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Within the theoretical framework of divergence-type theories (DTTs), we set up a consistent nonlinear

hydrodynamical description of a conformal fluid in flat space-time. DTTs go beyond second-order (in

velocity gradients) theories, and are closed in the sense that they do not rely on adiabatic expansions. We

show that the stress-energy tensor constructed from second-order conformal invariants is obtained from

the DTT by a consistent adiabatic expansion. The DTT satisfies the second law, and is causal in a set of

fluid states near equilibrium. Finally, we compare, analytically and numerically, the equations of motion

of the DTT and its truncation to second-order terms for the case of boost invariant flow. Our numerical

results indicate that the relaxation towards ideal hydrodynamics is significantly faster in the DTT than in

the second-order theory. Not relying on a gradient expansion, our findings may be useful in the study of

early-time dynamics and in the evolution of shock waves in heavy-ion collisions.
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I. INTRODUCTION AND MOTIVATION

There is currently a great interest in relativistic dissipa-
tive hydrodynamics, mainly due to its application to the
description of the hot dense QCD matter created in the
Relativistic Heavy-Ion Collider experiments [1–16]. The
application of the AdS/CFT correspondence [4,17–24] to
study strongly-coupled conformal plasmas inaccessible to
kinetic theory, has also fueled considerable interest in the
formal aspects of this formalism. The study of the hydro-
dynamic regime of conformal field theories is important
since QCD is approximately conformal at high tempera-
tures [25].

The need for dissipative corrections in modeling heavy-
ion collisions is (at least) twofold. First, quantum uncer-
tainty prevents the existence of a perfect fluid. Since first-
order relativistic hydrodynamics [26,27] is known to have
strong drawbacks, among them lack of stable solutions and
acausal propagation of perturbations, one should really go
to second-order theories (see, however, Refs. [28,29]).
Second, the description of heavy-ion collisions in terms
of perfect hydrodynamics works well in almost central
Auþ Au collisions near midrapidity, but gradually breaks
down in noncentral collisions and at forward rapidity [1–
3,13–15].

The complete second-order stress-energy tensor of a
strongly-coupled conformal fluid in d ¼ 4 space-time
was given independently by Baier et al. [20], and by
Bhattacharyya et al. [21]. Recently, Loganayagam [30]
developed a very useful Weyl-covariant formalism and
proposed a local entropy current consistent with the
second-order T�� derived previously and with the second

law (see, also, related work of Romatschke, Ref. [31]). One

of the most important results of Refs. [20,21,30] is that
these works show that the hydrodynamic description of a
conformal fluid does not belong to the conventional Israel-
Stewart (IS) [3,9,13,32,33] formalism (see, also,
Refs. [3,4] for a discussion of this issue). This is because
the conventional (or entropy-wise) IS theory, not being a
controlled gradient expansion [3,14], cannot account for
shear-shear coupling, which is present in the stress-energy
tensor of the conformal fluid [3,8,20,31] (see Refs. [14–16]
for interesting discussions on this and related issues in the
context of dissipative fluid dynamics as derived from ki-
netic theory).
The main purpose of this paper is to set up a consistent

hydrodynamical description of a conformal field theory
within the theoretical framework of divergence-type theo-
ries (DTTs) [34–40]. Our goal is to go beyond second-
order theories (in velocity gradients) by formulating a
theory in closed form, that is, without reliance on adiabatic
expansions. We will not tackle the full problem of a
conformal fluid in curved space-time [20,21,30,31], but
limit ourselves to Minkowski space-time. Another aim of
this work is to analyze the causality properties of the DTT
developed here, and to compare our results for the stress-
energy tensor with those obtained from the derivative
expansions of Refs. [20,21,30]. We note that we do not
calculate transport coefficients in this paper, but assume
they are known either via kinetic theory or the AdS/CFT
correspondence.
DTTs are interesting alternatives to the IS formalism

(although they may be physically equivalent in certain
cases) because the conditions for hyperbolicity and cau-
sality of the full nonlinear evolution can be stated in very
simple terms. As clearly shown by Liu, Muller, and
Ruggeri [36], DTTs are often more general and flexible
than the IS theory, allowing a systematic derivation of
nonlinear terms in constitutive equations, which are not
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captured by entropy-wise IS theory (see Refs. [3,9,14–
16,20,23]). Besides, they have the extra advantage that,
being the equations of motion of divergence type, discon-
tinuous solutions (shocks) can be given mathematical
meaning, which is relevant to the phenomenon of conical
flow in heavy-ion collisions [23,24]. Moreover, and this is
an important point for what follows, the symmetries of the
theory can be coded directly on the generating function of
the DTT.

The main results we arrive at are that: (i) for the case in
which the second-order transport coefficients �2 and �3

vanish, the second-order (in velocity gradients) stress-
energy tensor constructed from conformal invariants
[20,21,30] can be consistently derived via an adiabatic
expansion from the DTT we set up; and (ii) the DTT and
its adiabatic expansion are causal for states near equilib-
rium, and satisfy the second law. We also obtain, as a
simple illustration, the hydrodynamic equations of the
DTT for the case of boost invariant flow, and compare
them to those of the second-order theory. Our numerical
results show that the DTT approaches the ideal fluid be-
havior faster than the second-order theory.

We believe that the DTT presented here may be useful in
the study of two aspects of heavy-ion collisions, both of
which seem to require theories going beyond second-order
velocity gradients: first, early-time dynamics, where veloc-
ity gradients are not small and for which even IS formalism
shows unphysical behavior such as reheating [14] (see also
Chesler and Yaffe [24], who study the creation and evolu-
tion of a boost invariant anisotropic plasma directly from
the gravity side, and El, Xu, and Greiner [11], who develop
a novel third order theory); second, the evolution of initial
state fluctuations [38], for which higher order terms are
crucial (see particularly the work of Lublinsky and
Shuryak [23], who developed a linearized hydrodynamical
theory that includes, in principle, all-order velocity gra-
dients). In this respect (that of ‘‘resumming’’ higher order
velocity gradients), the developments of Ref. [23] are
related to ours. We note that the DTT developed here
contains, in addition, all quadratic terms in velocity.

The paper is organized as follows. In Sec. II, we briefly
review divergence-type theories. In Sec. III, we first review
some basic properties of the hydrodynamics of conformal
field theories, and then set up the divergence-type theory of
a conformal fluid. We also prove that the DTT satisfies the
second law exactly, and obtain the hydrodynamic equa-
tions. In Sec. IV, we investigate the causality properties of
the DTT, for fluid states near equilibrium. In Sec. V, we
show that the dissipative part of the stress-energy tensor
obtained from second-order (in velocity gradients) confor-
mal invariants can be obtained from a consistent adiabatic
expansion of the DTT. We note that the DTT cannot
reproduce terms containing the vorticity tensor. In
Sec. VI, we compare, analytically and numerically, the
hydrodynamic equations of the DTT and of the second-

order theory for the case of Bjorken flow. The paper closes
up with a brief summary of results.

