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ABSTRACT

During the last two decades materials, that exhibit graded properties, left their spirit of conceptual labora-
tory specimens to become a technological reality with a well established background. However structural
applications of these materials are not a fulfilled research. Models of straight and curved beams are nor-
mally reported in the scientific literature as the easiest way to understand some existing aspects in
mechanics of structures. Most of these models are formulated appealing to numerical approaches such
as the finite element method among others, without taking into account theoretical aspects that can be
quite useful to reduce algebraic complexity.

In the present work a technical theory for dynamic analysis of thick curved beams is deduced within
the context of functionally graded materials. The concept of material neutral-axis shifting is employed
in the deduction procedure in order to reduce the algebraic handling and complexity of the motion
equations. This leads to find analytical solutions of the governing differential system, even if it has variable
coefficients. Parametric studies on the dynamics of curved beams are offered to show the versatility of

the adopted formulation by means of solutions handled with the power series method.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In the last decade functionally graded materials (FGM) have
been increasingly recognized as a feasible solution and potential
answer to many challenging problems in a broad range of engi-
neering applications, such as curved stiffeners of aerospace panels,
among others. These materials have been reported in the middle
eighties as a potential way to cope with the problem of failure
and presence cracks in the interfaces of sandwich structures or
laminated structures due to, for example, high thermo-mechanical
stress gradients. Laminated composite structures and sandwich
structures differ from structures constructed with FGM in what
these last ones have mass, elastic and thermo-mechanical proper-
ties changing smoothly and continuously in prescribed directions.
Structural models for FGM were introduced for different geomet-
ric configurations and scales covering a broad area from 3D solids
through shells and plates and also beams or bars. The development
of curved beams models has been the topic of interest of many
researchers during the last 30 years. Those investigations were ori-
ented to a wide range of engineering problems, such as instability
and vibration analysis. Many curved beam models have been intro-
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duced to account for linear and non-linear behavior in structures
made of both isotropic (Cortinez et al., 1999) and/or composite
materials and arranged for thin-walled (Piovan and Cortinez, 2007)
or solid cross-sections (Tufekci and Yasar Dogruer, 2006). A num-
ber of different methodologies such as Principle of virtual work,
Hellinger-Reissner principle, Hu-Washizu principle among others
were employed to develop a variety of models.

The classical theory of strength of materials, although consid-
ered old fashioned, has proved to be a conceptually easy way to
derive generalized or more complex beam and bar models with
curved or straight axis (Filipich, 1991; Filipich et al., 2003). It has
to be noted that, despite its technological interest, very few studies
on the dynamics of curved beams made of FGM have been per-
formed in the past years according to the knowledge of the authors.
In fact, Piovan et al. (2008a) developed a basic model for free vibra-
tion analysis of arcs under the presence of initial stresses. This
model was derived employing the principle of Hellinger-Reissner
and numerically implemented with the finite element method.
Piovan and Sampaio (2009) presented a model to study transient
vibrations of rotating curved beams made with FGM. Malekzadeh
(2009) and Lim et al. (2009) carried out numerical approaches
for in-plane vibrations of arches in the context of bi-dimensional
formulations. Dryden (2007) introduced analytic solutions of an in-
homogeneous curved beam in the context of bi-dimensional plane
states. Bi-dimensional approaches allow analytical solutions only
inafew simple cases. Three-dimensional models of these structures
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Fig. 1. Structural model: a circumferential thick arc.

should be analyzed with numerical formulations like finite element
method among others. On the other hand, one-dimensional theo-
ries can reach an acceptable degree of approximation that could be
nearly the same of 2D and 3D formulation but with a reasonable
computational cost. Also one-dimensional models offer an easy
conceptual understanding of the dynamic phenomena in the case
of slender structures. Thus, in the present article a classical strength
of materials theory for dynamic analysis of thick curved beams is
derived in the context of functionally graded materials. The deduc-
tion process appeals to the concept of material neutral-axis shifting
with the aim to reduce the algebraic handling. Then, equations of
motion obtained under this conception are formally identical to the
ones for isotropic materials (Filipich, 1991) or orthotropic materials
(Piovanetal., 2008a), leading to the possibility to arrive at analytical
solutions of the governing differential system. The solution of the
free vibration problem of thick curved beams made of FGM is per-
formed by means of the power series method. A recurrence scheme
isemployed in power series handling in order to reduce the number
of unknown to only few unknown coefficients that can be selected
according to the boundary equations. In fact, for this problem the
maximum number of unknowns would be six if the curved beam
has elastic supports. Some comparisons are performed with other
beam approaches and 3D finite element approximations. An espe-
cial analysis of particular features in some boundary conditions is
offered as well.

