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Percolation of heteronuclear dimers irreversibly deposited on square lattices
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The percolation problem of irreversibly deposited heteronuclear dimers on square lattices is studied. A dimer
is composed of two segments, and it occupies two adjacent adsorption sites. Each segment can be either a
conductive segment (segment type A) or a nonconductive segment (segment type B). Three types of dimers are
considered: AA, BB, and AB. The connectivity analysis is carried out by accounting only for the conductive
segments (segments type A). The model offers a simplified representation of the problem of percolation of
defective (nonideal) particles, where the presence of defects in the system is simulated by introducing a mixture
of conductive and nonconductive segments. Different cases were investigated, according to the sequence of
deposition of the particles, the types of dimers involved in the process, and the degree of alignment of the
deposited objects. By means of numerical simulations and finite-size scaling analysis, the complete phase diagram
separating a percolating from a nonpercolating region was determined for each case. Finally, the consistency of
our results was examined by comparing with previous data in the literature for linear k-mers (particles occupying
k adjacent sites) with defects.
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I. INTRODUCTION

The study of systems of large particles, particularly dimers,
is one of the central problems in statistical mechanics,
and it has attracted the attention of researchers for several
decades [1–28]. In this framework, many authors have focused
their investigations on monolayer films of dimers formed on
uniform surfaces, and especially on the percolation properties
of these systems [19–28].

Percolation is one of the most studied discrete models
in statistical physics [29–36], in which sites or bonds of a
lattice are randomly occupied with a probability p or empty
(nonoccupied) with a probability 1 − p. Nearest-neighboring
occupied sites (bonds) form structures called clusters. The
behavior of the lattice depends on the size and shape of the
clusters. When the occupation probability exceeds a critical
value (called the percolation threshold pc), a macroscopic,
spanning, or infinite cluster, occupying a finite fraction of
the total number of sites (bonds), emerges. The percolation
transition is then a geometrical phase transition where the
critical concentration separates a phase of finite clusters (p <

pc) from a phase where an infinite cluster is present (p > pc).
More general percolation problems can be formulated by

assuming that the element deposited occupies more than one
site (bond) on the lattice. In contrast to the statistic for the
simple particles, the problem becomes considerably difficult
when some sort of correlation exists, and there have been a
few studies devoted to the problem of percolation of structured
objects. In Ref. [19], a model involving the formation of dimers
on the surface was employed to describe the nonlinear depen-
dence of transport properties on composition in mixed-alkali
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ionic conductors. Along the same lines, Holloway [20] studied
the problem of site percolation on a diamond lattice occupied
by a mixture of monatomic and diatomic species. The results
allowed us to understand some of the features of the alloys of
Ge with group III-V semiconductors. The dimer problem was
also addressed by Gao et al. [21], who investigated the process
of dissociative adsorption of dimers and studied the percolating
properties of dissociated monomers as a function of both the
concentration of dimers and the dissociation probability. A
phase diagram separating a percolating from a nonpercolating
region was obtained.

More recently, a generalization of the site-bond percolation
problem, in which pairs of nearest-neighbor sites (site dimers)
and pairs of nearest-neighbor bonds (bond dimers) are in-
dependently occupied, was studied on a square lattice [22].
The complete phase diagram of the system was obtained.
Tarasevich and Cherkasova [23] investigated the percolation
and jamming properties of dimers on three-dimensional
(3D) simple-cubic lattices. Later, percolation and jamming
phenomena were studied for anisotropic sequential deposition
of dimers on a square lattice [24]. The influence of dimer
alignment on electrical conductivity was examined.

The results in Refs. [19–24] were calculated by means
of numerical simulations. From a theoretical point of view,
the inherent complexity of the system still represents a major
difficulty in the development of accurate analytical solutions.
One way to overcome these theoretical complications is
to develop simplified models. Along these lines, a cluster-
exact approximation was recently introduced [25–27]. This
theoretical approach, based on the exact calculations on finite
cells, allowed us to study the percolation of site dimers [25]
and bond dimers [27] on square lattices, and the site-bond
percolation problem for triangular lattices [26].