II. DIVERGENCE-TYPE THEORIES

In this section we give a brief summary of DTTs.
Detailed discussions can be found in Refs. [34,38–40]
(see, also, Ref. [36]).
According to Geroch and Lindblom [34], the hydro-

dynamical description of a nonequilibrium state requires,
besides the particle current Na and the stress-energy tensor
T��, a new third order tensor A��� obeying an equation of

motion of divergence type. The dynamical equations are
the conservation laws of N� and T��, together with an

equation describing the dissipative part:

A���
;� ¼ I�� (1)

where A and I are algebraic local functions of N and T and
symmetric in the indices ð�; �Þ. A semicolon stands for a
covariant derivative. The entropy current is extended to

S� ¼ �� � ��T
�� � �N� � A������ (2)

where �� ¼ u�=T is the temperature vector, � ¼ �=T is
the affinity,�� is the thermodynamic potential, and ��� is

symmetric, traceless, and vanishes in equilibrium. Note
that, in equilibrium, �� is Killing and � is constant.
We now require that the entropy and the thermodynam-

ical potential be algebraic functions of ð�;��; ���Þ. If the
entropy production is to be nonnegative, then

@��

@�
¼ N�;

@��

@��

¼ T��;
@��

@���

¼ A���: (3)

Thus, as a consequence of the equations of motion, the
entropy production rate is

S�;� ¼ �I�����: (4)

Since the stress-energy tensor is symmetric, we must
also have

�� ¼ @�

@��

(5)

where �ð�;��; ���Þ is the so-called generating function

of the theory. This means that every DTT is completely
determined once � and I are specified as algebraic func-
tions of �, ��, ���. The theory thus constructed satisfies

the principles of relativity and entropy, and fully exploits
the latter [36].
Introducing the symbols 	A to denote the set

ð�;��; ���Þ, A�
B the set ðN�; T��; A���Þ, and IB the set

ð0; 0; I��Þ, the theory is summed up in the equations

A
�
B ¼ @��

@	B
S
�
;� ¼ �IB	

B A
�
B;� ¼ IB: (6)

The equations of motion can also be written as
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M�
BC	

C
;� ¼ IB (7)

where

M�
BC ¼ M�

CB ¼ @2��=@	B@	C: (8)

The system of equations (7) is automatically symmetric
since matrix M�

BC is symmetric in the indices A and B due

to the fact that partial derivatives conmute. Causality is
therefore ensured if the quadratic formM

�
BC!� is negative

definite for all future directed timelike vectors !�, or

equivalently if Q� ¼ M�
BC
	

B
	C is timelike and future

oriented for any displacement 
	A from an equilibrium
state [34,35]. Note that causality depends on the form of
M

�
BC and not of IB.

III. CONFORMAL HYDRODYNAMICS AS A
DIVERGENCE-TYPE THEORY

We consider the hydrodynamic regime of a conformal
quantum field theory in d ¼ 4 flat space-time (for a general
discussion, not limited to conformal fields, see
Refs. [7,41]). In such a theory, the classical action eval-
uated on the classical equations of motion is invariant

under a Weyl transformation g�� ! e�2!ðx�Þg��, where

! is a function of space-time coordinates x�. The classical
stress-energy tensor of such a theory is necessarily trace-
less, while the quantum one presents Weyl anomaly. As
shown in Ref. [20], in even dimensions d the number of
derivatives appearing in the Weyl anomaly is precisely d,
which means that second-order hydrodynamics in d ¼ 4
dimensions is Weyl invariant. It is straightforward to show
that, for a conformal theory,

T�� ! eðdþ2Þ!T�� (9)

under a Weyl transformation. Therefore, for a conformal
fluid the conservation law of energy momentum T

��
;� ¼ 0,

where a semicolon denotes covariant differentiation, is
automatically Weyl covariant (see, for example,
Refs. [5,30,42]).

The tracelessness condition T�
� ¼ 0 imposes � ¼ ðd�

1Þp and 	 ¼ 0, where � is the energy density in the local
frame, p is the thermodynamic pressure, and 	 is the bulk
viscosity. The transformation rule for T�� implies � !
ed!�, the four velocity u� ! e!u�, and the temperature
T ! e!T, which means that the temperature vector �� ¼
u�=T has conformal weight equal to zero. In addition,
Eq. (9) implies that the shear viscosity � ¼ ATd�1, with
A a constant (see, for instance, Refs. [20,21,30,31]). In
equilibrium �ð�;�Þ ¼ 0, which means that �� is a Killing

vector (the parenthesis around the indices stand for sym-
metrization). The four velocity is normalized as u�u

� ¼
�1, and we use the signature ð�;þ;þ;þÞ. We will make
use of these properties in what follows.

A divergence-type theory is completely specified by its
generating function �ð�;��; ���Þ and source tensor

I��ð�;��; ���Þ, where ð�;��; ���Þ are the fugacity, the

temperature vector, and a symmetric and traceless tensor
that vanish in equilibrium, respectively. Our starting point
will therefore be the specification of � and I as algebraic
functions of the set ð�;��; ���Þ. We will deal with the
source tensor later on, so for the moment we focus on �.
Since we want to construct a quadratic DTT (in devia-

tions from equilibrium), we will consider terms which are
at most quadratic in the nonequilibrium tensor ���. For
simplicity, we will restrict ourselves to a conformal theory
with no conserved charges, which means � ¼ 0. In this
case, it is convenient to employ the energy or Landau-
Lifshitz frame [7,13,27]. The generating function which
satisfies these requirements can be written as

� ¼ �ð0Þ þ �ð1Þ þ �ð2Þ

¼ �0ðTÞ þ �1ðTÞ���u
�u� þX3

i¼1

�ðiÞ
2 ðTÞS���


ðiÞ �����


(10)

with

S
���

ð1Þ ¼ ��ð��
Þ� � 1

3
�����


S
���

ð2Þ ¼ uð���Þð�u
Þ

S���

ð3Þ ¼ 3

4

�
���

3
þ u�u�

�
3

4

�
��


3
þ u�u


�

��� ¼ g�� þ u�u�:

(11)

This is the most general local scalar constructed from T,
g��, u�, and ���, which is quadratic in the latter. In

Eq. (11), ��� is the spatial projector orthogonal to u�.
From the transformation rule for g�� and u� we immedi-
ately obtain ��� ! e2!���. The tensors S

���

ðiÞ produce

the most general decomposition of a symmetric and trace-
less tensor around a timelike direction u�.
As already mentioned, conformal invariance requires

T�� ! eðdþ2Þ!T�� and T�
� ¼ 0. In a DTT, this means

@2�

@��@��

! eðdþ2Þ! @2�

@��@��

(12)

and

g��

@2�

@��@��

¼ 0: (13)

Note that

@u�

@��

¼ T���

@���

@��

¼ T2½����� þ ������ and
@T

@��

¼ T2u�:

(14)
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In the following, we will describe how these conditions

determine the scalar functions �0;1 and �ðiÞ
2 appearing in

Eq. (10). It is clear that the conditions given in Eqs. (12)
and (13) must be satisfied separately by the zeroth-, first-,
and second-order terms of the expansion of �. This is
because truncating the expansion at zeroth-, first-, and
second-order does not break the conformal invariance of
the resulting hydrodynamic theory. In other words, the
zeroth-, first-, and second-order terms of T�� are indepen-
dent of each other.