2. Model development
2.1. Hypotheses and definitions

In Fig. 1 a sketch of the structural element analyzed in this work
is shown. As one can see, there are two relevant points in the cross-
section: Point G corresponds to the centroid of the section, whereas
point D is a point belonging to the neutral axis. In this model the
following material properties are assumed as:

E = Eq@q(r), G = Goya(1), 0 = pops(r), (1)

where E, G and p are the Young modulus, Shear modulus and mate-
rial density, respectively. On the other hand, the following variation
is considered:

B ry|. =123 )

(p](r) = kj +

In Eq. (2), k1 =E;/Eg, k> = G;/Gg and k3 = p;/ oo, whereas E;, G; and
p; intend for the material properties at r=r; and Eg, Gg and pg are
the properties at r=r,. The real exponent n rules the variation of the
properties along the radial direction. The present study is confined
within the context of strength of materials theory. The displace-
ments of a generic point P of the cross-section can be represented
in following form:

up(a, t) = u(a, t) + 0(a, t)y, wp(a, t) =w(a, t), (3)

where w is the transverse displacement, u is the tangential dis-
placement and 6 is the bending slope all of them measured with
respect to point D, « is the angular coordinate and t is the time, and
y=R-r.

Taking into account the polar reference system, the representa-

tive strain components in terms of the displacements can be written
(Filipich and Piovan, 2009) as:
& = %(u/—w+9’y), Via = %(u+w’+R9), (4)
where primes mean derivation with respect to the angular variable
«. According to classical beam theories, the remaining strain com-
ponents are not considered. The strain components given in Eq. (4)
are related to their corresponding stress components by means of
a basic linear constitutive law, for instance see the work of Benatta
et al. (2008):

0o = E(1)éq, Tre = G(I)Yra (5)

Notice that the second expression in Eq. (5) is not employed in
the context of the strength of materials theory, needing a different
approach which is analyzed in the following paragraphs.

2.2. Axial force and bending moment. Neutral axis

In this section the radial location of the neutral axis is obtained
in order to simplify the deduction process, referring all the termi-
nology to such axis. Thus, the axial force N and bending moment Mp
are defined in terms of the normal stress by means of the following
expressions:

N:// 0 dS2, MD:// oy ds2. (6)
2 2

Then employing the previous definitions and considering Egs.
(4) and (5) one obtains:

N=bE0[C¥0(u/7W)+O{19/l, M=bE0[O{](U/*W)+Ol29/]. (7)

where

Te i
R— .
%=/iLTmew,FmJa (8)
Ti

Thus, in order to obtain the expression for the neutral axis (for
N # 0 and Mp # 0) one impose &, =04 =0, or in other words if
y=a is the location of the neutral axis and taking into account the
condition of null strain in Eq. (4) (i.e. ' — w + 6’a = 0) one arrives
to:

a= O[zN—OllM
“ aiN—agM’

Once the neutral axis has been generically defined, it is possible
to rearrange the origin location (point D) with the scope to sub-
stantially reduce the algebraic manipulation, thus one appeals to
impose a=0 when N=0, which leads to oy =0. Consequently with
a=0 and taking into account Eq. (8) one obtains the expression of
the neutral-axis radius as:

Te
R— L

Qo o

(9)

@1(r)dr (10)

Now, with the value of R one deduces a; by simply employing
Eq. (8). This procedure allows to reduce the algebra and to decouple
the axial force and moment in terms of the displacements. Thus, Eq.
(8) can be rewritten as:

EoA, , Ed ,,
N =" —w), Mpz%le. (11)

where A =bRay, ] = bRor;. These entities are material area and mate-
rial moment of inertia, respectively. In the case of a straight beam
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of homogeneous material, A and J are the area and centroid inertia
moment of the cross-section, respectively.