In all of the papers mentioned above [19–28], the study was
restricted to (i) homonuclear dimers and (ii) homogeneous
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surfaces. In the case of point (ii), the effect of surface
heterogeneity on the percolation properties of irreversibly
deposited dimers was analyzed in a recent paper from our
group [28]. In Ref. [28], the heterogeneous substrate was
represented by two kinds of sites forming square patches of
l × l sites, which can be arranged either in a deterministic
chessboard structure or in a random way. Thus, the system
was characterized by the distribution (ordered or random) of
the patches, the patch size l, and the probability of occupying
each patch θ1 and θ2. By means of numerical simulations
and finite-size scaling analysis, a complete (θ1 − θ2 − l) phase
diagram separating a percolating and a nonpercolating region
was determined.

With respect to point (i), there is a lack of systematic studies
addressing the percolation problem of heteronuclear dimers.
The objective of this paper is to provide a thorough study in this
direction. For this purpose, extensive numerical simulations
have been performed to study the percolation of dimers
composed of segments A and B. Three types of particles were
considered: AA, BB, and AB. The model offers a simplified
representation of the problem of percolation of defective (non-
ideal) particles, where the presence of defects in the system is
simulated by introducing a mixture of conductive or ideal seg-
ments (A) and nonconductive or imperfect segments (B). The
results obtained are discussed and compared with data from
Ref. [23], where the effect of defects on the percolation of lin-
ear k-mers (particles occupying k adjacent sites) was studied.

This paper is organized as follows: The model and the
simulation technique used to obtain the desired quantities for
describing the percolation phase transition are described in
Sec. II. Results are presented and discussed in Sec. III. Finally,
some conclusions are drawn in Sec. IV.

II. MODEL AND CALCULATION METHOD

The substrate is represented by a two-dimensional square
lattice of M = L × L sites with periodic boundary conditions.
A dimer is composed of two segments, and it occupies two
adjacent adsorption sites. Thus, a lattice site is occupied by one
segment or it is empty. Each segment can be either a conductive
segment (segment type A) or a nonconductive segment
(segment type B). Three types of dimers have been considered:
AA, BB, and AB, and the connectivity analysis is carried out
by accounting only for the conductive segments (type A).

To rationalize our study, three different cases have been
considered, according to (i) the sequence of deposition of the
particles and (ii) the types of dimers involved in the process:

Model I. Starting from an initially empty lattice, AA dimers
are deposited until a coverage θAA is reached. In a second stage,
a fraction θAB of AB dimers is deposited on the lattice. To
facilitate the presentation in this section, the coverage reached
in the first stage will be denoted by θ1, and the coverage reached
in the second stage will be denoted by θ2. In this case, θ1 = θAA

and θ2 = θAB .
Model II. Starting from an initially empty lattice, AB dimers

are deposited until a coverage θ1 = θAB is reached. In a second
stage, a fraction θ2 = θAA of AA dimers is deposited on the
lattice.

Model III. Starting from an initially empty lattice, BB

dimers are deposited until a coverage θ1 = θBB is reached. In

a second stage, a fraction θ2 = θAA of AA dimers is deposited
on the lattice.

The other possible combinations were not taken into
account for the following reasons: In the case of θ1 = θBB(θAB)
and θ2 = θAB(θBB), the fraction of conductive segments on the
lattice is small, and the system does not percolate. In fact, even
for the limiting case of θAB ≈ 0.907 [37] (and θBB = 0), the
coverage of percolating particles (type A) is approximately
0.907/2 = 0.454, while the percolation threshold is around
0.59 [34]. On the other hand, the combination θ1 = θAA

and θ2 = θBB is trivial: if AA dimers were deposited in the
first stage, the percolation results would coincide with the
standard problem of dimers on square lattices [38,39]. The
later deposition of type BB dimers does not have any influence
in the percolation process.