A. Perfect fluid

At zeroth order, condition (13) on the stress-energy
tensor

T��
0 ¼ pg�� þ u�u�½pþ �� (15)

implies � ¼ ðd� 1Þp. In a DTTwe have (recall that � and
p are equilibrium quantities and thus completely deter-
mined by �0)

T��
0 ¼ T3g�� d�0

dT
þ T3u�u�

�
3
d�0

dT
þ T

d2�0

dT2

�
; (16)

which implies

p ¼ T3 d�0

dT
and � ¼ T3

�
2
d�0

dT
þ T

d2�0

dT2

�
: (17)

Therefore, we find that in a conformal DTT �0 must satisfy

d2�0

dT2
¼ ðd� 3Þ

T

d�0

dT
: (18)

The solution to Eq. (18) is

�0 ¼ aTd�2 þ a0 (19)

where a and a0 are constants. Note that a0 is irrelevant since
it does not change T��

0 , so we set it to zero.

From the transformation rule for T we immediately

obtain �0 ! eðd�2Þ!�0. Taking into account that �� is
Weyl invariant while

�� ! e�!u�
e!T

¼ e�2!�� (20)

we have

T��
0 ¼ @2�0

@��@��

! eðd�2Þ!e4!T��
0 ¼ eðdþ2Þ!T��

0 (21)

as it should.
From the above it is clear that, in order to obtain the

correct conformal weight for the complete second-order
stress-energy tensor [Eq. (12)], the generating function
given in Eq. (10) must transform like �0 under a Weyl
transformation. That is, we require that

� ! eðd�2Þ!�: (22)

As already noted, this implies that the first- and second-

order terms �ð1Þ and �ð2Þ have conformal weight equal to

(d� 2).

B. Linear DTT

We will now determine �1ð�Þ and from it the stress-
energy tensor at first order in the nonequilibrium tensor
���:

T�� ¼ T��
0 þ ���

1 (23)

with

�
��
1 ¼ @2�ð1Þ

@��@��

: (24)

It is convenient to rewrite the first-order term in � as

�ð1Þ ¼ �1��
u
�u
 ¼ ~�1��
�

��
 (25)

with ~�1 ¼ T2�1. The tracelessness condition g���
��
1 ¼ 0

implies the following the differential equation for ~�1:

T
d2 ~�1

dT2
� 2

d~�1

dT
¼ 0 (26)

whose solution is

~� 1ðTÞ ¼ bþ cT3 (27)

with b and c constant.
The issue of how to choose the integration constants b

and c is not trivial. The criterium of a bounded solution is
not compelling enough [43] to support the choice of con-
stant c ¼ 0. However, we would like to point out that the
requirement that the generating function must have a defi-
nite transformation law under conformal transformations
means that the two constants b and c cannot be both
different from zero at the same time. Therefore there are
two families of conformal divergence-type theories: one
with b ¼ 0, c � 0 and the other with b � 0 and c ¼ 0.
Moreover, the physical content of both familes is the same.
Indeed, if we substitute b by cT3, but after computing the
energy-momentum tensor we replace ��� by T�3��� we

obtain once again Eq. (41). Of course, to reach this con-
clusion we use that the physical nonequilibrium tensor ���

is transverse with respect to the four-temperature �� (this
fact will be shown in what follows), so extra terms in the
energy-momentum tensor vanish identically. Given the
physical equivalence of both classes of theories, we have
chosen to investigate only the b � 0 case as a matter of
simplicity.
As it can be seen from Eqs. (22) and (25) and the fact

that �� is Weyl invariant, setting c ¼ 0 implies that the
conformal weight of ��� is equal to d� 2. Therefore,

��� ! eðd�2Þ��� and ��� ! eðdþ2Þ���: (28)

From the generating functional determined above, the
tensor of fluxes
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A
�� ¼ @2�ð1Þ
@���@�


(29)

becomes

A
�� ¼ bðg
��� þ g�
��Þ � b

2
�

��; (30)

where we have used that


��



���
¼ 1

2
ð
�

�

�

 þ 
�




�
�Þ � 1

4
g�



�� (31)

which follows since ��� is symmetric and traceless.

The divergence of the tensor of fluxes is

A
��
;
 ¼ b�ð�;�Þ � b

2
�


;


��: (32)

The first-order divergence-type theory is summed up by
Eq. (32) together with

���
1 ¼ b��� (33)

and

A
��
;
 ¼ I��: (34)

The system of equations (32)–(34) must lead to the same
�
��
1 of Eckart’s theory (for a conformal fluid), which can be

written as [34,36,38]

�
��
1E ¼ ��S

���

ð1Þ

�
uð�;
Þ �

T;
Þ
T

uð�
�
¼ ��TS

���

ð1Þ �ð�;
Þ

(35)

where the last equality follows from the transversality of
S
���

ð1Þ . Note that, since

�ð�;
Þ ! e�2!�ð�;
Þ S���

ð1Þ ! e4!S���


ð1Þ ; (36)

we must have, from Eq. (35), that� ! e3!�, and therefore
�ðTÞ ¼ constT3.

In order for the first-order stress-energy tensor obtained
from the DTT to coincide with that of Eckart’s theory we
must provide a linear relationship between the source
tensor I�� and the nonequilibrium tensor ���:

I�� ¼ �D���
��
: (37)

Using Eqs. (32)–(35) we obtain

D���
 ¼ b2

�T
S���
ð1Þ ; (38)

where we have used that

g��S
���

ð1Þ ¼ ��ð��
Þ

� � 1
3�

�
���
 ¼ 0 (39)

since

�����
� ¼ ���; ��� ¼ ���; and �

�
� ¼ 3:

(40)

Since the conformal weights of ��
 and I�� are both

equal to 2 [see Eqs. (32)–(34)], it is seen from Eq. (37) that
the tensor D���
 must be Weyl invariant. From Eq. (38)
this implies � / T3, as before. Note also that the require-
ment �

��
1E ¼ �

��
1 automatically implies ���

�� ¼ 0, since

S���

ð1Þ is transverse. We have

��� ¼ ��

b

�� (41)

where 
�� ¼ Sð1Þ����u
ð�;�Þ. The physical meaning of ���

being transverse is that the bulk viscosity and the heat flux,
which are both proportional to ����� [38], vanish. The

vanishing of the heat flux is expected since the chemical
potential is zero, whereas the bulk viscosity is zero since
the theory is conformal. In the next section we will show
that the transversality of ��� holds in the quadratic theory
as well.