2.3. Constitutive equations. Shear coefficient

As a previous step to deduce the expression of the shear force in
terms of displacements, one needs to find the consistent form of the
shear stress which has to satisfy the following internal equilibrium
equation (where T, =0 is assumed):

a Tro
3

The gradient of the normal stress ¢}, can be defined in terms of
the shear force as (Filipich, 1991):

+27¢ -0, =0 (12)

, R2 oy R2
Ga:(p1(r)|:d (R+)—]:|Q (13)
The solution of Eq. (12) leads to:
Tre = ¥(1)Q (14)
where
C R? a; R?
W=+ (R+ gz ) f) = atr) (15)
A=k =)™k
0= "mne
(=) =1)" ri(nr+1)\ | ki
&= " 1 2) (1 B (n+1)r2> 2 (16)

In Eq. (15), C is a constant which can be indistinctly deduced
from any of the following three conditions:

Q=// Tro AS2 01 Tyg(1e) = 00T Trg (1) = 0 (17)
2

To deduce the formula of the shear coefficient and the expres-
sion of the shear force in terms of the displacements one should
come across that the deformation energy due to shear effects can
be written, according to elasticity theory and strength of materials,

72, Q?
e I (o2 [ (%)
= /// TraVra dV = /errada (18)
|4

The underlined member is the classical definition of the work
due to shear deformation. Now, comparing the second and fourth
members of Eq.(23) and taking into account Eq. (4), one finally gets:

Q= A(u-i—w + RO) (19)

The shear coefficient m is obtained from the first and the sec-
ond members of Eq. (18) and by means of Eq. (14), one obtains the
following expression:

T w(ry?r

A
ms= — dr 20
R J. () (20)

It is interesting to note that the deduction of m is consistent
with the present model. In other approaches and beam models of
FGM that consider shear flexibility due bending this coefficient is
normally employed without a careful thought, for example assum-
ing m=6/5, which is obtained in the same way developed of the
present article but for the case of “isotropic straight beam”.

Fig. 2. Sketch of a generic end.

2.4. Equations of motion

In order to deduce the equations of motions the principle
of Hamilton is employed. The kinetic energy K, the deformation
energy U and the potential energy P due to external loads can be
described in terms of the displacements in the following form:

2K = pob/[y/o(it2 + W)+ 2)/19it + )/292] do,
o

bGoOlo
m

2U = bE, /[a29’2 +ao(u —w)?]da + /(u + W + RO dar,
o o

P= —R/[pr+pTu + pyf] da (21)
o

where points indicate derivation with respect time t; pg, pr and py
are the distributed radial force on the neutral axis, the distributed
tangential force on the neutral axis and the distributed moment
applied on the same axis, respectively. The inertia coefficients y;
are defined as:

Te
Vj = / (R - r)]r§03(r) drv J =0,1,2, (22)
Ti

Finally performing the conventional variational steps in the
Hamilton’s principle one gets the following equations of motions
in terms of displacements:

C1u” — (C11 + C33)W' — C33u — RC3360 — (D1l + Dy20) = —prR,
Cazw” +(Cqq + C33)u’ + RC336" — Cqw — D W = —pgR,
(220" — RC33(V + u + RO) — (Dppil + D330) = —pyR, (23)
where

bGa
Cy1 = bEgay, Ca2 = bEgay, (33 = TO, D11 = bpoyo,
D2y = bpoyr, D33 =bpoya. (24)

Eq. (23) is formally the same of the problem corresponding to
the homogeneous case developed by Filipich (1991). Notice that
the model is a completely coupled system, but if the structure is
such that RG — oo, the model is reduced to the case of a straight
beam where the longitudinal motion is decoupled from the shear
and bending motion. It is interesting to remark that Eq. (23) is a
generalization of the Timoshenko straight beam approach, but as
a particular case in the frame of functionally graded materials and
curved beams.

In Fig. 2 one can see a sketch to describe a generalized simple
support not necessarily located at the neutral axis. This boundary
implies: uyp=0, wg = 0 and My =0, however appealing to Eq. (11)
the expression of such general boundary condition can be written,
in terms of displacements, as follows:

w=0, u-—65=0, J0 +Au' =0 (25)
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On the other hand the boundary conditions corresponding to a
clamped end are:

u=0, w =0, 6=0 (26)

The boundary conditions related to a free end imply N=0, Q=0
and Mp =0, but appealing to Egs. (11) and (19) one can write them
as:

U-w=0, 60=0, u+w+RO=0 (27)

3. Analysis and comparisons
3.1. Power series method for the natural frequencies problem

In order to study vibratory patterns of this type of structures, the
motion equations are solved with a power series solution. The exact
solution of the eigenvalue problem can be carried out by means of a
generalization of the power series scheme developed originally by
Filipich et al. (2003) and Rosales and Filipich (2006) for structural
problems involving isotropic materials. It is convenient a previous
non-dimensional re-definition of the differential equations, which
implies that x=Ra/L€[0, 1] Va € [0, Ay], being L the circumferen-
tial length of the neutral axis of the curved beam, and A, is the
subtended angle of the curved beam.

