrow\left(a \rightarrow c^{\prime}\right) \\
& \text { by Lemma } 2.4 \text { (d) } \\
& =c \rightarrow\left(a \rightarrow c^{\prime}\right) \\
& \text { by Lemma } 2.6 \text { (18) with } \\
& x=a \rightarrow c^{\prime}, y=c \text {. }
\end{aligned}
$$

（k）From（ij）we have that $c \rightarrow\left(a \rightarrow c^{\prime}\right) \sqsubseteq 0 \rightarrow\left(a \rightarrow c^{\prime}\right)$ ．Then using（ii）we get $c \rightarrow\left(a \rightarrow c^{\prime}\right) \sqsubseteq$ $0 \rightarrow a^{\prime}$ ．
（1）

$$
\begin{array}{rlrl}
{\left[c \rightarrow\left(a \rightarrow c^{\prime}\right)\right]^{\prime} \rightarrow(0 \rightarrow a)^{\prime}} & & =\left[c \rightarrow\left(a \rightarrow c^{\prime}\right)\right]^{\prime} \rightarrow\left(a^{\prime} \rightarrow 0^{\prime}\right)^{\prime} & \\
\text { by Lemma 2.5 (目) } \\
& =\left[\left\{c \rightarrow\left(a \rightarrow c^{\prime}\right)\right\} \rightarrow\left(0 \rightarrow a^{\prime}\right)^{\prime}\right]^{\prime} & & \text { by Lemma (2.6 (30) } \\
& =c \rightarrow\left(a \rightarrow c^{\prime}\right) & & \text { by (k). }
\end{array}
$$

（m）

$$
\begin{aligned}
a \rightarrow\left[b \rightarrow\left(a \rightarrow c^{\prime}\right)\right]= & =c \rightarrow a^{\prime} & & \text { by (d) } \\
& =c^{\prime \prime} \rightarrow a^{\prime} & & \\
& =\left(a \rightarrow c^{\prime}\right)^{\prime} \rightarrow(0 \rightarrow a)^{\prime} & & \text { by Lemma (2.6 (33) } \\
& =\left[c \rightarrow\left(a \rightarrow c^{\prime}\right)\right]^{\prime} \rightarrow(0 \rightarrow a)^{\prime} & & \text { by Lemma (2.6 (17) } \\
& =c \rightarrow\left(a \rightarrow c^{\prime}\right) & & \text { by (11) } \\
& =a \rightarrow c^{\prime} & & \text { by Lemma (2.6 (17). }
\end{aligned}
$$

（n）From（d）and（四），we get $c \rightarrow a^{\prime}=a \rightarrow c^{\prime}$ ．

Lemma 3．7 Let $\mathbf{A} \in \mathbf{I}_{2,0}$ and let $a, b, c \in A$ such that $a \sqsubseteq b$ and $b \sqsubseteq c$ ．Then
（a）$c^{\prime} \rightarrow[(c \rightarrow d) \rightarrow b] \sqsubseteq c$
（b） $0 \rightarrow a^{\prime}=c \rightarrow\left(0 \rightarrow a^{\prime}\right)$
（c）$c^{\prime} \rightarrow\left(a^{\prime} \rightarrow b\right) \sqsubseteq c$
（d）$\left(0 \rightarrow a^{\prime}\right) \rightarrow b=\left(c \rightarrow a^{\prime}\right) \rightarrow b$
（e）$c^{\prime} \rightarrow\left(a^{\prime} \rightarrow b\right) \sqsubseteq 0 \rightarrow c$
（f）$\left[(0 \rightarrow a) \rightarrow b^{\prime}\right] \rightarrow c=c^{\prime} \rightarrow\left(a^{\prime} \rightarrow b\right)$
（g）$a^{\prime} \rightarrow c=c^{\prime} \rightarrow\left(a^{\prime} \rightarrow b\right)$
（h）$a^{\prime} \rightarrow c \sqsubseteq c$
（i）$a^{\prime} \rightarrow c=\left(0 \rightarrow a^{\prime}\right) \rightarrow c$ ．

Proof

（a）

$$
\begin{aligned}
c^{\prime} \rightarrow[(c \rightarrow d) \rightarrow b] & =c^{\prime} \rightarrow\left[(c \rightarrow d) \rightarrow\left(b \rightarrow c^{\prime}\right)^{\prime}\right] & & \text { by hypothesis } \\
& =c^{\prime} \rightarrow\left[(d \rightarrow b) \rightarrow c^{\prime}\right]^{\prime} & & \text { by (I) } \\
& \sqsubseteq c^{\prime \prime} & & \text { by Lemma [2.6 (37) } \\
& =c . & &
\end{aligned}
$$

（b）

$$
\begin{aligned}
0 \rightarrow a^{\prime} & =b \rightarrow\left(0 \rightarrow a^{\prime}\right) & & \text { by Lemma 3.3 (11) } \\
& =\left[0 \rightarrow\left\{\left(0 \rightarrow a^{\prime}\right) \rightarrow c\right\}\right] \rightarrow\left[b \rightarrow\left(0 \rightarrow a^{\prime}\right)\right] & & \text { by Lemma (3.5 (11) } \\
& & & \text { and Lemma (3.4) (目) }
\end{aligned}
$$

（c）

$$
\begin{aligned}
c^{\prime} \rightarrow\left(a^{\prime} \rightarrow b\right) & =c^{\prime} \rightarrow\left[\left(0 \rightarrow a^{\prime}\right) \rightarrow b\right] & & \text { by Lemma } 3.3 \text { (11) } \\
& =c^{\prime} \rightarrow\left[\left\{c \rightarrow\left(0 \rightarrow a^{\prime}\right)\right\} \rightarrow b\right] & & \text { by (B) } \\
& \sqsubseteq c & & \text { by (四) with } d=0 \rightarrow a^{\prime} .
\end{aligned}
$$

（d）

$$
\begin{aligned}
& \left(0 \rightarrow a^{\prime}\right) \rightarrow b=\left[c \rightarrow\left(0 \rightarrow a^{\prime}\right)\right] \rightarrow b \quad \text { by (B) } \\
& =\left[\left(b^{\prime} \rightarrow c\right) \rightarrow\left\{\left(0 \rightarrow a^{\prime}\right) \rightarrow b\right\}^{\prime}\right]^{\prime} \quad \text { by (I) } \\
& =\left[\left(b^{\prime} \rightarrow c\right) \rightarrow\left\{\left(b^{\prime} \rightarrow 0\right) \rightarrow\left(a^{\prime} \rightarrow b\right)^{\prime}\right\}\right]^{\prime} \quad \text { by }(\mathrm{I}) \text { and } x^{\prime \prime} \approx x \\
& =\left[\left(b^{\prime} \rightarrow c\right) \rightarrow\left\{b \rightarrow\left(a^{\prime} \rightarrow b\right)^{\prime}\right\}\right]^{\prime} \\
& =\left[\left(b^{\prime} \rightarrow c\right) \rightarrow\left\{\left(a^{\prime} \rightarrow 0^{\prime}\right) \rightarrow b^{\prime}\right\}\right]^{\prime} \quad \text { by Lemma 2.6 (26) } \\
& =\left[\left(b^{\prime} \rightarrow c\right) \rightarrow\left\{(0 \rightarrow a) \rightarrow b^{\prime}\right\}\right]^{\prime} \quad \text { by Lemma 2.5 (回) } \\
& =\left[\left(b^{\prime} \rightarrow c\right) \rightarrow\left(a^{\prime} \rightarrow b\right)^{\prime}\right]^{\prime} \quad \text { by Lemma } 3.3 \text { (16) } \\
& =\left(c \rightarrow a^{\prime}\right) \rightarrow b \quad \text { by }(\mathrm{I}) .
\end{aligned}
$$

（e）

$$
\begin{aligned}
c^{\prime} \rightarrow\left(a^{\prime} \rightarrow b\right) & =c^{\prime} \rightarrow\left[\left(0 \rightarrow a^{\prime}\right) \rightarrow b\right] & & \text { by Lemma } 3.3 \text { (15) and Lemma } 3.3 \text { (16) (16) } \\
& =c^{\prime} \rightarrow\left[\left(c \rightarrow a^{\prime}\right) \rightarrow b\right] & & \text { by (d) } \\
& \sqsubseteq 0 \rightarrow c . & & \text { by Lemma } 3.3 \text { (17) with } d=a^{\prime} .
\end{aligned}
$$

（f）

$$
\begin{aligned}
c^{\prime} \rightarrow\left(a^{\prime} \rightarrow b\right) & =\left[\left\{c^{\prime} \rightarrow\left(a^{\prime} \rightarrow b\right)\right\} \rightarrow(0 \rightarrow c)^{\prime}\right]^{\prime} & & \text { by (目) } \\
& =\left[\left(a^{\prime} \rightarrow b\right) \rightarrow 0\right] \rightarrow c & & \text { by (I) } \\
& =\left(a^{\prime} \rightarrow b\right)^{\prime} \rightarrow c & & \\
& =\left[(0 \rightarrow a) \rightarrow b^{\prime}\right] \rightarrow c & & \text { by Lemma 3.3 (16). }
\end{aligned}
$$

（g）

$$
\begin{aligned}
c^{\prime} \rightarrow\left(a^{\prime} \rightarrow b\right) & =\left((0 \rightarrow a) \rightarrow b^{\prime}\right) \rightarrow c & & \text { by (f) } \\
& =\left[(0 \rightarrow a) \rightarrow 0^{\prime}\right] \rightarrow\left(b^{\prime} \rightarrow c\right) & & \text { by Lemma 3.3 (14) with } d=0 \rightarrow a \\
& =\left[\left(a^{\prime} \rightarrow 0^{\prime}\right) \rightarrow 0^{\prime}\right] \rightarrow\left(b^{\prime} \rightarrow c\right) & & \text { by Lemma 2.5 (目) } \\
& =\left[\left(a^{\prime} \rightarrow 0\right) \rightarrow 0^{\prime}\right] \rightarrow\left(b^{\prime} \rightarrow c\right) & & \text { by Lemma 2.6 (1) } \\
& =\left[a^{\prime \prime} \rightarrow 0^{\prime}\right] \rightarrow\left(b^{\prime} \rightarrow c\right) & & \\
& =\left(a \rightarrow 0^{\prime}\right) \rightarrow\left(b^{\prime} \rightarrow c\right) & & \\
& =\left(a \rightarrow b^{\prime}\right) \rightarrow c & & \text { by Lemma 3.3 (14) with } d=a \\
& =a^{\prime} \rightarrow c & & \text { by hypothesis. }
\end{aligned}
$$

（h）This is immediate from（g）and（cc）．
（i）

$$
\begin{aligned}
& \left(0 \rightarrow a^{\prime}\right) \rightarrow c=\left(c \rightarrow a^{\prime}\right) \rightarrow c \quad \text { by Lemma (2.6 (5) } \\
& =\left[c \rightarrow\left(a^{\prime} \rightarrow c\right)^{\prime}\right]^{\prime} \text { by Lemma 2.6 (4) } \\
& =\left[\left(a^{\prime} \rightarrow c\right) \rightarrow c^{\prime}\right]^{\prime} \text { by Lemma } 2.6 \text { (14) } \\
& =a^{\prime} \rightarrow c \quad \text { by (h). }
\end{aligned}
$$

We are now ready to complete the proof of transitivity of \sqsubseteq ．
Theorem $3.8 \sqsubseteq$ is transitive．

Proof Let $a, b, c \in A$ such that $a \sqsubseteq b$ and $b \sqsubseteq c$. Observe that

$$
\begin{aligned}
a^{\prime} & =a \rightarrow 0 & & \\
& =(0 \rightarrow c) \rightarrow(a \rightarrow 0) & & \text { by Lemma (3.5 (3) (3i) with } d=0 \\
& =(0 \rightarrow c) \rightarrow a^{\prime} & & \\
& =\left(a^{\prime} \rightarrow c\right) \rightarrow a^{\prime} & & \text { by Lemma (2.6 (15) } \\
& =\left(\left(0 \rightarrow a^{\prime}\right) \rightarrow c\right) \rightarrow a^{\prime} & & \text { by Lemma (3.7 (ii) } \\
& =c \rightarrow a^{\prime} & & \text { by Lemma [2.6 (18) } \\
& =a \rightarrow c^{\prime} & & \text { by Lemma (3.6) (II). }
\end{aligned}
$$

Consequently,

$$
a=a^{\prime \prime}=\left(a \rightarrow c^{\prime}\right)^{\prime},
$$

implying $a \sqsubseteq c$. Hence, \sqsubseteq is transitive on \mathbf{A}.
We are now prepared to present our first main theorem.
Theorem 3.9 The variety $\mathbf{I}_{2,0}$ is a maximal subvariety of \mathbf{I} with respect to the property that the relation \sqsubseteq introduced in Definition 3.1 is a partial order.