C. Quadratic DTT

We now go over to the quadratic stress-energy tensor
given by

T�� ¼ T
��
0 þ �

��
1 þ �

��
2 (42)

with

�
��
2 ¼ @2�ð2Þ

@��@��

: (43)

From the conformal weights of ���, given in Eq. (28),

and of S���
ðiÞ [see Eq. (36)] it is seen that, to obtain the

correct conformal weight for T��, we must have �ðiÞ
2 ¼

ciT
�6, where ci are constants to be determined. This

ensures that �ð2Þ in Eq. (10) has conformal weight equal

to (d� 2), which means �
��
2 has conformal weight equal to

(dþ 2).
The tracelessness condition, Eq. (13), will determine

relations among the coefficients ci. The quadratic contri-
bution to the stress-energy tensor can be written as

���
2 ¼ ���

X3
i¼1

ciS
���

ðiÞ �����
 (44)

where we have defined the operator

���¼6T�4ð4T2�����
��Þ�6T�4

�
�� @

@��

þ�� @

@��

�

þT�6 @2

@��@��

: (45)

In this notation, the trace of �
��
2 becomes

g���
��
2 ¼ ��

�

X3
i¼1

ciS
���

ðiÞ �����
 (46)

with
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�
�
� ¼ �T�4

�
48þ 12��

@

@��

� T�2 @2

@��@�
�

�
: (47)

Computing the derivatives and equating the coefficients
of the Lorentz invariants

�����
�����
;

���
��������
; and

�������
�����


(48)

to zero (g���
��
2 ¼ 0), we find a linear system of equations

for the three unknowns ci. It turns out that the equations
involving c2 and c3 (which come from the invariants
�2��2 and �4�2) are inconsistent with each other, the
only way out being imposing that

����� ¼ 0: (49)

That is, the tracelessness of ���
2 forces the transversality of

the nonequilibrium tensor ���. This means that the heat

flux and the bulk viscosity remain zero at second order,
which is a satisfying result. With this additional require-
ment on the nonequilibrium tensor, c2 is left unspecified,
while the remaining equation (coming from the invariant
�����
�����
 and relating c1 and c3) reads

c1 ¼ �3
8c3: (50)

Therefore, we have found that the quadratic part of
generating function of a conformal fluid can be written as

�ð2Þ ¼ T�6½c1ðS���
ð1Þ � 8
3S

���

ð3Þ Þ þ c2S

���

ð2Þ ������
:

(51)

From Eq. (51) we can calculate the tensor of fluxes

A
�� ¼ A
��
E þ @2�ð2Þ

@�
@���

¼ A
��
E þ A
��

2 (52)

where A
��
E is the first-order term given by Eqs. (29) and

(30). We can rewrite A2 as

A
��
2 ¼ G
���
��
; (53)

with

G
���
 ¼ 2T�4½c1ð�6�
S
���

ð1Þ þ ��S


��

ð1Þ þ ��S

�
�

ð1Þ Þ

þ 2c2�


ð����� þ �����Þ

þ 2c2�
�
ð�
��� þ ���
�Þ�: (54)

The divergence of A
��
2 is

A
��
2;
 ¼ @G
���


@��

��;
��
 þG
���

@��


@���

���;
: (55)

We get, after some algebra,

A
��
2;
 ¼ �4T2��G
���
��
��;
 þ 2T�4c1ð�6K

�
���

1

þ K
��
��

1 þ K

���
�

1 Þ��
��;
 þG
���
��
;


þ 4T�4c2ð�

ð���
�� þ ���
��Þ
þ ��
ð�
�
�� þ �
�
��ÞÞ��
��;
 (56)

with

K
�
���

1 ¼ 
�
S

���

ð1Þ þ T2�
ð��S

���

ð1Þ þ ��S

���

ð1Þ Þ:

(57)

In order to have a complete theory at second order in
deviations from equilibrium, we must find a suitable source
tensor I2 quadratic in ���. We will find the constraints
imposed on I2 by requiring that the second law holds, and
by the fact that ��� is traceless and transverse, and find an
explicit expression for I2. Guided by linear results, we will
consider that I2 has the form

I��2 ¼ J���
����
���; (58)

where J ¼ Jð�
;�
�Þ.
In a DTT, the entropy production is simply S

�
;� ¼

�I�����. We have

S
�
;� ¼ S

�
;�j1 þ S

�
;�j2 ¼ D���
��
��� � I��2 ���

¼ D���
��
��� � J���
�������
���: (59)

S�;�j1 is the entropy production of the linear DTT (in �),
and is clearly positive definite. The problem comes from
S�;�j2, which has no definite sign. In order for the second

law to hold for arbitrary �, we must require that

I��2 ��� ¼ 0: (60)

We will now find the explicit form of J���
�� [see
Eq. (58)]. Since I��2 is a local function of �� and ���,

��� is traceless and transverse, and Eq. (60) must hold, we
see that J���
�� can only have two terms, one proportional
to ���� and the other to ���. In addition, the only non-
vanishing scalar we can form out of ��
��� is

S
�
��
ð1Þ ��
��� ¼ ��
��
: (61)

Therefore, we have

J���
�� ¼ ðf1ðTÞ���� þ f2ðTÞ���ÞS�
��
ð1Þ (62)

where the fiðTÞ are functions of temperature we must
determine. It can be checked from Eq. (56) that

����A

��
2;
 ¼ 0; (63)

which means that f1 ¼ 0. In order to find f2ðTÞ, we will
consider a power law dependence and use the fact that I2
has conformal weight equal to 2. Recalling that ��� and
S
�
��
ð1Þ have conformal weights 2 and 4, respectively, we

immediately obtain f2 ¼ gT�8, where g is a constant.
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So, the final expression for I2 becomes

I��2 ¼ gT�8�����
�
�
: (64)

We have proven that the DTT satisfies the second law for
arbitrary values of the nonequilibrium tensor ���, provided
I2 is given by Eq. (64). The entropy production is simply
[recall Eq. (38)]

S�;� ¼ D���
��
��� ¼ b2

�T
��
��
: (65)

D. Exact hydrodynamic equations

In this subsection we will obtain the explicit form of the
equations of motion of the DTT.