In addition, for each model (I, II, and III), two different
cases were investigated, according to the degree of alignment
of the deposited objects:

Isotropic case. The dimers are deposited isotropically on the
lattice (the probability of deposition along the x axis equals
the probability of deposition along the y axis).

Nematic case. The dimers are deposited along one of the
directions of the lattice (for instance, along the x axis), forming
a nematic phase.

In the filling process, the dimers are deposited randomly,
sequentially, and irreversibly on the lattice. The procedure is
as follows:

(i) One lattice site i is chosen at random.
(ii) If the site i is empty, then one of the z nearest neighbors

of i is chosen randomly. z = 4 (z = 2) for the isotropic
(nematic) case.

(iii) If both sites are unoccupied, a dimer is deposited on
those two sites.

(iv) Steps (i)–(iii) are repeated until the desired concentra-
tions (θ1,θ2) are reached or until jamming conditions. Due to
the blocking of the lattice by the already randomly deposited
dimers, the limiting or jamming coverage, θj ≡ θ (t = ∞), is
less than that corresponding to the close packing (θj < 1).
Note that θ (t) represents the fraction of lattice sites covered at
time t by the deposited objects. Consequently, the total lattice
coverage (θ1 + θ2) ranges from 0 to θj . An extensive overview
of this field can be found in the excellent work by Evans in
Ref. [6] (and references therein).

The central idea of the percolation theory is based on finding
the minimum coverage degree for which at least a cluster (a
group of occupied sites in such a way that each one has at
least one occupied nearest-neighbor site) extends from one
side to the opposite one of the system. This particular value
of the coverage degree is called the critical concentration or
percolation threshold, and it determines a phase transition in
the system. In the present model, given θ1, we look for the
value of θ2 for which percolation occurs, and that value will
be our percolation threshold θc

2 .
As the scaling theory predicts [40], the larger the system size

being studied, the more accurate are the values of the threshold
obtained therefrom. Thus, the finite-size scaling theory gives
us the basis to achieve the percolation threshold and the
critical exponents of a system with reasonable accuracy. For
this purpose, the probability R = RU

L (θ1,θ2) that a lattice
composed of L × L sites percolates at concentrations θ1 and
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FIG. 1. Snapshot of a typical configuration of dimers deposited
on a homogeneous square surface for model II and the isotropic
case. The figure shows only a fraction of the whole lattice. Solid
circles correspond to A segments (conductive segments), while open
circles represent B segments (nonconductive segments). In the figure,
θ1 = θAB = 0.2 and θ2 = θAA = 0.3.

θ2 can be defined [34,41,42]. RU
L (θ1,θ2) is the probability of

finding either a rightward or a downward percolating cluster.
In the simulations, each run consists of the following steps:

(a) construction of the lattice for the desired fractions (θ1,θ2),
according to the scheme mentioned before, and (b) cluster
analysis by using the Hoshen and Kopelman algorithm [43].
n runs of two such steps are carried out to obtain the number
of runs mU for which a percolating cluster is found. Then,
RU

L (θ1,θ2) = mU/n is defined, and the procedure is repeated
for a fixed value of θ1 and different values of θ2. A set of
n = 10 000 independent samples is numerically prepared for
each model and each pair (θ1,θ2).

The standard theory of finite-size scaling allows us
to estimate the percolation threshold from simulation
data [34,41,42,44]. The method used here is from the extrap-
olation of the positions θc

2 (L) of the maxima of the slopes
of RU

L (θ1,θ2). For each size, dRU
L (θ1,θ2)/dθ2 is calculated

and fitted by a Gaussian function. The corresponding value
of θc

2 (L) is obtained from the central point of the Gaussian
function. The following relationship is expected in order to
obtain the extrapolated θc

2 (∞) value:

θc
2 (L) = θc

2 (∞) + CL− 1
ν (fixed θ1), (1)

where C is a nonuniversal constant, and the critical exponent
ν is expected to be equal to ν = 4/3, as in the case of standard
random percolation [34,38,39,41,42,44].