Proof Let $\mathbf{A} \in \mathbf{I}_{2,0}$. The relation \sqsubseteq is a partial order on A in view of Lemma 2.4 (cca), Lemma 3.2, and Theorem 3.8,

Next, let \mathbf{V} be a subvariety of \mathbf{I} such that \sqsubseteq is a partial order on every algebra in \mathbf{V}. Now let $\mathbf{A} \in \mathbf{V}$. Reflexivity of \sqsubseteq implies that $\mathbf{A} \models\left(x \rightarrow x^{\prime}\right)^{\prime} \approx x$. Therefore, by Lemma 2.4, we conclude that $\mathbf{A} \in \mathbf{I}_{2,0}$, and hence, $\mathbf{V} \subseteq \mathbf{I}_{2,0}$, completing the proof.

4 A method to construct finite $\mathbf{I}_{2,0}$-chains

Now that we know the relation \sqsubseteq is a partial order on algebras in $\mathbf{I}_{2,0}$, it is natural to consider those algebras in $\mathbf{I}_{2,0}$, in which \sqsubseteq is a total order.

Definition 4.1 Let $\mathbf{A} \in \mathbf{I}$. We say that \mathbf{A} is an $\mathbf{I}_{2,0}$-chain (chain, for short) if $\mathbf{A} \in \mathbf{I}_{2,0}$ and the relation $\sqsubseteq ~(s e e ~ D e f i n i t i o n ~(3.1) ~ i s ~ t o t a l l y ~ o r d e r e d ~ o n ~ A . ~$

In this section we describe a method of constructing finite $\mathbf{I}_{2,0}$-chains. But, first, we will present some examples of $\mathbf{I}_{2,0}$-chains that will foreshadow the method to construct finite $\mathbf{I}_{2,0}$-chains. We note that, in these examples, the number 0 is the constant element.

It is easy to see that the only 2-element $\mathbf{I}_{2,0}$-chains, up to isomorphism, are

$\rightarrow:$	0	1
0	1	1
1	0	1

$$
\begin{array}{r|rr}
\rightarrow: & -1 & 0 \\
\hline-1 & -1 & -1 \\
0 & -1 & 0
\end{array} \text { with }-1 \sqsubset 0
$$

and the only 3-element $\mathbf{I}_{2,0}$-chains, up to isomorphism, are

$\rightarrow:$	0	1	2
0	2	2	2
1	1	1	2
2	0	1	2

$$
\begin{array}{r|rrr}
\rightarrow: & -1 & 0 & 1 \\
\hline-1 & -1 & -1 & -1 \\
0 & -1 & 1 & 1 \\
1 & -1 & 0 & 1
\end{array} \text { with }-1 \sqsubset 0 \sqsubset 1,
$$

$\rightarrow:$	-2	-1	0
-2	-2	-2	-2
-1	-2	-1	-1
0	-2	-1	0

Note that, henceforth, we will use the symbol \leq to denote the natural order in \mathbb{Z}. Recall that \sqsubseteq is being used for the order (see Definition 3.1).

The next definition describes a general method to construct a class of finite $\mathbf{I}_{\mathbf{2}, \mathbf{0}}$-chains, generalizing the above examples. In the next section, we will show that, this method, in fact, yields, up to isomorphism, all finite $\mathbf{I}_{\mathbf{2}, \mathbf{0}}$-chains.

Definition 4.2 Let $k \in \mathbb{N}$. Let $m, n \in \omega$ be such that the interval $[-n, m] \subseteq \mathbb{Z}$ with $|[-n, m]|=k$ and $0 \leq n, m \leq k-1$. The (auxiiliary) functions p (predecessor) and $*$ are defined on $[-n, m]$ as follows:

$$
p(x)= \begin{cases}x-1 & \text { if } \quad x>-n \\ -n & \text { if } \quad x=-n\end{cases}
$$

and

$$
x^{*}= \begin{cases}m & \text { if } x=0 \\ x & \text { if } x<0 \\ p\left((p(x))^{*}\right) & \text { if } x>0\end{cases}
$$

For convenience, we write $p\left(p(x)^{*}\right)$ for $p\left((p(x))^{*}\right)$. (Notice that the function $*$ is defined recursively for $x \geq 0$.)
Define the algebra $[-\mathbf{n}, \mathbf{m}]$ as follows:
$[-\mathbf{n}, \mathbf{m}]:=\langle[-n, m] ; \Rightarrow, 0\rangle$, where $0 \in[-n, m]$ is the constant and \Rightarrow is defined by

$$
x \Rightarrow y= \begin{cases}\max \left(x^{*}, y\right) & \text { if } x, y \geq 0 \\ \min (x, y) & \text { otherwise }\end{cases}
$$

We set $x^{\prime}:=x \Rightarrow 0$.

We shall now illustrate the method described in the above definition by applying it to construct a 6 -element $\mathbf{I}_{\mathbf{2}, \mathbf{0}}$-chain.

Let $k=6$, and consider the interval $A=[-2,3]=\{-2,-1,0,1,2,3\}$. Since $0 \Rightarrow 0=$ $\max \left(0^{*}, 0\right)=\max (3,0)=3$ and $a \Rightarrow b=\min (a, b)$ if $a<0$ or $b<0$, we arrive at tha following partial table for \Rightarrow :

\Rightarrow	-2	-1	0	1	2	3
-2	-2	-2	-2	-2	-2	-2
-1	-2	-1	-1	-1	-1	-1
0	-2	-1	3	$?$	$?$	$?$
1	-2	-1	$?$	$?$	$?$	$?$
2	-2	-1	$?$	$?$	$?$	$?$
3	-2	-1	$?$	$?$	$?$	$?$

Next, we determine the operations p and $*$:

x	x^{*}
0	3
1	$p\left(p(1)^{*}\right)=p\left(0^{*}\right)=p(3)=2$
2	$p\left(p(2)^{*}\right)=p\left(1^{*}\right)=p(2)=1$
3	$p\left(p(3)^{*}\right)=p\left(2^{*}\right)=p(1)=0$

x	$x \Rightarrow 0$
1	$\max \left(1^{*}, 0\right)=\max (2,0)=2$
2	$\max \left(2^{*}, 0\right)=\max (1,0)=1$
3	$\max \left(3^{*}, 0\right)=\max (0,0)=0$

Hence the table for \Rightarrow becomes:

\Rightarrow	-2	-1	0	1	2	3
-2	-2	-2	-2	-2	-2	-2
-1	-2	-1	-1	-1	-1	-1
0	-2	-1	3	$?$	$?$	$?$
1	-2	-1	2	$?$	$?$	$?$
2	-2	-1	1	$?$	$?$	$?$
3	-2	-1	0	$?$	$?$	$?$

Observe that $0 \Rightarrow 1=\max \left(0^{*}, 1\right)=\max (3,1)=3,1 \Rightarrow 1=\max \left(1^{*}, 1\right)=\max (2,1)=2$, $2 \Rightarrow 1=\max \left(2^{*}, 1\right)=\max (1,1)=1$ and $3 \Rightarrow 1=\max \left(3^{*}, 1\right)=\max (0,1)=1$. Then we get

\Rightarrow	-2	-1	0	1	2	3
-2	-2	-2	-2	-2	-2	-2
-1	-2	-1	-1	-1	-1	-1
0	-2	-1	3	3	$?$	$?$
1	-2	-1	2	2	$?$	$?$
2	-2	-1	1	1	$?$	$?$
3	-2	-1	0	1	$?$	$?$

Iterating this process we obtain the following complete table for \Rightarrow :

\Rightarrow	-2	-1	0	1	2	3
-2	-2	-2	-2	-2	-2	-2
-1	-2	-1	-1	-1	-1	-1
0	-2	-1	3	3	3	3
1	-2	-1	2	2	2	3
2	-2	-1	1	1	2	3
3	-2	-1	0	1	2	3

Thus we have constructed the algebra $[-\mathbf{n}, \mathbf{m}]$. Observe that $-2 \sqsubset-1 \sqsubset 0 \sqsubset 1 \sqsubset 2 \sqsubset 3$ and $x^{\prime \prime}=x^{* *}=x$. Also, it is routine to verify $[-\mathbf{n}, \mathbf{m}] \in \mathbf{I}_{\mathbf{2}, \mathbf{0}}$. Hence it is an $\mathbf{I}_{2,0}$-chain.

Returning to the general method, we now aim to prove that $[-\mathbf{n} ; \mathbf{m}]$ is an $\mathbf{I}_{2,0}$-chain. To prove this, we will need the following lemmas.

Lemma 4.3 If $x \in[-\mathbf{n}, \mathbf{m}]$ and $0 \leq x \leq m$ then $x^{*}=m-x$ and, consequently, $x^{*} \in[0, m]$.
Proof We prove this lemma by induction on the element x. Assume that $x=0$. Then $0^{*}=m=m-0$.

Next, suppose $x>0$. Since $-n \leq 0<x$, we have $p(x)=x-1$. Hence, by inductive hypothesis, we have
(4.1) $p(x)^{*}=m-p(x)=m-(x-1)=m-x+1$.

From $x>0$, we can conclude that $m-x+1 \leq m$. Also, since $x \leq m$, we obtain $0 \leq m-x$, thus $-n-1<0 \leq m-x$, implying $m-x+1>-n$. Then we get $p(m-x+1)=m-x+1-1$. By (4.1), $x^{*}=p\left((p(x))^{*}\right)=p(m-x+1)=m-x$, completing the induction. It is clear that $x^{*} \in[0, m]$.

Corollary 4.4 If $x \in[-\mathbf{n}, \mathbf{m}]$ then $x^{\prime}=x^{*}$.
Proof If $x<0$ we have that $x^{\prime}=x \Rightarrow 0=\min (x, 0)=x=x^{*}$. If $x>0$, then by Lemma 4.3, $x^{*} \geq 0$, and hence $x^{\prime}=x \Rightarrow 0=\max \left(x^{*}, 0\right)=x^{*}$.