We first turn our attention to the quadratic part of the
stress-energy tensor, �2. From Eq. (44) we get after some
algebra

�
��
2 ¼ ~c1T

�4ð�����
� � 1

3�
��������Þ; (66)

where ~c1 ¼ 2c1 þ c2. We note that ���
��
2 ¼ ���

��
2 ¼ 0

and, of course (we calculated the coefficients for this to
happen) �

�
2� ¼ 0. The divergence of �

��
2 reads,

�
��
2;� ¼ �4~c1T

�2ð�����
� � 1

3�
��������Þ����;�

� 1
3
~c1T

�2������ð����� þ �����Þ��;�

þ ~c1T
�4ð����

�
�;� þ �����

�;�Þ
� 2

3
~c1T

�4���������;�: (67)

From Eqs. (15), (33), and (67), the conservation of the
complete stress-energy tensor becomes

�
��
;� ¼

�
a

3
T6ð4u�u�þg��Þ� 4~c1T

�2

�
�
�����

�� 1

3
���������

��
����;�

þ
�
a

3
T6� 1

3
~c1T

�2������

�
ð�����þ�����Þ��;�

þ ~c1T
�4ð����

�
�;�þ�����

�;�Þ
� 2

3
~c1T

�4���������;�þb�
��
;� ¼ 0; (68)

where we used that � ¼ aT4 and p ¼ �=3.
In the spirit of divergence-type theories, the stress-

energy tensor conservation should be supplemented with

A
��
;
 ¼ I��, which stands on the same footing as the

conservation equations [7,36,38]. We have already ob-
tained I�� in Sec. III C. Together, they completely describe
the space-time evolution of the system (within the hydro-
dynamic approximation).

In this section, we completed our first task of finding the
generating function � and the source tensor I��2 that de-
scribes a conformal fluid in flat space-time. We constructed
the DTT by requiring: (i) � is quadratic in deviations from

equilibrium, represented by the dissipative tensor �; (ii) the
stress-energy tensor derived from � is traceless and has the
correct conformal weight; (iii) the theory reproduces, at
first order, the relativistic Navier-Stokes stress-energy ten-
sor; and (iv) the theory satisfies the second law for arbi-
trary �. We have also obtained the equations of motion of
the exact theory, which will be used in Sec. VI in the
context of Bjorken expansion.

IV. CAUSALITY

In this section we investigate the causality properties of
the DTT constructed above. As noted in Sec. II, causality is
determined solely by the generating function � of the
theory, and not by the source tensor I��. In order to analyze
causality of a DTT, let us define

	A ¼ ð��; ���Þ and M�
A;B ¼ @3�=@��@	

A@	B; (69)

being ðA; BÞ collective indices. The DTT is causal (in a set
of fluid states near equilibrium) if the vector M�

B;C
	
B
	C

is timelike and future oriented for any displacements
ð
	B; 
	CÞ from an equilibrium state [34–40].
Since we are interested in proving causality for fluid

states near equilibrium, it will be sufficient to deal with

M�
A;B

��������E
¼

�
@3�

@��@	
A	B

���������	A¼	AE

(70)

where

	AE ¼
�
u�E
TE

; ��
 ¼ 0

�
(71)

denotes equilibrium values.
The only nonvanishing terms of M�

A;BjE are

M�
�;


��������E
¼

�
@3�ð0Þ

@��@�
��


���������	AE

M�
�
;�

��������E
¼

�
@3�ð1Þ

@��@�
�@��


���������	AE

¼
�
@A

�
E�


@��

���������	AE

and

M�
�
;��

��������E
¼

�
@3�ð2Þ

@��@�
�
@���

���������	AE

¼
�
@A

�
2�


@���

���������	AE

; (72)

where �ð0Þ, �ð1Þ, and �ð2Þ are given by Eqs. (19), (27), and

(51), respectively.
Performing the corresponding derivatives, we get

M
�
�;
jE ¼ 8aT6

E½ð6T2
E���
þ

�Þ��þ�



�
� þ��


�

 �E

M
�
�
;�jE ¼bð
��


�

 þ

�


�
� � 1

2g
�
�
�
Þ and

M
�
�
;��jE ¼T�4

E ð2F�
�
��� 1

2g
�
F

�
�
�

��ÞE; (73)

where, for brevity, we have defined the tensor
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F
�
�
�
 ¼ c1ð�6��Sð1Þ�
�
 þ 1

3�
���
��


þ T2��
���
�
� þ ��S

�
ð1Þ
�
 þ �
S

�
ð1Þ��


� 2
3ð��

� �
 þ ���
�

 Þ��
Þ

þ 2c2�
�

ð����
 þ ����
Þ: (74)

Since Eqs. (73) are covariant, we can use any frame to

study causality of our DTT. The frame u� ¼ ð1; ~0Þ turns
out to be very convenient. In this frame we have


�� ¼ ð�t; ~wÞ (75)

and


��� ¼
A B1 B2 B3

B1 d1
B2 d2
B3 d3

2
6664

3
7775: (76)

In writing the above equations, we have used the general
decompositions of a vector V� and a tensor W�� in time-
like and spacelike parts

V� ¼ Vu� þ X� and

W�� ¼ Au�u� þ B�u� þ u�C� þ E��
(77)

with

V ¼ �u�V
�; X� ¼ �

�
� V�;

A ¼ W��u�u�; B� ¼ ���
�W��u�;

C� ¼ ��
�
�W��u�; and E�� ¼ �

�
���

�W
��:

(78)

Note that X�u� ¼ B�u� ¼ C�u� ¼ E��u� ¼ E��u� ¼
0, and that, being real and symmetric, Eij can be diagonal-
ized. In the case of 
��� we have put 
�ij ¼
diagðd1; d2; d3Þ. Since 
��� should remain traceless and

symmetric (as ���), we have B� ¼ C� ¼ ð0; ~BÞ and d1 þ
d2 þ d3 ¼ A.

In the frame u� ¼ ð1; ~0Þ we have

M
�
�;
jE ¼ 8aT5

E½
�
0 ð6
�0

0 þ 

�Þ � 


�
� 

0 � 


�


�0�

(79)

and

T5
EM

�
�
;��jE ¼ 2c1


�
0

�
�3
�i
�i

j
�j � 3
�i
�i

j
�j þ 7

3

�i

i
�j
�j þ 
�i
�i
�0

0

�
� c1


�
i 
�0ð
�i

j
�j

� 2

i
�j
�jÞ � c1

�
i 

0ð
�i
�j
�j � 2
�i
�j
�jÞ � ðc1 þ 4c2Þ
�

i ð

0
�i
�j
�j þ 
�0

i
�j
�jÞ
� c1

2

�
0 
��ð
�i

i � 3
�0

0Þ þ ðc2 � c1Þ
�

i ð
�i

0 þ 
�0

iÞ
��: (80)

Note that M
�
�
;� is frame invariant [see Eq. (73)].