III. RESULTS AND DISCUSSION

Figures 1 and 2 show frames corresponding to a portion of
the surface covered by dimers deposited according to model II.
Solid circles denote A segments (conductive segments), while
open circles represent B segments (nonconductive segments).
The parameters in the figures are as follows: isotropic case
with θ1 = θAB = 0.2 and θ2 = θAA = 0.3, Fig. 1; and nematic
case with θ1 = θAB = 0.2 and θ2 = θAA = 0.4, Fig. 2.

FIG. 2. Same as in Fig. 1 for model II, the nematic case, θ1 =
θAB = 0.2 and θ2 = θAA = 0.4.

To study the percolation properties of the system, the
scheme described in the previous section was used. Thus,
RU

L (θ1,θ2) was calculated as a function of θ2 for each model,
each fixed value of θ1, and different lattice sizes (L = 64,
100, 128, 160, 200, 256, and 320). For model II (the isotropic
case), the calculations were extended up to L = 400; and for
model III (the isotropic and nematic cases), the simulations
were performed up to L = 600.

In Fig. 3, the variation of the percolation probability
RU

L (θ1,θ2) with θ2 is shown for a typical case: for model I,
the isotropic case, θ1 = θAA = 0.4 and different values of L,
as indicated. As can be observed, for increasing values of L,
the transition between nonpercolating and percolating regions
becomes more abrupt, and the value of θ2 (=θc

2 ) corresponding
to the inflection point of RU

L (θ1,θ2) [maximum in the derivative
of RU

L (θ1,θ2) with respect to θ2] increases.
Figure 4 shows the extrapolation of θc

2 (L) toward the
thermodynamic limit according to the analytical prediction
given by Eq. (1) for the data in Fig. 3. Symbols represent
simulation results, and the solid line is the theoretical fit from
Eq. (1). This is how we obtain the percolation threshold for
each model and degree of alignment, and each particular value
of θ1.

FIG. 3. Fraction of percolating lattices RU
L (θ1,θ2) as a function

of θ2 for model I, the isotropic case, and θ1 = θAA = 0.4. Different
values of L are considered, as indicated.
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FIG. 4. Extrapolation of θc
2 (L) toward the thermodynamic limit

according to the theoretical prediction given by Eq. (1), and the same
parameters as in Fig. 3. Symbols represent simulation results, and the
solid line is the theoretical fit from Eq. (1).

The study in Figs. 3 and 4 was repeated for models I–III
(the isotropic case and different values of θ1). The results,
shown in Fig. 5, represent the complete percolation phase
diagram of isotropic dimers deposited on square lattices. To
better compare the three models, the data in Fig. 5 are presented
in terms of θAA (horizontal axis for models I–III), θAB (vertical
axis for models I and II), and θBB (vertical axis for model III).

Figure 5 includes the curve of limiting values of the total
coverage (solid line). This curve is obtained from the jamming
conditions (i) θAA + θAB � θj = 0.907(3) (models I and II)
and (ii) θAA + θBB � θj = 0.907(3) (model III), where θj =
0.907(3) is the jamming coverage corresponding to isotropic
dimers on square lattices [6]. The region below this jamming
curve represents the space of all the allowed values of the total
coverage (θAA + θAB for models I and II, and θAA + θBB for
models III). On the other hand, the region above this curve
corresponds to a forbidden region of the space of values of the
total coverage.

FIG. 5. Percolation phase diagram of isotropic dimers for model I
(solid squares), model II (open squares), and model III (solid circles).
The symbols divide percolating from nonpercolating regions for each
model. Region 1: forbidden region for models I, II, and III; region 2:
nonpercolating region for models I, II, and III; region 3, percolating
region for models I and II, and nonpercolating region for model III;
and region 4, percolating region for models I, II, and III. In all cases,
the error bar is smaller than the size of the symbols.

FIG. 6. Same as Fig. 5 for perfectly aligned dimers (isotropic
case).