Lemma 4.5 If $x \in[-\mathbf{n}, \mathbf{m}]$ then $x^{\prime \prime}=x$.
Proof We consider the following cases:

- If $x<0$, then $x^{*}=x$, and hence $x^{* *}=x$.
- If $x \geq 0$,

$$
\begin{array}{rlrl}
x^{* *} & =(m-x)^{*} & & \text { by Lemma 4.3 since } 0<x \leq m \\
& =m-(m-x) & \text { by Lemma 4.3 since } 0 \leq m-x \leq m \\
& =x
\end{array}
$$

Consequently, by Corollary 4.4, $x^{\prime \prime}=x$.
Lemma 4.6 If $x, y \in[-\mathbf{n}, \mathbf{m}]$ and $0 \leq x \leq y$ then $x^{*} \geq y^{*}$.
Proof We prove this lemma by induction on the element x. If $x=0, x^{*}=0^{*}=m \geq y^{*}$ by Lemma 4.3 .

Now assume that $x>0$. Since $0<x \leq y$, we have that $x^{*}=p\left(p(x)^{*}\right)$ and $y^{*}=p\left(p(y)^{*}\right)$. Note that $0 \leq p(x) \leq p(y)$. Then, by induction hypothesis, we get $p(y)^{*} \leq p(x)^{*}$. Hence $x^{*}=p\left(p(x)^{*}\right) \geq p\left(p(y)^{*}\right)=y^{*}$.

Lemma 4.7 Let $k \in \mathbb{N}$. Let $m, n \in \omega$ be such that the interval $[-n, m] \subseteq \mathbb{Z}$ with $|[-n, m]|=k$ and $0 \leq n, m \leq k-1$. Then, $[-\mathbf{n}, \mathbf{m}] \in \mathbf{I}_{2,0}$.

Proof The proof that $\langle[-n ; m] ; \Rightarrow, 0\rangle$ satisfies the identity (I) is long and computational, but routine. Hence we leave the verification to the reader with the recommendation that the following cases be considered, where $i, j, k \in[-n ; m]$:
(1) $i, j, k \geq 0, i^{*} \geq j, i \geq k$
(7) $i \geq 0, j<0$ and $k \geq 0$
(2) $i, j, k \geq 0, i^{*} \geq j, i<k$
(8) $i \geq 0, j<0$ and $k<0$
(3) $i, j, k \geq 0, i^{*}<j, k \geq i$
(9) $i<0, j \geq 0$ and $k \geq 0$
(4) $i, j, k \geq 0, i^{*}<j, k<i, j^{*} \leq k$
(10) $i<0, j \geq 0$ and $k<0$
(5) $i, j, k \geq 0, i^{*}<j, k<i, j^{*}>k$
(11) $i<0, j<0$ and $k \geq 0$
(6) $i, j \geq 0$ and $k<0$
(12) $i, j, k<0$.

Observe that, if $x \in[-n, m]$, then, from Corollary 4.4, we have $x^{\prime}=x^{*}$, and from Lemma 4.5 we have that $x^{\prime \prime}=x$; and in particular $0^{\prime \prime}=0$. Thus, we conclude that $\langle[-n, m] ; \Rightarrow, 0\rangle \in \mathbf{I}_{2,0}$.

In view of the above lemma and Theorem 3.8, the relation defined by

$$
x \sqsubseteq y \quad \text { if and only if } \quad\left(x \Rightarrow y^{\prime}\right)^{\prime}=x
$$

is a partial order on $[-\mathbf{n}, \mathbf{m}]$. We now wish to show that \sqsubseteq is indeed a total order.
Lemma 4.8 Let $[-\mathbf{n}, \mathbf{m}]$ be the algebra, as defined in Definition 4.2. Then

$$
\langle[-n, m] ; \sqsubseteq\rangle \cong\langle[-n, m] ; \leq\rangle .
$$

Proof Let $x, y \in[-n, m]$. It is enough to prove that $x \leq y$ if and only if $x \sqsubseteq y$.
Assume that $x \leq y$. We will consider the following cases:

- Case 1: $x<0$. Then
(4.2) $\left(x \Rightarrow y^{\prime}\right)^{\prime}=\left(x \Rightarrow y^{*}\right)^{*}=\left[\min \left(x, y^{*}\right)\right]^{*}$.

We consider further the following subcases:

- Case 1.1: $y<0$.

$$
\begin{aligned}
\left(x \Rightarrow y^{\prime}\right)^{\prime} & =\left[\min \left(x, y^{*}\right)\right]^{*} & & \text { by (4.2) } \\
& =[\min (x, y)]^{*} & & \text { since } y<0 \\
& =x^{*} & & \text { since } x \leq y \\
& =x . & & \text { since } x<0
\end{aligned}
$$

- Case 1.2: $y \geq 0$.

$$
\begin{aligned}
\left(x \Rightarrow y^{\prime}\right)^{\prime} & =\left[\min \left(x, y^{*}\right)\right]^{*} & & \text { by (4.2) } \\
& =x^{*} & & \text { since } y^{*} \geq 0 \text { by Lemma 4.3, and } x<0 \\
& =x . & &
\end{aligned}
$$

- Case 2: $x \geq 0$. Therefore $y \geq 0$. In this case

$$
\begin{array}{rlr}
\left(x \Rightarrow y^{\prime}\right)^{\prime} & =\left(x \Rightarrow y^{*}\right)^{*} & \\
& =\left[\max \left(x^{*}, y^{*}\right)\right]^{*} & \\
& =x^{* *} & \text { by Lemma 4.6 } \\
& =x &
\end{array}
$$

Thus, in all these cases, $x \sqsubseteq y$.

For the converse, suppose $x \sqsubseteq y$.

- Case 1: $x<0$. If $y \geq 0$ then $x<y$. So, we can assume $y<0$. Then

$$
\begin{aligned}
x & =x^{\prime} & & \text { since } x<0 \\
& =\left(x \Rightarrow y^{\prime}\right)^{\prime \prime} & & \text { by hypothesis } \\
& =x \Rightarrow y^{\prime} & & \text { by Lemma 4.5 } \\
& =x \Rightarrow y & & \\
& =\min (x, y) . & &
\end{aligned}
$$

Hence $x \leq y$.

- Case 2: $x \geq 0$. Suppose $y<0$. Then

$$
\begin{aligned}
x & =\left(x \Rightarrow y^{\prime}\right)^{\prime} \quad \text { by hypothesis } \\
& =(x \Rightarrow y)^{\prime} \\
& =\min (x, y)^{\prime} \\
& =y^{\prime} \\
& =y,
\end{aligned}
$$

a contradiction. Hence $y \geq 0$. Consequently,

$$
\begin{aligned}
x^{\prime} & =\left(x \Rightarrow y^{\prime}\right)^{\prime \prime} \\
& =x \Rightarrow y^{\prime} \quad \text { by Lemma } 4.5 \\
& =\max \left(x^{\prime}, y^{\prime}\right),
\end{aligned}
$$

so, $x^{\prime} \geq y^{\prime}$. Then, by Lemma 4.5 and Lemma 4.6, $x=x^{\prime \prime} \leq y^{\prime \prime}=y$.

In view of Lemma 4.7 and Lemma 4.8, we have proved the following
Theorem $4.9[-\mathbf{n}, \mathbf{m}]$ is an $\mathbf{I}_{\mathbf{2}, \mathbf{0}}$-chain, where

$$
-n \sqsubset-n+1 \sqsubset \ldots \sqsubset-1 \sqsubset 0 \sqsubset 1 \sqsubset 2 \sqsubset \ldots \sqsubset m .
$$

5 Characterization of finite $\mathbf{I}_{2,0}$-chains

In this section we are going to prove our second main result. The following lemmas will be useful later in this section.

Lemma 5.1 Let $\mathbf{A} \in \mathbf{I}_{2,0}$. Then 0^{\prime} is the greatest element in A, relative to \sqsubseteq.
Proof Let $a \in A$. Since $\left(a \rightarrow(0 \rightarrow 0)^{\prime}\right)^{\prime}=\left(a \rightarrow 0^{\prime \prime}\right)^{\prime}=(a \rightarrow 0)^{\prime}=a^{\prime \prime}=a$, we have $a \sqsubseteq 0^{\prime}$.
Lemma 5.2 Let $\mathbf{A} \in \mathbf{I}_{2,0}$ and let $a, b \in A$ with $0 \sqsubseteq a \sqsubseteq b$. Then $b^{\prime} \sqsubseteq a^{\prime}$.

Proof

$$
\begin{aligned}
\left(b^{\prime} \rightarrow a^{\prime \prime}\right)^{\prime} & =\left(b^{\prime} \rightarrow a\right)^{\prime} & & \\
& =\left(b^{\prime} \rightarrow\left(a \rightarrow b^{\prime}\right)^{\prime}\right)^{\prime} & & \text { by hypothesis } \\
& =\left(\left(a \rightarrow 0^{\prime}\right) \rightarrow b^{\prime \prime}\right)^{\prime} & & \text { by Lemma 2.6 (26) } \\
& =\left(\left(a \rightarrow 0^{\prime}\right) \rightarrow b\right)^{\prime} & & \\
& =\left(\left(0 \rightarrow a^{\prime}\right) \rightarrow b\right)^{\prime} & & \text { by Lemma 2.5 (囷) } \\
& =\left(\left(0 \rightarrow a^{\prime}\right)^{\prime \prime} \rightarrow b\right)^{\prime} & & \\
& =\left(0^{\prime} \rightarrow b\right)^{\prime} & & \text { by hypothesis } \\
& =b^{\prime} & & \text { by Lemma 2.4 (回). }
\end{aligned}
$$

Lemma 5.3 Let $\mathbf{A} \in \mathbf{I}_{2,0}$ and let $a \in A$. If $0 \sqsubseteq a$ then $0 \rightarrow a=0^{\prime}$.

Proof First notice that, since $0 \sqsubseteq a, 0^{\prime}=\left(0 \rightarrow a^{\prime}\right)^{\prime \prime}=0 \rightarrow a^{\prime}$. Consequently,
(5.1) $0^{\prime}=0 \rightarrow a^{\prime}$.