Putting

r� ¼ M�
�;
jE
��
�
;

z� ¼ M�
�
;�jE
��

��; and

s� ¼ M
�
�
;��jE
��

���

(81)

we get, from Eqs. (75), (76), (79), and (80),

r� ¼ 8aT5
E

�
5ð
�0Þ2 þX3

i¼1

ð
�iÞ2;�2
�0
 ~�

�

¼ 8aT5
E

�
5t2 þX3

i¼1

w2
i ;�2t ~w

�
; (82)

z� ¼ b
��
�
�� ¼ bð�tAþ ~B � ~w;�tBj þ djw

jÞ;
(83)

and

s� ¼ T�5
E

�
c1

�
12Gþ 26

3
A2

�
;�½c1ð3dj þ AÞ

þ 4c2dj�Bj

�
; (84)

where G � P
iðdiÞ2, j ¼ ð1; 2; 3Þ and no sum is implied in

the spatial part. So, we must now see whether y� ¼ r� þ
z� þ s� is timelike and future oriented, for arbitrary val-
ues of the fluctuations. It is clear that r� poses no problem;
it is timelike and future oriented if a > 0. This was ex-
pected since r� corresponds to a perfect fluid.
Before analyzing the vectors z� and s�, it will be

convenient to determine the constraints that the transver-
sality of ��� imposes on them. We have found before that,
in order for the DTT to be consistent, the nonequilibrium
tensor had to be transverse. From a physical point of view,
this meant that the heat flow and the bulk viscosity remain
zero when the conformal fluid departs from equilibrium.
This is a sensible result since we want the theory to remain
conformal even in the presence of dissipation. Therefore,
the condition we must impose is

��ð���jE þ 
���Þ ¼ ð��jE þ 
��Þ
��� ¼ 0 (85)
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where we have used that ���jE ¼ 0. Using Eqs. (75) and
(76) we get

��
�
�� ¼ ð�~tAþ ~w � ~B;�~tBj þ djw

jÞ (86)

with ~t ¼ ðtþ T�1
E Þ, TE being the equilibrium temperature

of the fluid. Requiring 
��� to be transverse we obtain

~tA ¼ ~w � ~B and ~tBj ¼ djw
j ðno sum in jÞ (87)

or

A ¼ 1

~t2
X3
j¼1

djw
2
j : (88)

Using these results obtained from the transversality of
���, we can rewrite the vector z� in a simple way:

z� ¼ b

TE

ðA; ~BÞ: (89)

Therefore, putting l� ¼ z� þ s� we have

l0 ¼ b

TE

Aþ c1
T5
E

�
12Gþ 26

3
A2

�
and

li ¼
�
b

TE

� T�5
E ½c1ð3di þ AÞ þ 4c2di�

�
Bi:

(90)

In order to prove that ðl0Þ2 > ðliÞ2 (i.e., that l� is timelike)
it is convenient to reexpress l� in tensorial notation. From
Eq. (87) we get

~B ¼ 1

~t
ðd � ~wÞ and TrðdÞ ¼ 1

~t2
ð ~w � d � ~wÞ; (91)

where d ¼ dij is the spatial part of 
���, which we do not

assume to be diagonal. Using these relations, l� becomes

l0 ¼ b

~t2TE

~w � d � ~wþ 26c1
3~t4T5

E

ð ~w � d � ~wÞ2 þ 12c1
T5
E

d:d and

~l ¼ b

~tTE

d � ~w� c1
~t3T5

E

ð ~w � d � ~wÞðd � ~wÞ

� ð3c1 þ 4c2Þ
~tT5

E

ðd2 � ~wÞ; (92)

where d:d stands for Trð½d�2Þ. It is clear that if ~w ¼ 0, l� is
trivially timelike and future oriented, provided c1 > 0, and
therefore the theory is causal in this case. By continuity, the
DTT will remain causal provided ~w is not too large. One
can actually quantify this (at lowest order) by keeping

linear terms in ~w and requiring that ðl0Þ2 > ~l � ~l, but the
resulting expression is not too illuminating.

V. ADIABATIC EXPANSION IN VELOCITY
GRADIENTS

In this section, we set up a consistent adiabatic expan-
sion of the DTT to compare with previous approaches
based on conformal invariants, first put forward in

Refs. [20,21]. As stated in the Introduction, we will limit
ourselves to Minkowski space-time.
For a conformal fluid in flat space-time, the dissipative

part of the stress-energy tensor complete at second order in
velocity gradients can be written as [20,21,30,31]

���
c:i: ¼ ��
�� þ ���

�
S���

ð1Þ D
�
 þ 1

3

��ðu
;
Þ

�

þ �1

�2
S���

ð1Þ 
�

�

� þ �2

�
S���

ð1Þ 
�

����

þ �3S
���

ð1Þ ��

���� (93)

where the subscript c:i: is a remainder that this form of �2 is
constructed from conformal invariants (as explained in
detail in Refs. [20,21,30,31]). D ¼ u�@

� is the convective

time derivative, ð��; �iÞ are second-order transport coeffi-
cients, and��� is the vorticity. As already mentioned, this

expression for �2 represents an extension of the Israel-
Stewart entropy-wise approach.
We will now show that, for the case �2;3 ¼ 0, �

��
c:i: can be

obtained from a consistent adiabatic expansion (at second
order in velocity gradients) of the exact hydrodynamic
equations. We start by requiring that ���

2 calculated from

� be equal to �
��
c:i: calculated from second-order (in velocity

gradients) conformal invariants. We have

b��� þH�����
�����


¼ ��
�� þ ���

�
S���

ð1Þ D
�
 þ 1

3

��ðu
;
Þ

�

þ �1

�2
S
���

ð1Þ 
�

�

� þ �2

�
S
���

ð1Þ 
�

����

þ �3S
���

ð1Þ ��

���� (94)

where we have put [see Eq. (66)]

H�����
 ¼ ���
X
i

ciS
���

ðiÞ

¼ ~c1T
�4

�
1

4
ð
��S

���

ð1Þ þ 
��S

���

ð1Þ

þ 
��S���
ð1Þ þ 

�S����ð1Þ Þ � 1

3
���S���
ð1Þ

�
:

(95)

Putting

��� ¼ �
��
ð1Þ þ �

��
ð2Þ ¼ ��

b

�� þ �

��
ð2Þ (96)

in Eq. (94), and retaining terms up to second order we get
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���
ð2Þ ¼ ���

�
S���

ð1Þ D
�
 þ 1

3

��ðu
;
Þ

�

þ �1

�2
S���

ð1Þ 
�

�

� þ �2

�
S���

ð1Þ 
�

����

þ �3S
���

ð1Þ ��

���� � �2

b2
H�����

��
�
: (97)

Using Eq. (95), we can rewrite the last equation more
explicitly

���
ð2Þ ¼ ���

�
<D
��> þ 1

3

��ðu
;
Þ

�

þ
�
�1

�2
� �2~c1T

�4

b2

�

<��
�>

�

þ �2~c1T
�4

3b2
���
�

�
 þ �2

�

<����>

�

þ �3�
<����>

� ; (98)

where we introduced < . . .> to denote the spatial, sym-
metric, and traceless projection of a tensor:

B<��> ¼ S
����
ð1Þ A��: (99)

At second order in velocity gradients, the equation

A
��
;
 ¼ I�� reads

�
@A
��

E


��

þ @G
���


@��

�ð1Þ
�


�
��;
 þG
���


@��


@���

�ð1Þ
��;