The displacement variables have the common harmonic motion:

u,w, 0} = {ﬂ, v'v,@} elet (28)

where w is the circular frequency of the curved beam measured
inrad/s and i = v/—1, and {11, w, 9} are the corresponding modal
shapes. Now working without the presence of external loads and
accepting Eq. (28) the differential equations system given previ-
ously can be re-arranged in the following form:

i—g - %@er)%—i/ - % (ﬁ+Ré) + ngzzaé A2 (y0ﬂ+y1é) =0
§%+&(¢+m)% +L%§—%' Lfgg’igﬁwzo (29)
20 i 2 2
%—%%—meﬁ (ﬁJrRé)JrLZI)QLT«O (y1ﬂ+yz@) =0
where
2= PR ppa g G0 (30)
EoJ Eo

The displacements are expanded with the following power
series:

z
{@,9,6} = {U Wi, O3} X-. (31)
k=0

Theoretically Z— oo, however for practical purposes Z may be
an arbitrary large integer. Applying the boundary conditions in
non-dimensional form and appealing to a recurrence scheme of the
power series (Piovan et al., 2008b) one can represent the solution

Table 2
Comparison of frequencies of different models and numerical approaches.

Table 1
Properties of metallic and ceramic materials.

Properties of materials Steel Alumina (Al;03)
Young’s modulus, E (GPa) 214.00 390.00
Shear modulus, G (GPa) 82.20 137.00
Material density, p (kg/m?) 7800.00 3200.00

system in the following form:

e11(A) e12(A) e3(d) U* 0
£21(A) €22(X) e23(A) W* 5 =40 (32)
e31(A) e32(L) e33(A) OF 0

One should note that the differential system given in Eq. (29)
can be re-arranged as a differential equation of sixth order; so one
has six arbitrary integration constants. Three of them are imposed
in one end and the remaining three - symbolically expressed as
{U*, W*, ®*} in Eq. (32) - mean the three free coefficients after
the substitution of the power series in the differential system (for
further explanations see Piovan et al., 2008a,b and Rosales and
Filipich, 2006). Thus, from Eq. (31) one can obtain the solution of
the eigenvalue problem through the characteristic equation:

Det[e(1)]=0 (33)

The aforementioned recurrence scheme allows to shrink the
algebraic problem from 3(M+1) unknowns to only 3 unknown
coefficients that can be selected according to the boundary equa-
tions. It should be stressed that the solution expressed in Eq. (33)
lead to an arbitrary precision value for the frequency by selecting
appropriately the limit Z of the power series.

3.2. Numerical analysis

In this section some numerical studies are performed in order
to show certain features of the dynamics of curved beam associ-
ated with the imposition of the boundary conditions. In Table 1 the
material properties of a ceramic and a metal are shown. All the fol-
lowing examples hold the same ceramic/metal distribution. In fact,
the properties are graded according to Eq. (2) from a full metallic
inner surface (at r=r;) to a full ceramic outer surface (at r=r.), with
n=1.

The first example corresponds to a comparison of the present
model with other approaches. The present strength of materials
approach for the curved beam is compared with the response of
a flexible 3D general solver (called FlexPDE) of partial differential
equations within the context of the finite element method. In this
solver one can easily cope with the complex material laws to be
included in the structural model as well as the model itself (see
http://www.pdesolutions.com for further explanations and illus-
trative examples of the program). Also another one-dimensional
model of a FGM curved beam (Piovan et al., 2008a) derived
according to the Hellinger—Reissner principle (HR) is employed for
comparison purposes. The boundary conditions of the curved beam
can be clamped at both ends or clamped in one end and free to move

Boundary condition Model [approach]

Frequencies (Hz)

First Second Third Fourth
1D present model [PSM] 2364.97 3388.57 6417.37 7657.81
Clamped 1D HR model [FEM] 2364.97 3388.57 6417.37 7657.81
3D [FEM] 2366.59 343147 6497.00 7702.20
1D present model [PSM] 240.28 1237.25 3394.78 4397.86
Clamped free 1D HR model [FEM] 240.28 1237.24 3394.78 4397.86
3D [FEM] 241.39 1244.95 3418.79 4396.93
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Fig. 3. Comparison of curved beam and 3D FEM approaches (a) variation with h/R and (b) percentage difference.

in the remaining. The geometric features of the curved beam are the
following: b=20mm, h=50mm, A« =1rad and R =500 mm, the
shear coefficient is m=1.1619 and the ratio R/R; = 1.004046. Note
that the neutral axis is greater than the R¢ radius, conversely to the
homogeneous classical approach. In Table 2 the comparison of the
three models and numerical approaches is presented for the first
four frequencies of the arch. PSM intend for power series method.
The calculations were carried out with fifty terms in the PSM (or
Z=50),10 quadric curved beam elements (for HR model) and nearly
850 tetrahedral elements in FlexPDE. As one can see in Table 2, dif-
ferences between the approaches are negligible; however it should
be mentioned that the 3D approach demanded more than 20 min
to reach the desired precision on a 3.7 GHz Pentium IV computer
(this is due to the quite fine mesh employed in order to cope with
the non-homogeneity of the material). On the other hand both 1D
numerical approaches demanded just a couple of seconds.