Then

$$
\begin{aligned}
0^{\prime} & =0^{\prime} \rightarrow 0^{\prime} & & \text { by Lemma (2.4 (a) } \\
& =\left(0 \rightarrow a^{\prime}\right) \rightarrow 0^{\prime} & & \text { by (15.1) } \\
& =\left(0^{\prime} \rightarrow a^{\prime}\right) \rightarrow 0^{\prime} & & \text { by Lemma (2.6 (15) } \\
& =a^{\prime} \rightarrow 0^{\prime} & & \text { by Lemma [2.4 (a) } \\
& =0 \rightarrow a . & & \text { by Lemma (2.5) (a) }
\end{aligned}
$$

Lemma 5.4 Let $\mathbf{A} \in \mathbf{I}_{2,0}$ and let $a, b \in A$. If $0 \sqsubseteq a$ and $0 \sqsubseteq b$ then $0 \sqsubseteq a \rightarrow b$.
Proof

$$
\begin{aligned}
{\left[0 \rightarrow(a \rightarrow b)^{\prime}\right]^{\prime} } & =\left[(a \rightarrow b) \rightarrow 0^{\prime}\right]^{\prime} & & \text { by Lemma } 2.5 \text { (a) } \\
& =(0 \rightarrow a) \rightarrow\left(b \rightarrow 0^{\prime}\right)^{\prime} & & \text { by (I) } \\
& =(0 \rightarrow a) \rightarrow\left(0 \rightarrow b^{\prime}\right)^{\prime} & & \text { by Lemma } 2.5 \text { (a) } \\
& =(0 \rightarrow a) \rightarrow 0 & & \text { since } 0 \sqsubseteq b \\
& =0^{\prime} \rightarrow 0 & & \text { by Lemma } 5.3 \text { since } 0 \sqsubseteq a \\
& =0 . & & \text { by Lemma } 2.4 \text { (aa) }
\end{aligned}
$$

Corollary 5.5 Let $\mathbf{A} \in \mathbf{I}_{2,0}$ and $a \in A$. If $a \sqsupseteq 0$ then $a^{\prime} \sqsupseteq 0$.
Lemma 5.6 Let \mathbf{A} be an $\mathbf{I}_{2,0}$-chain and let $a, b \in A$. Then $a^{\prime} \rightarrow b^{\prime}=b \rightarrow a$.
Proof Since \mathbf{A} is a chain, we can assume that $b^{\prime} \sqsubseteq a$ or $a \sqsubseteq b^{\prime}$.
If $b^{\prime} \sqsubseteq a,\left(b^{\prime} \rightarrow a^{\prime}\right)^{\prime}=b^{\prime}$, then $b^{\prime} \rightarrow a^{\prime}=b$. Hence $b \rightarrow a=\left(b^{\prime} \rightarrow a^{\prime}\right) \rightarrow a=\left[\left(a^{\prime} \rightarrow b^{\prime}\right) \rightarrow\right.$ $\left.\left(a^{\prime} \rightarrow a\right)^{\prime}\right]^{\prime}$, using (I). By Lemma 2.4 (d), $\left[\left(a^{\prime} \rightarrow b^{\prime}\right) \rightarrow\left(a^{\prime} \rightarrow a\right)^{\prime}\right]^{\prime}=\left[\left(a^{\prime} \rightarrow b^{\prime}\right) \rightarrow a^{\prime}\right]^{\prime}=[[(a \rightarrow$ $\left.\left.\left.a^{\prime}\right) \rightarrow\left(b^{\prime} \rightarrow a^{\prime}\right)^{\prime}\right]^{\prime}\right]^{\prime}=\left(a \rightarrow a^{\prime}\right) \rightarrow\left(b^{\prime} \rightarrow a^{\prime}\right)^{\prime}=\left(a^{\prime \prime} \rightarrow a^{\prime}\right) \rightarrow\left(b^{\prime} \rightarrow a^{\prime}\right)^{\prime}=a^{\prime} \rightarrow b^{\prime}$.

If $a \sqsubseteq b^{\prime}$ then we have $a^{\prime}=\left(a \rightarrow b^{\prime \prime}\right)^{\prime \prime}=a \rightarrow b$, and the rest of the argument is similar to the previous case.

Lemma 5.7 Let \mathbf{A} be $a \mathbf{I}_{2,0}$-chain with $|A| \geq 2$ and let $a \in A$ such that $a \sqsubset 0$. Then
(a) $0 \rightarrow a^{\prime}=a^{\prime}$
(b) $0 \rightarrow a=a$
(c) $(a \rightarrow a) \rightarrow a=a \rightarrow a$
(d) $a \rightarrow a=a^{\prime}$
(e) $a \rightarrow a=a$
(f) $a=a^{\prime}$.

Proof

(a) Since $a \sqsubseteq 0$, we have that $a=\left(a \rightarrow 0^{\prime}\right)^{\prime}$. Therefore, $a^{\prime}=\left(a \rightarrow 0^{\prime}\right)^{\prime \prime}=a \rightarrow 0^{\prime}=0 \rightarrow a^{\prime}$ by Lemma (2.5 (b).
(b) Since $a \sqsubseteq 0$, we have
(5.2) $a=\left(a \rightarrow 0^{\prime}\right)^{\prime}$.

Then we get

$$
\begin{aligned}
(0 \rightarrow a) \rightarrow 0^{\prime} & =\left[(0 \rightarrow 0) \rightarrow\left(a \rightarrow 0^{\prime}\right)^{\prime}\right]^{\prime} & & \text { by (I) } \\
& =[(0 \rightarrow 0) \rightarrow a]^{\prime} & & \text { by (5.2) } \\
& =\left[0^{\prime} \rightarrow a\right]^{\prime} & & \\
& =a^{\prime} & & \text { by lemma [2.4 ((a)) }
\end{aligned}
$$

Using Lemma (2.5 (b), we obtain
(5.3) $a^{\prime}=0 \rightarrow(0 \rightarrow a)^{\prime}$.

Since \mathbf{A} is a chain, $0 \sqsubseteq 0 \rightarrow a$ or $0 \rightarrow a \sqsubseteq 0$. Suppose that $0 \sqsubseteq 0 \rightarrow a$. Then $\left(0 \rightarrow(0 \rightarrow a)^{\prime}\right)^{\prime}=0$ Therefore, by (5.3), $a=a^{\prime \prime}=\left(0 \rightarrow(0 \rightarrow a)^{\prime}\right)^{\prime}=0$, a contradiction, since $a \neq 0$. Consequently, $0 \rightarrow a \sqsubseteq 0$. Hence, we have

$$
\begin{aligned}
0 \rightarrow a & =\left((0 \rightarrow a) \rightarrow 0^{\prime}\right)^{\prime} & & \text { since } 0 \rightarrow a \sqsubseteq 0 \\
& \left.=\left(0 \rightarrow(0 \rightarrow a)^{\prime}\right)^{\prime}\right)^{\prime} & & \text { by lemma (2.5) (b) } \\
& =a^{\prime \prime} & & \text { by (5.3) } \\
& =a . & &
\end{aligned}
$$

(c)

$$
\begin{aligned}
a \rightarrow a & =(0 \rightarrow a) \rightarrow a & & \text { by item (b) } \\
& =\left(a^{\prime} \rightarrow 0^{\prime}\right) \rightarrow a & & \text { by lemma [2.5) (a) } \\
& =\left[\left(a^{\prime} \rightarrow a^{\prime}\right) \rightarrow\left(0^{\prime} \rightarrow a\right)^{\prime}\right]^{\prime} & & \text { by (I) } \\
& =\left[(a \rightarrow a) \rightarrow\left(0^{\prime} \rightarrow a\right)^{\prime}\right]^{\prime} & & \text { by Lemma [5.6] } \\
& =\left[(a \rightarrow a) \rightarrow a^{\prime}\right]^{\prime} & & \text { by lemma [2.5) (a) } \\
& =\left[\left[\left(a^{\prime \prime} \rightarrow a\right) \rightarrow\left(a \rightarrow a^{\prime}\right)^{\prime}\right]^{\prime}\right]^{\prime} & & \text { by (I) } \\
& =(a \rightarrow a) \rightarrow\left(a \rightarrow a^{\prime}\right)^{\prime} & & \\
& =(a \rightarrow a) \rightarrow\left(a^{\prime \prime} \rightarrow a^{\prime}\right)^{\prime} & & \\
& =(a \rightarrow a) \rightarrow a^{\prime \prime} & & \text { by lemma [2.5 (d) (d) } \\
& =(a \rightarrow a) \rightarrow a . & &
\end{aligned}
$$

(d) Since \mathbf{A} is a chain, $0 \rightarrow a^{\prime} \sqsubseteq a$ or $a \sqsubseteq 0 \rightarrow a^{\prime}$.

First, we assume that $0 \rightarrow a^{\prime} \sqsubseteq a$. Then

$$
\begin{aligned}
a \rightarrow a & =(a \rightarrow a) \rightarrow a & & \text { by (ㄷ) } \\
& =\left(a^{\prime} \rightarrow a^{\prime}\right) \rightarrow a & & \text { by Lemma [5.6 } \\
& =a^{\prime} \rightarrow\left(a^{\prime} \rightarrow a^{\prime}\right)^{\prime} & & \text { by Lemma [5.6 } \\
& =(a \rightarrow 0) \rightarrow\left(a^{\prime} \rightarrow a^{\prime}\right)^{\prime} & & \\
& =\left[(a \rightarrow 0) \rightarrow\left(a^{\prime} \rightarrow a^{\prime}\right)^{\prime}\right]^{\prime \prime} & & \\
& =\left[\left(0 \rightarrow a^{\prime}\right) \rightarrow a^{\prime}\right]^{\prime} & & \text { using (I) } \\
& =0 \rightarrow a^{\prime} & & \text { since } 0 \rightarrow a^{\prime} \sqsubseteq a \\
& =a^{\prime} & & \text { using (囯). }
\end{aligned}
$$

Next, we assume $a \sqsubseteq 0 \rightarrow a^{\prime}$, i.e., $\left(a \rightarrow\left(0 \rightarrow a^{\prime}\right)^{\prime}\right)^{\prime}=a$. Then, from (囵), we have $a \rightarrow a=\left(a \rightarrow a^{\prime \prime}\right)^{\prime \prime}=\left[\left(a \rightarrow\left(0 \rightarrow a^{\prime}\right)^{\prime}\right)^{\prime}\right]^{\prime}=a^{\prime}$.
(四) Using the items (ㄷ), (d) and Lemma 2.5 (d), we have $a \rightarrow a=(a \rightarrow a) \rightarrow a=a^{\prime} \rightarrow a=a$.
(fi) This follows immediately from the two preceding items.

Lemma 5.8 Let \mathbf{A} be an $\mathbf{I}_{2,0}$-chain with $|A| \geq 2$, and let $a, b \in A$. If $0 \sqsubseteq a$ and $b \sqsubset 0$ then $b \rightarrow a=b$ and $a \rightarrow b=b$.

Proof Since $0 \sqsubseteq a$ and $b \sqsubset 0$, we have that $\left(0 \rightarrow a^{\prime}\right)^{\prime}=0$ and $\left(b \rightarrow 0^{\prime}\right)^{\prime}=b$. Therefore, using Lemma 5.6, $b=b^{\prime \prime}=b^{\prime} \rightarrow 0=\left(b \rightarrow 0^{\prime}\right)^{\prime \prime} \rightarrow\left(0 \rightarrow a^{\prime}\right)^{\prime}=\left(b \rightarrow 0^{\prime}\right) \rightarrow\left(0 \rightarrow a^{\prime}\right)^{\prime}=\left(0 \rightarrow b^{\prime}\right) \rightarrow$ $\left(a \rightarrow 0^{\prime}\right)^{\prime}=\left[\left(b^{\prime} \rightarrow a\right) \rightarrow 0^{\prime}\right]^{\prime}$. Hence,
(5.4) $b=\left[\left(b^{\prime} \rightarrow a\right) \rightarrow 0^{\prime}\right]^{\prime}$.

From the hypothesis and Lemma 5.7 (If), we have
(5.5) $b^{\prime}=b$.

Suppose that $0 \sqsubseteq b^{\prime} \rightarrow a$. Then $0=\left[0 \rightarrow\left(b^{\prime} \rightarrow a\right)^{\prime}\right]^{\prime}=\left[\left(b^{\prime} \rightarrow a\right) \rightarrow 0^{\prime}\right]^{\prime}$ by Lemma 5.6, implying $0=b$, which is a contradiction in view of (5.4). Consequently, $b^{\prime} \rightarrow a \sqsubseteq 0$, since \mathbf{A} is a chain. Hence,
(5.6) $b^{\prime} \rightarrow a=\left[\left(b^{\prime} \rightarrow a\right) \rightarrow 0^{\prime}\right]^{\prime}$.