¼ �D���
ð�ð1Þ
�
 þ �ð2Þ

�
Þ þ gT�8�����

ð1Þ�

ð1Þ
�
;

(100)

where we have used Eqs. (55) and (64). Explicitly, we have

D���
�ð2Þ
�
 ¼ ���

ð2Þ

¼ �@G
���


@��

�ð1Þ
�
��;
 �G
���


@��


@���

�ð1Þ
��;


þ gT�8�����

ð1Þ�

ð1Þ
�
: (101)

The crucial point is that, in order for �
��
c:i: to be derivable

from the DTT, both expressions for �
��
ð2Þ , given in Eqs. (97)

and (101), should coincide. We see immediately that (ac-
tually, this equation holds for the exact ��
)

G
���

@��


@���

�ð1Þ
��;
 ¼ G
���
�ð1Þ

�
;
: (102)

Using Eq. (56), we can rewrite Eq. (101) as

���
ð2Þ ¼ 12c1T

�4ð4u�u
 þ 
�
Þ���
ð1Þ��;


þ 2ð2c1 þ c2ÞT�4ð�
�
ð1Þ�

�
;
 þ �
�

ð1Þ�
�
;
Þ

� 12c1T
�5u
S

���

ð1Þ �ð1Þ

�
;
 þ gT�8����
�

ð1Þ�

ð1Þ
�
:

(103)

The third term becomes

� 12c1T
�5S

���

ð1Þ D�ð1Þ

�
 ¼ 12�c1
b

T�5<D
��>; (104)

which reproduces the first term of Eq. (98) if �� ¼
12c1=ðbT5Þ. Using that

u
;
 ¼ �3D lnT; (105)

it can be seen that the first term of Eq. (103) reproduces the
second term of Eq. (98). The second term of Eq. (103)
reproduces the third and fourth terms of Eq. (98), provided

�1 ¼ �3

bT5

�
�4þ �

b

�
ð2c1 þ c2Þ: (106)

The last term of (103) reproduces the fifth term of Eq. (98)
if 2c1þc2¼3gT�4�2. However, it is not possible to re-
produce, from Eq. (103), the vorticity terms of Eq. (98). So,
we conclude that the DTTwe have constructed is limited to
the case �2;3 ¼ 0. We note that this is not a serious re-

striction on the application of the DTT to heavy-ion colli-
sions (see especially Ref. [8]).
We have proven that (for �2;3 ¼ 0) ���

c:i:, as given by

Eq. (93), can be obtained from a consistent adiabatic
expansion (at second order in velocity gradients) of the
exact divergence-type theory we have developed. This is
one of the most important results of this work.
We have already proven that the DTT satisfies the sec-

ond law. It is clear that its adiabatic expansion satisfies it
too. It is interesting to remark that, when expanding the
entropy production given in Eq. (65), i.e., when putting

��� ¼ �ð1Þ
�� þ �ð2Þ

��, terms up to fourth order in velocity

gradients arise. This agrees with the entropy production
form calculated by Loganayagam in Ref. [30], based on the
developments of Refs. [20,21]. Dropping fourth-order
terms in the entropy production, although it may be justi-
fied under some circumstances, actually spoils the consis-
tency of the adiabatic expansion (see Ref. [31] for
interesting discussions on higher order terms in the entropy
production).

VI. BOOST INVARIANT FLOW

We will now obtain the equations of motion of the DTT
for the case of Bjorken flow [44] (see also
Refs. [3,7,13,20]), which, besides being much more simple
than general flow, is a successful toy model of heavy-ion
collisions in the midrapidity region. The comparison be-
tween the equations of the DTT and the second-order ones
for the case of boost invariant flow is interesting because it
clearly shows the difference between the exact and trun-
cated equations, in a relatively simple situation. In the last
part of this section, we compare the numerical solution to
the exact and truncated equations.
The motion in the Bjorken flow is a 1D expansion, along

an axis which we choose to be z, with local velocity equal
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to z=t. It is convenient to choose comoving coordinates
(Milne coordinates), proper time �, and rapidity c , given
by

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � z2

p
and c ¼ arctanhðz=tÞ: (107)

The advantage of using these coordinates is that each
element is at rest: ðu�; u?; uc Þ ¼ ð1; 0; 0Þ. Although the
velocity vector is constant, the dynamics is nontrivial
because not every Christoffel symbol is zero. The metric
tensor is

g�� ¼ diagðg��; gxx; gyy; gc c Þ ¼ diagð1;�1;�1;��2Þ
(108)

where ðx; yÞ denote transverse directions, so we have

D � u�@
� ! @� and @�u

� ! 1

�
: (109)

The only nonvanishing component of the dissipative part of
the stress-energy tensor is the ðc ; c Þ component. Note that
the motion is irrotational, and that the energy density and
the dissipative part of the stress-energy tensor only depend
on proper time (i.e., are independent of rapidity). The only
conservation equation that is nontrivial for Bjorken flow is
the energy equation, i.e., u�T

��
;� ¼ 0, where T�� is the

complete stress-energy tensor.

A. Second-order theory

At second order in velocity gradients, the hydrodynamic
equations for Bjorken flow are (see Refs. [3,8,20] for de-
tailed discussions)

@�� ¼ ��þ p

�
þ�c

c

�

with @��
c
c ¼ ��c

c

��
þ 4�

3���
� 4

3�
�c

c � �1

2���
2
½�c

c �2;

(110)

where, in the notation used here,

��� � �
��
1 þ �

��
2 : (111)

Actually, the differential equation for �c
c shown in

Eq. (110) is exact up to terms which are second order in
velocity gradients. It is obtained by replacing 
�� by���

in the gradient expansion of the latter [20] [see Eq. (93)].

For a conformal perfect fluid in d ¼ 4, �ð�Þ ¼ C��4=3,
where C is a constant. Because of conformal invariance,
the viscosity and the second-order transport coefficients
must scale as follows:

�¼C�0

�
�

C

�
3=4

�� ¼ �0�

�
�

C

��1=4
�1 ¼C�0

1

�
�

C

�
1=2

;

(112)

where �0, �
0
�, and �0

1 are constants.