Fig. 3 shows a comparison of the present beam approach and
the full 3D FEM approach. The first three frequencies are plotted
with respect to the parameter h/R. This parameter gives a measure

Fig. 4. Sketch of a shallow arc.

of the beam thickness. In this example, the geometric properties of
the curved beam are b=20 mm, A« =7/3 rad and R; = 500 mm, the
height h, varies according to parameter h/R. It is possible to see a
very good agreement between both approaches, even in the case
h/R=0.5whichimplies a very thick beam. Note also that frequencies
calculated with the curved beam model have percentage difference
less than 4% with respect to the 3D FEM approximation.

The third example reflects a study of the vibratory behavior
for a beam with the generalized supports. Thus, Fig. 4 shows
a curved beam defined by two parameters: the horizontal dis-
tance between the centroidal points of both ends ‘a’ and the arch

Fig. 5. Variation of the frequencies with parameter c/a for arches supported at (a) r=r; and (b) r=rp.
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height parameter ‘c’ which is measured between the horizontal
level and the centroidal point (i.e. G) of the mid cross-section.
The influence of shallowness ratio c/a together with the position
of the support at the ends is analyzed. The horizontal distance is
fixed to a=1000 mm. The cross-section is such that b=20 mm and
h=80mm. Fig. 5(a) shows the variations of the frequencies (related
to a particular mode shape) with respect to the shallowness ratio
c/a, for the case where the beam is supported at both ends in the
point corresponding to the inner surface, i.e. r;. Fig. 5(b) shows the
frequency variation with c/a but for the case where the supports
are located at the neutral axis (i.e. D).

In the previous two figures the nomenclature F1w intend for
the first flexural dominant mode Flwu mean the first flexural
dominant mode with membranal coupling; whereas F2uw, F3wu
are second and third flexural-membranal coupled modes. In this
nomenclature, the first letter after the number means the dom-
inating motion, e.g. F3wu means a coupled mode with bending
dominant motion. Although the modes Flw and Flwu have same
qualitative behavior along the ratio ‘c/a’, it should be noted that
the first axial-bending mode (Fluw) is not very sensible with the
change of support position along the cross-section; conversely the
flexural dominant mode (F1u) has a remarkable sensibility, espe-
cially in shallow arches.

4. Conclusions

In the present article a model for non-homogeneous thick
curved beam according to the theory of strength of materials
is developed. The structural non-homogeneity is confined in the
frame of functionally graded materials. The derivation process con-
sisted in the employment of the concept of neutral-axis shifting,
which allows the possibility to reduce the algebraic manipulation.
However, it is interesting to note that the inertial coupling between
longitudinal displacement and bending slope is still observed;
when the curvature radius tends to infinity (i.e. the case of straight
beam), this coupling vanishes. This aspect eventually leads to find
analytical solutions of the governing differential system, even if
the differential system has variable coefficients. The motion equa-
tions are solved with a power series approach which gives arbitrary
precision to the frequencies values. The values calculated with the
present 1D model manifest a very good agreement with 3D finite
element models. A special analysis featuring simply supported
conditions was performed. This analysis has shown the strong
dependence of the position along the end of the simply support
restrictions in the first in-plane frequencies for the graded mate-
rial, especially if the bending and axial modes are coupled. Also
notice that for the same measure of relative error, the whole cal-
culations of present 1D model demanded a thousandth of the time
demanded by the 3D finite element code. This is due to the graded
properties that need finer meshes. Clearly, the present strength of

material approach has two advantages, i.e., shorter computation
times allow the study a wide range of cases before facing deeper 3D
analysis; even more one can cope also the cases of complex cross-
section such as non-homogeneous, doubly connected, etc., without
increasing the computing time. Evidently this aspectis quite impor-
tant when one has to analyze features related to the optimization
of properties gradation or the analysis of mechanical and gradation
uncertainties (which are quite common in the fabrication of graded
beams) needing important computational resources; this is matter
of future research.
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