From (5.4), (5.5) and (5.6) we conclude $b=b \rightarrow a$, proving the first half of the conclusion of the lemma. From

$$
\begin{aligned}
b & =\left(b \rightarrow a^{\prime}\right)^{\prime} & & \text { since } b \sqsubseteq a, \text { as } 0 \sqsubseteq a \text { and } b \sqsubset 0 \\
& =\left(a^{\prime \prime} \rightarrow b^{\prime}\right)^{\prime} & & \text { by Lemma } 5.6 \\
& =\left(a \rightarrow b^{\prime}\right)^{\prime} & & \\
& =(a \rightarrow b)^{\prime} & & \text { by (5.5) }
\end{aligned}
$$

we conclude that $a \rightarrow b=b^{\prime}=b$ in view of (5.5), completing the second half.
Definition 5.9 Let $\mathbf{A}=\langle A ; \rightarrow, 0\rangle$ be a finite $\mathbf{I}_{2,0}$ chain. We let $A^{+}:=\{a \in A: a \sqsupset 0\}$ and $A^{-}:=\{a \in A: a \sqsubset 0\}$. Observe that $A=A^{+} \cup\{0\} \cup A^{-}$. Henceforth, without loss of generality, we will represent $A=[-n, m]$ with $0 \leq n, m \leq|A|-1$, such that

$$
-n \sqsubset-n+1 \sqsubset \ldots \sqsubset-1 \sqsubset 0 \sqsubset 1 \sqsubset 2 \sqsubset \ldots \sqsubset m .
$$

Remark 5.10 In view of the above definition, we can use the functions * and p of Definition 4.2 as functions on the domain $[-n, m]$ of \mathbf{A} as well.

Now, we wish to prove that $\langle A ; \rightarrow, 0\rangle=\langle[-n ; m] ; \Rightarrow, 0\rangle$. To achieve this, we need the following lemmas.

Lemma 5.11 Let $\mathbf{A}=\langle A ; \rightarrow, 0\rangle$ be a finite $\mathbf{I}_{2,0}$-chain with $|A| \geq 2$. If $a \sqsupset 0$ then $a^{\prime}=p\left(p(a)^{\prime}\right)$.
Proof By hypothesis we have that $a \sqsupset 0$. Then $p(a) \sqsupseteq 0$. Hence $0 \sqsubseteq p(a) \sqsubset a$. Then, by Lemma 5.2.
(5.7) $a^{\prime} \sqsubseteq p(a)^{\prime}$.

Since $a \sqsupset 0$, by Corollary [5.5, $a^{\prime} \sqsupseteq 0$. Therefore, by (5.7),
(5.8) $0 \sqsubseteq p(a)^{\prime}$.

If $a^{\prime}=p(a)^{\prime}$ then $a=p(a)$ and, consequently, $a=-n$, a contradiction, so $a^{\prime} \sqsubset p(a)^{\prime}$, and hence, $0 \sqsubseteq a^{\prime} \sqsubseteq p\left(p(a)^{\prime}\right) \sqsubset p(a)^{\prime}$. By lemma 5.2, $a \sqsupseteq\left[p\left(p(a)^{\prime}\right)\right]^{\prime} \sqsupseteq p(a)$. Thus
(5.9) $\left[p\left(p(a)^{\prime}\right)\right]^{\prime} \in\{a, p(a)\}$.

If $\left[p\left(p(a)^{\prime}\right)\right]^{\prime}=p(a)$, we have that $p\left(p(a)^{\prime}\right)=\left[p\left(p(a)^{\prime}\right)\right]^{\prime \prime}=p(a)^{\prime}$, a contradiction, since $p(a)^{\prime} \sqsupseteq 0$ by (5.8). Therefore $\left[p\left(p(a)^{\prime}\right)\right]^{\prime}=a$ and therefore, $p\left(p(a)^{\prime}\right)=a^{\prime}$.

Lemma 5.12 Let $\mathbf{A}=\langle A ; \rightarrow, 0\rangle$ be a finite $\mathbf{I}_{2,0}$-chain. If $a \in A$ then $a^{*}=a^{\prime}$.
Proof The statement $0^{\prime}=m=0^{*}$ follows from Lemma 5.1. If $a \sqsubset 0$ then $a^{\prime}=a$ by Lemma 5.7 (II), and $a=a^{*}$ by definition, implying $a=a^{*}$.

Now assume that $a \sqsupset 0$. We will verify that $a^{\prime}=a^{*}$ by induction on a. If $a=1$, then, as $0^{\prime}=0^{*}$, we have, by Lemma 5.11, that $1^{\prime}=p\left(p(1)^{\prime}\right)=p\left(0^{\prime}\right)=p\left(0^{*}\right)=p\left(p(1)^{*}\right)=1^{*}$. The inductive hypothesis is that $p(a)^{\prime}=p(a)^{*}$. Hence, we have, by Lemma 5.11, $a^{\prime}=p\left(p(a)^{\prime}\right)=$ $p\left(p(a)^{*}\right)=a^{*}$.

The following theorem shows that the general method described in Definition 4.2 essentially gives all finite $\mathbf{I}_{2,0}$-chains.

Theorem 5.13 Let \mathbf{A} be a finite $\mathbf{I}_{2,0}$-chain. Then $\mathbf{A} \cong\langle[-n, m] ; \Rightarrow, 0\rangle$ for some $0 \leq n, m \leq$ $|A|-1$.

Proof We will use the notation of Definition 5.9, Let $i, j \in A$. From Lemma 5.12, $i^{\prime}=i^{*}$ and $j^{\prime}=j^{*}$. It suffices to verify that

$$
i \rightarrow j= \begin{cases}\max \left(i^{\prime}, j\right) & \text { if } i, j \sqsupseteq 0 \\ \min (i, j) & \text { otherwise }\end{cases}
$$

with $0^{\prime}=m$. We consider the following cases:

- Case 1: $j>0$.

We need the following subcases:

- Case 1.1: $i>0$.

We make the following further subcases:

* Case 1.1.1: $i^{\prime} \geq j$.

Since $i^{\prime} \sqsupseteq j$, we observe that
(5.10) $\left(j \rightarrow i^{\prime \prime}\right)^{\prime}=j$.

Hence

$$
\begin{aligned}
i \rightarrow j & =i \rightarrow\left(j \rightarrow i^{\prime \prime}\right)^{\prime} & & \text { by (5.10) } \\
& =i \rightarrow(j \rightarrow i)^{\prime} & & \\
& =[(i \rightarrow j) \rightarrow i]^{\prime} & & \text { by Lemma [2.6 (4) (4) } \\
& =[(0 \rightarrow j) \rightarrow i]^{\prime} & & \text { by Lemma } 2.6 \text { (55) } \\
& =\left[0^{\prime} \rightarrow i\right]^{\prime} & & \text { by Lemma [5.3) since } j \sqsupseteq 0 \\
& =i^{\prime} & & \text { by Lemma } 2.4 \text { (四) } \\
& =\max \left(i^{\prime}, j\right) & & \text { since } i^{\prime} \sqsupseteq j
\end{aligned}
$$

* Case 1.1.2: $i^{\prime}<j$.

Since $i^{\prime} \sqsubseteq j$, we have
(5.11) $\left(i^{\prime} \rightarrow j^{\prime}\right)^{\prime}=i^{\prime}$.

Therefore,

$$
\begin{aligned}
i \rightarrow j & =i^{\prime \prime} \rightarrow j & & \\
& =\left(i^{\prime} \rightarrow j^{\prime}\right)^{\prime \prime} \rightarrow j & & \text { by (5.11) } \\
& =\left(i^{\prime} \rightarrow j^{\prime}\right) \rightarrow j & & \\
& =\left(i^{\prime} \rightarrow 0^{\prime}\right) \rightarrow j & & \text { by Lemma (2.6 (1) } \\
& =(0 \rightarrow i) \rightarrow j & & \text { by Lemma 2.5 (目) } \\
& =0^{\prime} \rightarrow j & & \text { by Lemma } 5.3 \text { since } i \sqsupseteq 0 \\
& =j & & \text { by Lemma 2.4 (目) } \\
& =\max \left(i^{\prime}, j\right) & & \text { since } i^{\prime} \sqsubseteq j
\end{aligned}
$$

- Case 1.2: $i=0$.

Using Lemma 5.3 and Lemma 5.1, $0 \rightarrow j=0^{\prime}=\max \left(0^{\prime}, j\right)$.

- Case 1.3: $i<0$.

$$
\begin{aligned}
i \rightarrow j & =(0 \rightarrow i) \rightarrow j & & \text { by Lemma [5.7 (B) (B) } \\
& =\left(i^{\prime} \rightarrow 0^{\prime}\right) \rightarrow j & & \\
& =\left(i \rightarrow 0^{\prime}\right) \rightarrow j & & \text { by Lemma [5.7 (II) } \\
& =\left[\left(j^{\prime} \rightarrow i\right) \rightarrow\left(0^{\prime} \rightarrow j\right)^{\prime}\right]^{\prime} & & \text { by (I) } \\
& =\left[\left(j^{\prime} \rightarrow i\right) \rightarrow j^{\prime}\right]^{\prime} & & \\
& =\left[(0 \rightarrow i) \rightarrow j^{\prime}\right]^{\prime} & & \text { by Lemma (2.6 (5) (5) } \\
& =\left(i \rightarrow j^{\prime}\right)^{\prime} & & \text { by Lemma [5.7 (B) } \\
& =i & & \text { since } i \sqsubset j \\
& =\min (i, j) & &
\end{aligned}
$$

- Case 2: $j<0$.

It is useful to consider the following subcases:

- Case 2.1: $i>0$

$$
\begin{aligned}
i \rightarrow j & =i \rightarrow j^{\prime} & & \text { by Lemma 5.7 (If) } \\
& =i \rightarrow\left(j \rightarrow i^{\prime}\right)^{\prime \prime} & & \text { since } j \sqsubset i \\
& =i \rightarrow\left(j \rightarrow i^{\prime}\right) & & \\
& =j \rightarrow i^{\prime} & & \text { by Lemma (2.6 (17) } \\
& =\left(j \rightarrow i^{\prime}\right)^{\prime \prime} & & \\
& =j^{\prime} & & \text { since } j \sqsubset i \\
& =j & & \text { by Lemma } 5.7 \text { (II) } \\
& =\min (i, j) & &
\end{aligned}
$$

- Case 2.2: $i=0$.

$$
\begin{aligned}
i \rightarrow j & =0 \rightarrow j \\
& =j \quad \text { by Lemma 5.7 (b) } \\
& =\min (i, j)
\end{aligned}
$$

- Case 2.3: $i<0$.
* Case 2.3.1: $i \leq j$.

As $i \sqsubseteq j$, we have
(5.12) $\left(i \rightarrow j^{\prime}\right)^{\prime}=i$.