Note that the Navier-Stokes equations are recovered
formally by setting ��, �1 ! 0, whereby

�c
c j1 ¼

4�

3�
: (113)

B. Divergence-type theory

Projection of Eq. (68) onto u� leads to

D� ¼ �ð�þ pþ 1
3
~c1T

�4������Þr�u
� þ b���
��

þ ~c1T
�4�����

�
��: (114)

For Bjorken flow, energy conservation reads

@�� ¼ � 1

�

�
�þ pþ 2

3
ð2c1 þ c2ÞT�4½�c

c �2
�
þ b

�
�c
c

(115)

while the equation A
��
;
 ¼ I�� becomes

12c1T
�5

�2
@��

c
c � 4b

3T�
þ 8c1T

�5
�c
c

�3

¼ � b2

�T
�c
c þ 3gT�8½�c

c �2; (116)

where we made use of Eq. (105).
The DTT as well as the second-order theory reduce to

Eckart’s theory when retaining first-order velocity gra-
dients. Therefore, it is clear that the hydrodynamic equa-
tions of both theories must coincide in that limit (of course,
this statement is valid for general flow, but we will discuss
Bjorken flow only). Noticing that at first order in gradients
we can write ��� ¼ b���

ð1Þ and ðc1; c2; g; ��; �1Þ ¼ 0, we

immediately see that the hydrodynamic equations of the
DTT and the second-order theory [Eqs. (115), (116), and
(110), respectively] coincide. From Eq. (116) we recover
the Navier-Stokes limit given in Eq. (113).
The comparison between the equations of both theories

beyond first order in velocity gradients becomes quite
complicated, because, being �

��
2 quadratic in ���, ���

and ��� are not linearly related anymore [see Eq. (111)]. In
order to carry out this comparison, we solve both sets of
differential equations numerically in the next subsection.
Before doing that, it is convenient to reexpress (using the
results of the previous section) the equations of the DTT in
terms of ð�; ��; �1Þ instead of ðb; c1; c2Þ. Without loss of
generality, we can fix b ¼ � (this means �

��
ð1Þ ¼ �
��),

whereby

c2 ¼ �T5

3

�
���
2

þ �1

�2

�
and c1 ¼ �T5��

12
: (117)

Note that g is completely specified once c1 and c2 are
known:
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g ¼ ��1T
9

9�4
: (118)

Equations (115) and (116) then read

@�� ¼ � 1

�
ð�þ p� TF1½�c

c �2Þ þ
�

�
�c
c (119)

with

F1 ¼ 2�1

9�2
; (120)

and

@��
c
c ¼ E1 þ E2�

c
c þ E3½�c

c �2 (121)

with

E1 ¼ 4�

3T��
E2 ¼�

�
2

3�
þ �2

T��

�
E3 ¼��1T�

2

3���
5
:

(122)

The dissipative part of the stress-energy tensor in the DTT
is constructed from the solution to Eq. (121). We have

�c1c þ �c2c ¼ ��c
c þ F1T½�c

c �2: (123)

C. Comparison of numerical solutions

In this section, we compare the solutions to the hydro-
dynamic equations of the DTT, second-order and Navier-
Stokes theories. We focus on the inverse Reynold’s number

R�1 ¼ �c
c

�þ p
; (124)

and on the pressure isotropy

PL

PT
¼ p��c

c

pþ�c
c =2

: (125)

These two quantities are relevant parameters to character-
ize the hydrodynamic evolution (see, for instance,
Refs. [9,11,13–15]). Ideal fluids are characterized by
R�1 ¼ 0 and PL=PT ¼ 1. Note that, as already mentioned,

in the DTT we have �c
c ¼ �c1c þ �c2c . When solving the

hydrodynamic equations, one must bear in mind that the
transport coefficients are functions of the energy density �,
as given by Eq. (112). In particular, we will focus on the
strongly-coupled super Yang-Mills plasma, for which we
have [20]

�� ¼ 2ð2� ln2Þ �
sT

and �1 ¼ �

2�T
; (126)

where s is the entropy density.
In the following, we present the results for two relevant

values of�=s. This value is modified by changing the value
of �0. We consider �=s ¼ 0:09, which is very close to the
lower bound imposed by the AdS/CFT correspondence

(�=s � 1=4�), and �=s ¼ 0:375, which is close to the
upper bound for the quark-gluon plasma found by compar-
ing dissipative hydrodynamics to elliptic flow measure-
ments (�=s � 0:5) [8]. As initial conditions, we set

�c
c ð�0Þ ¼ 0, �0 ¼ 0:5 fm=c, and �ð�0Þ ¼ 10 GeV=fm3

in all calculations.
In Fig. 1 we compare the evolution of the inverse

Reynold’s number with proper time for the DTT, the
second-order and Navier-Stokes theories with �=s ¼
0:09. The most important feature is that the DTT shows a
faster approach to ideal hydrodynamics. Figure 2 shows the
same comparison but for �=s ¼ 0:375. As in the previous
case, the DTT shows a faster approach to the ideal fluid
behavior.
In Fig. 3 we show the evolution of the pressure isotropy

for �=s ¼ 0:09. It is clearly seen that the approach to ideal
hydrodynamics is faster in the DTT, which also occurs with
�=s ¼ 0:375 (Fig. 4).

0

0.02

0.04

0.06

0.08

0.1

0.12

0 1 2 3 4 5 6 7

R
-1

τ-τ0 [fm/c]

DTT
1st Order

2nd Order

FIG. 1. Inverse Reynold’s number R�1 as a function of proper
time, for the DTT, second-order and Navier-Stokes theories with
�=s ¼ 0:09.
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FIG. 2. Inverse Reynold’s number R�1 as a function of proper
time, for the DTT, second-order and Navier-Stokes theories with
�=s ¼ 0:375.
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We note that, with respect to the second-order theory,
our results are in good agreement with those of previous
studies [11–15]. Taking into account the behavior of the
two quantities that we analyzed, we arrive at the important
conclusion that the relaxation towards ideal hydrodynam-
ics is faster in the DTT than in the second-order theory.
This means that, as expected on theoretical grounds, the
hydrodynamic evolution in the DTT is closer to that ob-
tained from transport theory (see, in particular, the detailed
comparison between Navier-Stokes, Israel-Stewart, and
covariant transport theory carried out by Huovinen and
Molnar in Ref. [14]).

VII. SUMMARYAND CONCLUSIONS

In this work, we have studied the (nonlinear) hydro-
dynamical description of a conformal field within the
theoretical framework of divergence-type theories. We
proved that the theory we develop is causal (in a set of
fluid states near equilibrium) and satisfies the second law
exactly. Since it does not rely on gradient expansions, it
goes beyond second-order (in velocity gradients) theories,
thus being a closed theory. However, it is limited to the
case where the second-order transport coefficients �2 and
�3 vanish. For this case, we showed that the second-order
stress-energy tensor constructed from conformal invariants

[20,21,30] can be consistently derived via an adiabatic
expansion from the DTT.
As the most simple example, we have also obtained the

hydrodynamic equations of the DTT for Bjorken flow, and
compared them, analytically and numerically, with those of
second-order and Navier-Stokes theories. The numerical
calculations indicate that the relaxation towards ideal hy-
drodynamics is substantially faster in the DTTas compared
to the second-order theory. This indicates that the DTT is a
better approximation to transport theory than the second-
order theory, as expected since the former includes all-
order velocity gradients.
As stated in the Introduction, we think that the theory we

have presented may be useful in the analysis of early-time
dynamics and in the evolution of initial state fluctuations in
heavy-ion collisions, essentially because the theory is not
based on an expansion in velocity gradients. The extension
of the DTT to include the case �2;3 � 0 is also interesting.

Work is in progress along these lines.
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