Once the allowed space of the parameters θAA, θAB , and
θBB is determined, the percolation results will be analyzed in
the following. For each model, the separation line between
percolating and nonpercolating regions was calculated: model
I (solid squares), model II (open squares), and model III (solid
circles). In the case of models I and II, a perfect coincidence
is observed in the separation lines. This finding indicates that
the order at which the dimers are deposited does not affect the
proportion of each kind that leads to percolation. In fact, the
deposition scheme can be thought of as a process with two
steps. The first step consists of depositing nonlabeled dimers
until a coverage θ1 + θ2 < θj is reached. In the second step,
the dimers are randomly labeled with AA and AB, according
to the desired fractions. There are different ways to perform
this second step. Among them, model I (II) corresponds to the
case in which AA (AB) dimers are labeled in a first stage, and
AB (AA) dimers are labeled in a second stage (AA → AB)
[(AB → AA)]. Moreover, the different types of dimers could
be labeled simultaneously with adequate probabilities. Clearly,
the obtained results do not depend on the order in which the
dimers are labeled.

With respect to model III, and as is expected, the values
of θAA remain approximately constant around 0.564 (see the
discussion in the next paragraph), and they do not depend on
θBB . The inverse of model III is trivial (see Sec. II and the
previous paragraph).

As can be seen, for the three studied models the separation
lines between percolating and nonpercolating regions are
linear functions, and they cut the abscissa axis at the point
θAA = 0.564. This value was extrapolated by employing the
already known percolating threshold of θc = 0.564(2) for
isotropic dimers on square lattices [38,39]. In this limit, only
AA dimers are present in the system.

To summarize the results in Fig. 5, four regions were
indicated in the figure. Region 1: forbidden region for models
I, II, and III; region 2: nonpercolating region for models I, II,
and III; region 3, percolating region for models I and II, and
nonpercolating region for model III; and region 4, percolating
region for models I, II, and III.

Figure 6 shows the percolation phase diagram for perfectly
aligned dimers according to models I, II, and III. Symbols are
as in Fig. 5. The line separating the allowed from the forbidden

032129-4



PERCOLATION OF HETERONUCLEAR DIMERS . . . PHYSICAL REVIEW E 94, 032129 (2016)

region is also present, and the jamming coverage for nematic
dimers on square lattices is θj = 0.865(1) [45]. The behavior
of the boundary lines between percolating and nonpercolating
regions is qualitatively similar to that discussed in Fig. 5. In this
case, the x intercept is equal to 0.586. This value corresponds to
the percolation threshold for aligned dimers on square lattices,
θc = 0.586(1) [45].

In a recent work by Tarasevich et al. [17], a model of
isotropic k-mers with defects was studied. The k-mers contain
an average fraction d of nonconductive segments (defects).
Given that d is an average fraction, a mixture of different
k-mers is deposited on the lattice. In the particular case of
dimers (k = 2), three types of particles are deposited: ideal
dimers (formed by two conductive segments), nonconductive
dimers (formed by two nonconductive segments), and partially
conductive dimers (formed by one conductive segment and one
nonconductive segment). In Ref. [17], the fraction of conduc-
tive segments corresponding to percolation was calculated as
a function of the fraction of defects d.

The results reported by Tarasevich et al. [17] can be
compared with the present data for models I–III and the
isotropic case. In our case, the fraction of defects can easily be
calculated as

d = 1

2

(
θAB

θAA + θAB

)
(models I and II) (2)

and

d = θBB

θBB + θAA

(model III). (3)

In addition, the fraction of conductive segments (θA) can be
calculated as

θA = (θAA + θAB)(1 − d) (models I and II) (4)

and

θA = (θAA + θBB)(1 − d) (model III). (5)

Figure 7 shows the fraction of conductive segments cor-
responding to percolation (θc

A) as a function of the fraction
of defects for dimers deposited on square lattices according
to model I (solid squares), model II (open squares), model
III (solid circles), and the model proposed in Ref. [17] (open
circles). The solid lines are simply a guide for the eye.