Observe

$$
\begin{aligned}
i \rightarrow j & =i \rightarrow j^{\prime} & & \text { by Lemma 5.7 (£) } \\
& =\left(i \rightarrow j^{\prime}\right)^{\prime \prime} & & \\
& =i^{\prime} & & \text { by (5.12) } \\
& =i & & \text { by Lemma } 5.7(\mathbb{(1)}) \\
& =\min (i, j) . & &
\end{aligned}
$$

* Case 2.3.2: $i>j$. We have
(5.13) $\left(j \rightarrow i^{\prime}\right)^{\prime}=j$.
as $j \sqsubseteq i$. Hence

$$
\begin{aligned}
i \rightarrow j & =j^{\prime} \rightarrow i^{\prime} & & \text { by Lemma 5.6 } \\
& =j \rightarrow i^{\prime} & & \text { by Lemma 5.7 (If) } \\
& =\left(j \rightarrow i^{\prime}\right)^{\prime \prime} & & \\
& =j^{\prime} & & \text { by (5.13) } \\
& =j & & \text { by Lemma } 5.7 \text { (If) } \\
& =\min (j, i) & &
\end{aligned}
$$

- Case 3: $j=0$.
- Case 3.1: $i \geq 0$.

By Corollary 5.5, as $i \sqsupseteq 0$, we have that $i^{\prime}=i \rightarrow 0 \sqsupseteq 0$. Hence $i \rightarrow 0=i^{\prime}=$ $\max \left(i^{\prime}, 0\right)$.

- Case 3.2: $i<0$. We have that

$$
\begin{array}{rlr}
i \rightarrow j & =i \rightarrow 0 & \\
& =i^{\prime} & \\
& =i & \text { by Lemma } 5.7 \text { (田) } \\
& =\min (i, j) &
\end{array}
$$

Hence $\mathbf{A} \cong\langle[-n ; m] ; \Rightarrow, 0\rangle$.
The following theorem, our second main result, is now immediate from the preceding results.

Theorem 5.14 There are n non-isomorphic $I_{2,0}$-chains of size n, for $n \in \mathbb{N}$.

A Appendix: Proofs

We would like to mention here that the identity: $x^{\prime \prime} \approx x$ is used in these proofs frequently without explicit mention.

Proof of Lemma 2.6. Items (1) to (17) are proved in (3). The proofs of (18) to (26) are given in [5]. Let $a, b, c, d \in A$.
（27）

$$
\begin{array}{rll}
(b \rightarrow c) \rightarrow a & =[(b \rightarrow c) \rightarrow a]^{\prime} \rightarrow[(b \rightarrow c) \rightarrow a] & \text { by Lemmana.2.4 (d) } \\
& =\left[\left(a^{\prime} \rightarrow b\right) \rightarrow(c \rightarrow a)^{\prime}\right]^{\prime \prime} \rightarrow[(b \rightarrow c) \rightarrow a] & \text { from (I) } \\
& =\left[\left(a^{\prime} \rightarrow b\right) \rightarrow(c \rightarrow a)^{\prime}\right] \rightarrow[(b \rightarrow c) \rightarrow a] &
\end{array}
$$

（28）

$$
\begin{aligned}
& {\left[\left[0 \rightarrow(a \rightarrow b)^{\prime}\right] \rightarrow\left(0 \rightarrow b^{\prime}\right)^{\prime}\right]^{\prime}=\left[\left\{0 \rightarrow(a \rightarrow b)^{\prime}\right\} \rightarrow\left(b \rightarrow 0^{\prime}\right)^{\prime}\right]^{\prime} \text { by Lemma [2.5 (a) }} \\
& =\left[(a \rightarrow b)^{\prime} \rightarrow b\right] \rightarrow 0^{\prime} \quad \text { by (I) } \\
& =0 \rightarrow\left[(a \rightarrow b)^{\prime} \rightarrow b\right]^{\prime} \quad \text { by Lemma [2.5 (a) } \\
& =(a \rightarrow b) \rightarrow\left(0 \rightarrow b^{\prime}\right) \quad \text { by (10) } \\
& =0 \rightarrow\left[(a \rightarrow b) \rightarrow b^{\prime}\right] \quad \text { by (13) } \\
& =0 \rightarrow\left[\left(a \rightarrow 0^{\prime}\right) \rightarrow b^{\prime}\right] \quad \text { by (1) } \\
& =\left(a \rightarrow 0^{\prime}\right) \rightarrow\left(0 \rightarrow b^{\prime}\right) \quad \text { by (13) } \\
& =\left(0 \rightarrow a^{\prime}\right) \rightarrow\left(0 \rightarrow b^{\prime}\right) \quad \text { by Lemma } 2.5 \text { (回) } \\
& =a^{\prime} \rightarrow\left(0 \rightarrow b^{\prime}\right) \quad \text { by (20) } \\
& =\left[(0 \rightarrow a) \rightarrow\left(0 \rightarrow b^{\prime}\right)^{\prime}\right]^{\prime} \quad \text { by (8) } \\
& =\left[(0 \rightarrow a) \rightarrow\left(b \rightarrow 0^{\prime}\right)^{\prime}\right]^{\prime} \quad \text { by Lemma } 2.5 \text { (a) } \\
& =(a \rightarrow b) \rightarrow 0^{\prime} \quad \text { by (I) } \\
& =0 \rightarrow(a \rightarrow b)^{\prime} \quad \text { by Lemma [2.5 (a) }
\end{aligned}
$$

（29）

$$
\begin{array}{rlrl}
0 \rightarrow[(a \rightarrow b) \rightarrow c] & =0 \rightarrow\left[\left(c^{\prime} \rightarrow a\right) \rightarrow(b \rightarrow c)^{\prime}\right]^{\prime} & & \text { by }(\mathrm{I}) \\
& \sqsubseteq 0 \rightarrow(b \rightarrow c)^{\prime \prime} & & \text { by (28) } \\
& =0 \rightarrow(b \rightarrow c) &
\end{array}
$$

（30）

$$
\begin{aligned}
a^{\prime} \rightarrow\left(b \rightarrow 0^{\prime}\right)^{\prime} & & =(a \rightarrow 0) \rightarrow\left(b \rightarrow 0^{\prime}\right)^{\prime} & \\
& =\left[\left\{\left(b \rightarrow 0^{\prime}\right) \rightarrow a\right\} \rightarrow\left\{0 \rightarrow\left(b \rightarrow 0^{\prime}\right)^{\prime}\right\}^{\prime}\right]^{\prime} & & \text { by (I) } \\
& =\left[\left\{\left(b \rightarrow 0^{\prime}\right) \rightarrow a\right\} \rightarrow\left\{0 \rightarrow\left(0 \rightarrow b^{\prime}\right)^{\prime}\right\}^{\prime}\right]^{\prime} & & \text { by Lemma 2.5 (回) } \\
& =\left[\left\{\left(b \rightarrow 0^{\prime}\right) \rightarrow a\right\} \rightarrow(0 \rightarrow b)^{\prime}\right]^{\prime} & & \text { by (9) } \\
& =\left[\left\{\left(0 \rightarrow b^{\prime}\right) \rightarrow a\right\} \rightarrow(0 \rightarrow b)^{\prime}\right]^{\prime} & & \text { by Lemma 2.5 (回) } \\
& =\left[\left[\left\{0 \rightarrow(0 \rightarrow b)^{\prime}\right\} \rightarrow a\right] \rightarrow(0 \rightarrow b)^{\prime}\right]^{\prime} & & \text { by (9) } \\
& =\left[a \rightarrow(0 \rightarrow b)^{\prime}\right]^{\prime} & & \text { by (18) }
\end{aligned}
$$

（31）

$$
\begin{array}{rll}
{[(0 \rightarrow a) \rightarrow b]^{\prime}} & =[(b \rightarrow a) \rightarrow b]^{\prime} & \text { by (51) } \\
& =\left[b \rightarrow(a \rightarrow b)^{\prime}\right]^{\prime \prime} & \text { by (4) } \\
& =b \rightarrow(a \rightarrow b)^{\prime} &
\end{array}
$$

（32）

$$
\begin{array}{rlrl}
{\left[a \rightarrow\left(b \rightarrow 0^{\prime}\right)^{\prime}\right]^{\prime}} & & =\left[a \rightarrow\left(0 \rightarrow b^{\prime}\right)^{\prime}\right]^{\prime} & \\
\text { by Lemma } 2.5 \text { (园) } \\
& =a^{\prime} \rightarrow\left(b^{\prime} \rightarrow 0^{\prime}\right)^{\prime} & & \text { by (30) } \\
& =a^{\prime} \rightarrow(0 \rightarrow b)^{\prime} & & \text { by Lemma 2.5 (图) }
\end{array}
$$

（33）

$$
\begin{array}{rlrl}
b^{\prime} \rightarrow a^{\prime} & =(b \rightarrow 0) \rightarrow a^{\prime} \\
& =\left[(a \rightarrow b) \rightarrow\left(0 \rightarrow a^{\prime}\right)^{\prime}\right]^{\prime} & & \text { by (I) } \\
& =\left[(a \rightarrow b) \rightarrow\left(a \rightarrow 0^{\prime}\right)^{\prime}\right]^{\prime} & & \text { by Lemma 2.5 (图) } \\
& =(a \rightarrow b)^{\prime} \rightarrow(0 \rightarrow a)^{\prime} & & \text { by (32) with } x=a \rightarrow b, y=a
\end{array}
$$

(34)

$$
\begin{align*}
& (0 \rightarrow a)^{\prime} \rightarrow(0 \rightarrow b)^{\prime}=[(0 \rightarrow a) \rightarrow 0] \rightarrow(0 \rightarrow b)^{\prime} \\
& =\left[\{(0 \rightarrow b) \rightarrow(0 \rightarrow a)\} \rightarrow\left\{0 \rightarrow(0 \rightarrow b)^{\prime}\right\}^{\prime}\right]^{\prime} \\
& \text { by (I) } \\
& =\left[\left\{0 \rightarrow(0 \rightarrow b)^{\prime}\right\} \rightarrow(0 \rightarrow b)\right] \rightarrow\left[(0 \rightarrow a) \rightarrow\left\{0 \rightarrow(0 \rightarrow b)^{\prime}\right\}^{\prime}\right]^{\prime} \\
& \text { by (I) } \\
& =\left[\left\{(0 \rightarrow b) \rightarrow(0 \rightarrow b)^{\prime}\right\} \rightarrow(0 \rightarrow b)\right] \rightarrow\left[(0 \rightarrow a) \rightarrow\left\{0 \rightarrow(0 \rightarrow b)^{\prime}\right\}^{\prime}\right]^{\prime} \\
& \text { by (5) } \\
& =\left[(0 \rightarrow b)^{\prime} \rightarrow(0 \rightarrow b)\right] \rightarrow\left[(0 \rightarrow a) \rightarrow\left\{0 \rightarrow(0 \rightarrow b)^{\prime}\right\}^{\prime}\right]^{\prime} \\
& \text { by Lemma } 2.4 \text { (d) } \\
& =(0 \rightarrow b) \rightarrow\left[(0 \rightarrow a) \rightarrow\left\{0 \rightarrow(0 \rightarrow b)^{\prime}\right\}^{\prime}\right]^{\prime} \\
& \text { by Lemma } 2.4 \text { (d) } \\
& =(0 \rightarrow b) \rightarrow\left[(0 \rightarrow a) \rightarrow\left(0 \rightarrow b^{\prime}\right)^{\prime}\right]^{\prime} \\
& \text { by (9) } \\
& =(0 \rightarrow b) \rightarrow\left[(0 \rightarrow a) \rightarrow\left(b \rightarrow 0^{\prime}\right)^{\prime}\right]^{\prime} \\
& \text { by Lemma } 2.5 \text { (回) } \\
& =(0 \rightarrow b) \rightarrow\left[(a \rightarrow b) \rightarrow 0^{\prime}\right] \\
& =(0 \rightarrow b) \rightarrow\left[0 \rightarrow(a \rightarrow b)^{\prime}\right] \tag{I}\\
& \text { by Lemma } 2.5 \text { (a) } \\
& =0 \rightarrow\left[(0 \rightarrow b) \rightarrow(a \rightarrow b)^{\prime}\right] \\
& \text { by (13) } \\
& =0 \rightarrow(a \rightarrow b)^{\prime} \\
& \text { by (3) } \\
& =(a \rightarrow b) \rightarrow 0^{\prime} \\
& \text { by Lemma } 2.5 \text { (a) } \\
& =\left[(0 \rightarrow a) \rightarrow\left(b \rightarrow 0^{\prime}\right)^{\prime}\right]^{\prime} \\
& \text { by (I) } \\
& =\left[(0 \rightarrow a) \rightarrow\left(0 \rightarrow b^{\prime}\right)^{\prime}\right]^{\prime} \\
& \text { by Lemma } 2.5 \text { (a) } \\
& =\left[a^{\prime} \rightarrow\left(0 \rightarrow b^{\prime}\right)\right]^{\prime \prime} \\
& \text { by (8) } \\
& =a^{\prime} \rightarrow\left(0 \rightarrow b^{\prime}\right) \\
& =0 \rightarrow\left(a^{\prime} \rightarrow b^{\prime}\right) \quad \text { by (13) } \text {. }
\end{align*}
$$

(35)

$$
\begin{array}{rlrl}
{\left[(a \rightarrow b)^{\prime} \rightarrow\left\{b \rightarrow(a \rightarrow b)^{\prime}\right\}^{\prime}\right]^{\prime}} & & =\left[(a \rightarrow b)^{\prime} \rightarrow b\right] \rightarrow(a \rightarrow b)^{\prime} & \\
\text { by (4) (4) } \\
& =(0 \rightarrow b) \rightarrow(a \rightarrow b)^{\prime} & & \text { by (15) } \\
& =(a \rightarrow b)^{\prime} & & \text { by (3) }
\end{array}
$$

(36)

$$
\begin{array}{rlrl}
(0 \rightarrow a) \rightarrow b & & =(b \rightarrow a) \rightarrow b & \\
& & \text { by (51) } \\
& =\left[b \rightarrow(a \rightarrow b)^{\prime}\right]^{\prime} & & \text { by (44) } \\
& \sqsubseteq(a \rightarrow b)^{\prime} \rightarrow\left[b \rightarrow(a \rightarrow b)^{\prime}\right]^{\prime} & & \text { by (35) with } x=b, y=(a \rightarrow b)^{\prime} \\
& =\left[\left\{(a \rightarrow b)^{\prime} \rightarrow b\right\} \rightarrow(a \rightarrow b)^{\prime}\right]^{\prime} & & \text { by (44) } \\
& =\left[(0 \rightarrow b) \rightarrow(a \rightarrow b)^{\prime}\right]^{\prime} & & \text { by (55) } \\
& =(a \rightarrow b)^{\prime \prime} & & \text { by (33) } \\
& =a \rightarrow b & & \text { since } x^{\prime \prime} \approx x
\end{array}
$$

(37)

$$
\begin{aligned}
& {\left[\left\{a \rightarrow(b \rightarrow a)^{\prime}\right\} \rightarrow a^{\prime \prime}\right]^{\prime}=\left[\left\{a \rightarrow(b \rightarrow a)^{\prime}\right\} \rightarrow a\right]^{\prime}} \\
& =\left[\left\{0 \rightarrow(b \rightarrow a)^{\prime}\right\} \rightarrow a\right]^{\prime} \text { by (5) } \\
& =\left[\left\{(b \rightarrow a) \rightarrow 0^{\prime}\right\} \rightarrow a\right]^{\prime} \quad \text { by Lemma [2.5 (a) } \\
& =\left[\left\{(b \rightarrow a) \rightarrow a^{\prime}\right\} \rightarrow a\right]^{\prime} \quad \text { by (1) } \\
& =\left[\left\{\left(b \rightarrow 0^{\prime}\right) \rightarrow a^{\prime}\right\} \rightarrow a\right]^{\prime} \text { by (1) } \\
& =\left[\left\{\left(b \rightarrow 0^{\prime}\right) \rightarrow 0^{\prime}\right\} \rightarrow a\right]^{\prime} \text { by (1) } \\
& =\left[\left\{\left(b \rightarrow 0^{\prime \prime}\right) \rightarrow 0^{\prime}\right\} \rightarrow a\right]^{\prime} \text { by (1) } \\
& =\left[\left\{(b \rightarrow 0) \rightarrow 0^{\prime}\right\} \rightarrow a\right]^{\prime} \\
& =\left[\left(b^{\prime} \rightarrow 0^{\prime}\right) \rightarrow a\right]^{\prime} \\
& =[(0 \rightarrow b) \rightarrow a]^{\prime} \quad \text { by Lemma } 2.5 \text { (a) } \\
& =[(a \rightarrow b) \rightarrow a]^{\prime} \quad \text { by (5) } \\
& =a \rightarrow(b \rightarrow a)^{\prime} \quad \text { by (4) }
\end{aligned}
$$

Proof of Lemma 3.3

(11) Observe that by Lemma 2.5 (a), Lemma 2.6 (11) and the hypothesis we have that $(0 \rightarrow$ $\left.a^{\prime}\right) \rightarrow b=\left(a \rightarrow 0^{\prime}\right) \rightarrow b=\left(a \rightarrow b^{\prime}\right) \rightarrow b=\left(a \rightarrow b^{\prime}\right)^{\prime \prime} \rightarrow b=a^{\prime} \rightarrow b$.
(2)

$$
\begin{aligned}
b \rightarrow a^{\prime} & =\left[\left(0 \rightarrow a^{\prime}\right) \rightarrow b\right] \rightarrow a^{\prime} & & \text { by Lemma (2.6) (18) } \\
& =\left(a^{\prime} \rightarrow b\right) \rightarrow a^{\prime} & & \text { from (11) } \\
& =(0 \rightarrow b) \rightarrow a^{\prime} & & \text { by Lemma (2.6) (5). }
\end{aligned}
$$

(3)

$$
\begin{aligned}
b \rightarrow a^{\prime} & =(0 \rightarrow b) \rightarrow a^{\prime} & & \text { from (2) } \\
& =(0 \rightarrow b) \rightarrow\left(a \rightarrow b^{\prime}\right)^{\prime \prime} & & \text { by hypothesis } \\
& =(0 \rightarrow b) \rightarrow\left(a \rightarrow b^{\prime}\right) & & \\
& =\left(0 \rightarrow b^{\prime \prime}\right) \rightarrow\left(a \rightarrow b^{\prime}\right) & & \text { by Lemma (2.6) (2) } \\
& =a \rightarrow b^{\prime} & & \\
& =\left(a \rightarrow b^{\prime}\right)^{\prime \prime} & & \\
& =a^{\prime} & & \text { by hypothesis }
\end{aligned}
$$

(4)

$$
\begin{aligned}
0 \rightarrow\left(a^{\prime} \rightarrow b\right) & =a^{\prime} \rightarrow(0 \rightarrow b) & & \text { by Lemma (2.6) (13) } \\
& =0 \rightarrow\left(a \rightarrow b^{\prime}\right)^{\prime} & & \text { by Lemma } 2.6 \text { (10) } \\
& =0 \rightarrow a & & \text { by hypothesis }
\end{aligned}
$$

(5) By hypothesis and (I) we have that $(d \rightarrow a) \rightarrow b^{\prime}=\left[(b \rightarrow d) \rightarrow\left(a \rightarrow b^{\prime}\right)^{\prime}\right]^{\prime}=[(b \rightarrow d) \rightarrow$ $a]^{\prime}$.
(6)

$$
\begin{aligned}
{\left[\left\{d \rightarrow\left(0 \rightarrow b^{\prime}\right)\right\} \rightarrow a\right]^{\prime} } & =\left(a^{\prime} \rightarrow d\right) \rightarrow\left[\left(0 \rightarrow b^{\prime}\right) \rightarrow a\right]^{\prime} & & \text { by (I) } \\
& =\left(a^{\prime} \rightarrow d\right) \rightarrow\left[\left(a \rightarrow b^{\prime}\right) \rightarrow a\right]^{\prime} & & \text { by Lemma [2.6 (5) (5) } \\
& =\left(a^{\prime} \rightarrow d\right) \rightarrow\left[\left(a \rightarrow b^{\prime}\right)^{\prime \prime} \rightarrow a\right]^{\prime} & & \\
& =\left(a^{\prime} \rightarrow d\right) \rightarrow\left(a^{\prime} \rightarrow a\right)^{\prime} & & \text { by hypothesis } \\
& =\left(a^{\prime} \rightarrow d\right) \rightarrow a^{\prime} & & \text { by Lemma [2.4 (d) } \\
& =\left(a^{\prime} \rightarrow d\right) \rightarrow\left(0^{\prime} \rightarrow a\right)^{\prime} & & \text { by Lemma [2.4 (a) } \\
& =\left[\left(d \rightarrow 0^{\prime}\right) \rightarrow a\right]^{\prime} & & \text { by (I) } \\
& =(0 \rightarrow d) \rightarrow a^{\prime} & & \text { by Lemma 2.6 (11) (1) }
\end{aligned}
$$

(7)

$$
\begin{aligned}
a \rightarrow\left[\left(a^{\prime} \rightarrow d\right) \rightarrow\left\{(0 \rightarrow a) \rightarrow b^{\prime}\right\}\right]= & a \rightarrow\left[\left(a^{\prime} \rightarrow d\right) \rightarrow\left\{(b \rightarrow 0) \rightarrow\left(a \rightarrow b^{\prime}\right)^{\prime}\right\}^{\prime}\right] \\
& \text { by }(\mathrm{I}) \\
= & a \rightarrow\left[\left(a^{\prime} \rightarrow d\right) \rightarrow\{(b \rightarrow 0) \rightarrow a\}^{\prime}\right] \\
& \text { by hypothesis } \\
= & a \rightarrow[\{d \rightarrow(b \rightarrow 0)\} \rightarrow a]^{\prime} \\
& \text { by (I) } \\
= & {[[d \rightarrow(0 \rightarrow(b \rightarrow 0))] \rightarrow a]^{\prime} } \\
& \text { by Lemma }[2.6)(22) \text { with } x=d, y=b \rightarrow 0, z=a \\
= & {\left[\left[d \rightarrow\left(0 \rightarrow b^{\prime}\right)\right] \rightarrow a\right]^{\prime} } \\
= & (0 \rightarrow d) \rightarrow a^{\prime} \\
& \text { by (6) })
\end{aligned}
$$