For model III, percolation occurs only through conductive
AA dimers, and, as in the classical problem of dimers on square
lattices [38,39], θc

A(d) remains practically constant around
0.56. On the other hand, in the case of models I and II, AA and
AB dimers are part of the percolating cluster. As in previous
work [17], the presence of defective AB dimers produces the
observed increase in θc

A(d).
It can be seen that the data from Ref. [17], which correspond

to the case in which three types of dimers are mixed (AA, BB,
and AB), fall in an intermediate region between our two limit
cases: the case corresponding to a mixture of AA and AB

dimers (models I and II), and the case corresponding to a
mixture of AA and BB dimers (model III). The analysis in

FIG. 7. Fraction of conductive segments corresponding to per-
colation (θc

A) as a function of the fraction of defects (d) for dimers
deposited on square lattices according to model I (solid squares),
model II (open squares), model III (solid circles), and the model
proposed in Ref. [17] (open circles). The solid lines are simply a
guide for the eye. In all cases, the error bar is smaller than the size of
the symbols.

Fig. 7 show that our results are consistent with the previous
ones obtained by Tarasevich et al. [17].

IV. CONCLUSIONS

Irreversible deposition of dimers on a square homogeneous
lattice was studied. The presence of defects in the dimers
was analyzed. This was introduced as two kinds of segments
composing the dimers: type A (percolating) and type B (non-
percolating). Three different models were considered. Model
I consisted in depositing AA dimers in a first stage and AB

dimers in a second stage. Model II consisted in depositing AB

dimers in a first stage and AA dimers in a second stage. Finally,
model III consisted in depositing BB dimers in a first stage and
AA dimers in a second stage. The connectivity analysis was
carried out by accounting only for the conductive segments.

On the other hand, two ways of deposition were taken into
account: isotropic (with equal probability in both directions)
or nematic (with all the dimers aligned in one direction).
The percolation threshold was analyzed for each model and
deposition mechanism. A linear behavior was reported for the
relationship between the coverage degree of the two species in
the percolation phase diagram. The present results were found
to be consistent with those from a previous work of Tarasevich
et al. in the context of deposition of defective k-mers [17].
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[13] G. Kondrat and A. Pȩkalski, Phys. Rev. E 63, 051108 (2001).
[14] N. I. Lebovka, N. N. Karmazina, Y. Y. Tarasevich, and V. V.

Laptev, Phys. Rev. E 84, 061603 (2011).
[15] Y. Yu. Tarasevich, N. I. Lebovka, and V. V. Laptev, Phys. Rev.

E 86, 061116 (2012).
[16] N. I. Lebovka, Y. Yu. Tarasevich, D. O. Dubinin, V. V.

Laptev, and N. V. Vygornitskii, Phys. Rev. E 92, 062116
(2015).

[17] Y. Yu. Tarasevich, V. V. Laptev, N. V. Vygornitskii, and N. I.
Lebovka, Phys. Rev. E 91, 012109 (2015).

[18] Y. Yu. Tarasevich, A. S. Burmistrov, T. S. Shinyaeva, V. V.
Laptev, N. V. Vygornitskii, and N. I. Lebovka, Phys. Rev. E 92,
062142 (2015).

[19] H. Harder, A. Bunde, and W. Dieterich, J. Chem. Phys. 85, 4123
(1986).

[20] H. Holloway, Phys. Rev. B 37, 874 (1988).
[21] Z. Gao and Z. R. Yang, Physica A 255, 242 (1998).
[22] M. Dolz, F. Nieto, and A. J. Ramirez-Pastor, Eur. Phys. J. B 43,

363 (2005).
[23] Y. Y. Tarasevich and V. A. Cherkasova, Eur. Phys. J. B 60, 97

(2007).

[24] V. A. Cherkasova, Y. Y. Tarasevich, N. I. Lebovka, and N. V.
Vygornitskii, Eur. Phys. J. B 74, 205 (2010).

[25] W. Lebrecht, J. F. Valdés, E. E. Vogel, F. Nieto, and A. J.
Ramirez-Pastor, Physica A 392, 149 (2013).
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