(8)

$$
\begin{aligned}
& a \rightarrow\left((d \rightarrow a) \rightarrow b^{\prime}\right)=a \rightarrow[(b \rightarrow d) \rightarrow a]^{\prime} \quad \text { by (5) } \\
& =a^{\prime \prime} \rightarrow[(b \rightarrow d) \rightarrow a]^{\prime} \\
& =\left(a^{\prime} \rightarrow 0\right) \rightarrow[(b \rightarrow d) \rightarrow a]^{\prime} \\
& =[\{0 \rightarrow(b \rightarrow d)\} \rightarrow a]^{\prime} \quad \text { by (I) } \\
& =\left[\left\{(b \rightarrow d)^{\prime} \rightarrow 0^{\prime}\right\} \rightarrow a\right]^{\prime} \\
& =\left[\left\{((b \rightarrow d) \rightarrow 0) \rightarrow 0^{\prime}\right\} \rightarrow a\right]^{\prime} \\
& =\left[\left\{\left((b \rightarrow d) \rightarrow 0^{\prime}\right) \rightarrow 0^{\prime}\right\} \rightarrow a\right]^{\prime} \quad \text { by Lemma [2.6 (1) } \\
& =\left[\left\{\left((b \rightarrow d) \rightarrow 0^{\prime}\right) \rightarrow a^{\prime}\right\} \rightarrow a\right]^{\prime} \quad \text { by Lemma (2.6 (1) } \\
& =\left[\left\{((b \rightarrow d) \rightarrow a) \rightarrow a^{\prime}\right\} \rightarrow a\right]^{\prime} \quad \text { by Lemma 2.6 (1) } \\
& =\left[\left\{((b \rightarrow d) \rightarrow a) \rightarrow 0^{\prime}\right\} \rightarrow a\right]^{\prime} \quad \text { by Lemma [2.6 (1) } \\
& =\left[\left\{0 \rightarrow((b \rightarrow d) \rightarrow a)^{\prime}\right\} \rightarrow a\right]^{\prime} \\
& =\left[\left\{0 \rightarrow\left((d \rightarrow a) \rightarrow b^{\prime}\right)\right\} \rightarrow a\right]^{\prime} \quad \text { by (5) } \\
& =\left[\left\{a \rightarrow\left((d \rightarrow a) \rightarrow b^{\prime}\right)\right\} \rightarrow a\right]^{\prime} \quad \text { by Lemma [2.6 (5) } \\
& =\left(a^{\prime} \rightarrow a\right) \rightarrow\left[\left\{(d \rightarrow a) \rightarrow b^{\prime}\right\} \rightarrow a\right]^{\prime} \quad \text { by (I) } \\
& =a \rightarrow\left[\left\{(d \rightarrow a) \rightarrow b^{\prime}\right\} \rightarrow a\right]^{\prime} \quad \text { by Lemma } 2.4 \text { (d) } \\
& =a \rightarrow\left[\left\{a^{\prime} \rightarrow(d \rightarrow a)\right\} \rightarrow\left(b^{\prime} \rightarrow a\right)^{\prime}\right] \quad \text { by (I) } \\
& =a \rightarrow\left[\left\{a^{\prime} \rightarrow(d \rightarrow a)\right\} \rightarrow\{(b \rightarrow 0) \rightarrow a\}^{\prime}\right] \\
& =a \rightarrow\left[\left\{a^{\prime} \rightarrow(d \rightarrow a)\right\} \rightarrow\left\{(b \rightarrow 0) \rightarrow\left(a \rightarrow b^{\prime}\right)^{\prime}\right\}^{\prime}\right] \text { by hypothesis } \\
& =a \rightarrow\left[\left\{a^{\prime} \rightarrow(d \rightarrow a)\right\} \rightarrow\left\{(0 \rightarrow a) \rightarrow b^{\prime}\right\}\right] \quad \text { by (I) } \\
& =[0 \rightarrow(d \rightarrow a)] \rightarrow a^{\prime} \quad \text { by (7) with } d:=d \rightarrow a \\
& =a \rightarrow(d \rightarrow a)^{\prime} \quad \text { by Lemma 2.6 (23) }
\end{aligned}
$$

(9)

$$
\begin{aligned}
{[0 \rightarrow(b \rightarrow d)] \rightarrow a } & =\left[\left(a^{\prime} \rightarrow 0\right) \rightarrow((b \rightarrow d) \rightarrow a)^{\prime}\right]^{\prime} & & \text { by (I) } \\
& \left.=\left[a \rightarrow((b \rightarrow d) \rightarrow a)^{\prime}\right]\right]^{\prime} & & \\
& =\left[a \rightarrow\left((d \rightarrow a) \rightarrow b^{\prime}\right)\right]^{\prime} & & \text { by (55) } \\
& =\left[a \rightarrow(d \rightarrow a)^{\prime}\right]^{\prime} & & \text { by (88) } \\
& =(a \rightarrow d) \rightarrow a & & \text { by Lemma [2.6 (4) (4) } \\
& =(0 \rightarrow d) \rightarrow a & & \text { by Lemman [2.6) (5) }
\end{aligned}
$$

(10)

$$
\begin{aligned}
(b \rightarrow(a \rightarrow d)) \rightarrow a & =\left[\left(a^{\prime} \rightarrow b\right) \rightarrow\{(a \rightarrow d) \rightarrow a\}^{\prime}\right]^{\prime} & & \text { by (I) } \\
& =\left[\left(a^{\prime} \rightarrow b\right) \rightarrow\{(0 \rightarrow d) \rightarrow a\}^{\prime}\right]^{\prime} & & \text { by Lemma [2.6 (5) } \\
& =[b \rightarrow(0 \rightarrow d)] \rightarrow a & & \text { by (I) } \\
& =[0 \rightarrow(b \rightarrow d)] \rightarrow a & & \text { by Lemma (2.6 (13) } \\
& =(0 \rightarrow d) \rightarrow a & & \text { by (9) }
\end{aligned}
$$

(11)

$$
\begin{aligned}
b \rightarrow\left(0 \rightarrow a^{\prime}\right) & =(0 \rightarrow b) \rightarrow\left(0 \rightarrow a^{\prime}\right) & & \text { by Lemma } 2.6 \text { (20) } \\
& =0 \rightarrow\left[(0 \rightarrow b) \rightarrow a^{\prime}\right] & & \text { by Lemma 2.6 (13) } \\
& =0 \rightarrow\left[(a \rightarrow 0) \rightarrow\left(b \rightarrow a^{\prime}\right)^{\prime}\right]^{\prime} & & \text { by (I) } \\
& =0 \rightarrow\left[a^{\prime} \rightarrow\left(b \rightarrow a^{\prime}\right)^{\prime}\right]^{\prime} & & \\
& =0 \rightarrow\left(a^{\prime} \rightarrow a^{\prime \prime}\right)^{\prime} & & \text { by (3) } \\
& =0 \rightarrow\left(a^{\prime} \rightarrow a\right)^{\prime} & & \\
& =0 \rightarrow a^{\prime} & & \text { by Lemma 2.4 ((d)) }
\end{aligned}
$$

(12) From (I) and by hypothesis we have that $\left[(d \rightarrow a) \rightarrow b^{\prime}\right]^{\prime}=(b \rightarrow d) \rightarrow\left(a \rightarrow b^{\prime}\right)^{\prime}=(b \rightarrow$ d) $\rightarrow a$.
(13)

$$
\begin{aligned}
a^{\prime} \rightarrow b & =\left(a \rightarrow b^{\prime}\right) \rightarrow b & & \text { by hypothesis } \\
& =\left[\left(b^{\prime} \rightarrow a\right) \rightarrow\left(b^{\prime} \rightarrow b\right)^{\prime}\right]^{\prime} & & \text { using (I) } \\
& =\left[\left(b^{\prime} \rightarrow a\right) \rightarrow b^{\prime}\right]^{\prime} & & \text { by Lemma 2.4 ((d)) } \\
& =b^{\prime} \rightarrow\left(a \rightarrow b^{\prime}\right)^{\prime} & & \text { by Lemma (2.6 (4)) } \\
& =b^{\prime} \rightarrow a & & \text { by hypothesis }
\end{aligned}
$$

(14)

$$
\begin{aligned}
\left(d \rightarrow 0^{\prime}\right) \rightarrow\left(a^{\prime} \rightarrow b\right) & =\left(a^{\prime} \rightarrow b\right)^{\prime} \rightarrow\left[\left(d \rightarrow 0^{\prime}\right) \rightarrow\left(a^{\prime} \rightarrow b\right)\right] \\
& \text { by Lemma [2.6 (17) } \\
& =\left(a^{\prime} \rightarrow b\right)^{\prime} \rightarrow\left[\left(d \rightarrow 0^{\prime}\right) \rightarrow\left(b^{\prime} \rightarrow a\right)\right] \\
& \text { by (13) }
\end{aligned}
$$

(15)

$$
\begin{array}{rlrl}
{\left[\left(0 \rightarrow a^{\prime}\right) \rightarrow b\right]^{\prime}} & =\left[\left(a \rightarrow 0^{\prime}\right) \rightarrow b\right]^{\prime} & \text { by Lemma }[2.5 \text { (目) } \\
& =(0 \rightarrow a) \rightarrow b^{\prime} & & \text { by Lemma } 2.6 \text { (11) }
\end{array}
$$

(16)

$$
\begin{array}{rlrl}
\left(a^{\prime} \rightarrow b\right)^{\prime} & =\left[\left(0 \rightarrow a^{\prime}\right) \rightarrow b\right]^{\prime} & \text { by (11) } \\
& =(0 \rightarrow a) \rightarrow b^{\prime} & & \text { by }(15)
\end{array}
$$

(17)

$$
\begin{aligned}
& {\left[\left\{b^{\prime} \rightarrow((b \rightarrow d) \rightarrow a)\right\} \rightarrow(0 \rightarrow b)^{\prime}\right]^{\prime}=\left[\left\{b^{\prime} \rightarrow\left((d \rightarrow a) \rightarrow b^{\prime}\right)^{\prime}\right\} \rightarrow(0 \rightarrow b)^{\prime}\right]^{\prime}} \\
& \text { by (12) } \\
& =\left[\left\{(d \rightarrow a) \rightarrow b^{\prime}\right\}^{\prime} \rightarrow 0\right] \rightarrow b \\
& \text { by (I) } \\
& =\left[(d \rightarrow a) \rightarrow b^{\prime}\right] \rightarrow b \\
& =b^{\prime} \rightarrow\left[(d \rightarrow a) \rightarrow b^{\prime}\right]^{\prime} \\
& \text { by Lemma } 2.6 \text { (14) with } \\
& x=d \rightarrow a, y=b^{\prime} \\
& =b^{\prime} \rightarrow[(b \rightarrow d) \rightarrow a] \quad \text { by (12). }
\end{aligned}
$$

References

[1] R. Balbes and PH. Dwinger, Distributive lattices, Univ. of Missouri Press, Columbia, 1974.
[2] S. Burris and H. P. Sankappanavar, A course in universal algebra, Springer-Verlag, New York, 1981. The free, corrected version (2012) is available online as a PDF file at math.uwaterloo.ca/~snburris. It is also available for a free download at Sankappanavar's profile page at www.researchgate.net.
[3] J. M. Cornejo and H. P. Sankappanavar, Implication Zroupoids I. Submitted for publication (2015).
[4] J. M. Cornejo and H. P. Sankappanavar, Implication Zroupoids II. In Preparation.
[5] J. M. Cornejo and H. P. Sankappanavar, Semisimple Varieties of Implication Zroupoids. Submitted for publication (2015).
[6] W. McCune, Prover9 and Mace 4, http://www.cs.unm.edu/mccune/prover9/
[7] H. P. Sankappanavar, De Morgan algebras: New perspectives and applications, Scientia Mathematica Japonica 75(1): 21-50, 2012.

