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The problem of community detection is relevant in many disciplines of science. A community is
usually defined, in a qualitative way, as a subset of nodes of a network which are more connected
among themselves than to the rest of the network. In this article we introduce a new method for
community detection in complex networks. We define new merit factors based on the weak and
strong community definitions formulated by Radicchi et al (Proc. Nat. Acad. Sci. USA 101, 2658-
2663 (2004)) and we show that this local definitions properly describe the communities observed
experimentally in two typical social networks.

I. INTRODUCTION

The study of networks ( a set of nodes interconnected
by links) has become a ubiquitous topic in many branches
of science. This is because many systems of interest can
be represented in this way, as for example, Internet, the
WWW, food webs, neural networks, communication net-
works , social networks etc. Many different properties
have been revealed as: small world effect, high network
transitivity, power law degree distributions, etc.(for a re-
cent review on these topics see [Boccaletti et al., 2006])

In this work we focus on one of these properties, the
so called community structure. Community structure is
defined, in a qualitative way, as the possibility of recog-
nizing within the networks, subsets of nodes which are
more connected among themselves that to the rest of the
network.

If we can detect such structures we will get information
of practical importance. Such groups in the WWW might
correspond to sets of web pages on related topics, in the
case of social networks they would indicate groups that
share interests, problems etc. In a metabolic network
it might help to identify groups of nodes which perform
different functions.

It is quite interesting that based only on such a qual-
itative characterization of the communities, many meth-
ods of detecting them have been developed. Among these
methods one has become the most popular, the one devel-
oped by Newman and Girvan [Newman & Girvan, 2004]
(hereafter referred as I, which we analyze in section II)

Only recently quantitative definitions of community
have been put forward by Radicchi et al. which cap-
ture the qualitative one. In [Radicchi et al., 2004] the
authors have defined two kinds of communities, the ones
in strong sense and the ones in weak sense (see section
V).

In this communication we will explore the problem of
the detection of communities. In section II we analyze
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the properties of the method proposed by Newman and
Girvan which is based on the maximization of a merit
factor named modularity (QN ). In section III we will ex-
amine the divisive approach for the maximization of QN

and we will show that it is not capable of finding the op-
timal partition due to the inability of such an approach
to explore the complete set of partitions. We show that
using a strategy in the spirit of simulated annealing this
problem can be circumvented. In Section IV we exam-
ine the meaning of the communities obtained using the
maximization of QN . In section V we will review the
quantitative definitions of Raddicchi et. al. and, based
on these definitions, we will propose new merit factor to
calculate the goodness of a given partition of a network
in communes. In section VI we will show the results of
our method with two examples , well known in the liter-
ature, the Zachary Karate club network and the Bottle
nose dolphins networks. Finally conclusions are drawn.

II. MODULARITY (QN )

A. Community structures in networks

A network G is defined by a set of nodes {n}, (n1,
n2,...,nn.), and a set of links {l}, (l12, l14..., lkm). A link
lij denotes a relation between node ni and node nj . De-
pending on the possible values of lij the resulting net-
work can be of two types. If lij can only have the val-
ues 1 or 0 we will call the network unweighted, other-
wise it will be referred as weighted. In this work we
will focus on unweighted networks. We will consider net-
works such that for every conceivable pair of nodes there
is a path (i.e. a sequence of links {lij ljklkm...}) joining
them, in such a case we say that we are dealing with
connected networks. We will consider that the links are
undirected i.e. lij = lji. We will focus on sparse net-
works for which the number of links in {l}, Nl , is much
less than the maximum possible number of links, Nlmax

with Nlmax
= nn(nn − 1)/2 , with nn the total number



of nodes in {n} . The associated adjacency matrix M is
defined as mij = lij .

The distance between two nodes dij will be defined as
number of links that are to be traversed, when we move
from i to j along the minimum path joining them.

Given the network G we will define a partition P as
a given grouping of the nodes in subsets pi (1 ≤ i ≤
g), while keeping the structure of the adjacency matrix
unaltered.

Following I we will quantify the degree of communality
of a given partition P in the following way:

Given a m-subgraphs partition {Cj}1≤j≤m of the
graph G, where

⋃m

j=1
Cj = G, the mathematical expres-

sion of QN is :

QN =

m
∑

i=1

[

li
L

−

(

di

2L

)2
]

(1)

where li denotes the total number of internal links for
subgraph Ci ⊂ G, di =

∑

j∈Ci
kj , and L = 1

2

∑

j∈G kj is
the total number of links in G.

The term li/L in Eq 1 denotes the actual fraction of
internal links in subgraph Ci, while di/2L can be inter-
preted as the probability of a link to be connected to
some node in subgraph Ci. Then, (di/2L)2 constitutes
the expected fraction of links within subgraph Ci when
all nodes in G are randomly connected, keeping the de-
gree of the nodes fixed. This last ideal random picture
is used to compare with the actual one because it is as-
sumed that corresponds to a situation with no communi-
ties (although it was shown in [Guimerà et al., 2004] that
random networks may have a community structure).

It is then proposed that, if the network under consider-
ation has no community structure, QN equals 0. On the
other hand, if the network under consideration does have
a community structure, the closer the chosen partition is
to the actual community structure of the network, the
larger the modularity QN will be.

In this way, the search of community structures in net-
works is reduced to finding the partition P which maxi-
mizes the modularity QN .

We should notice that this merit factor implies, in turn,
a community definition (which does not necessarily corre-
sponds to the intuitive one stated above): a subgraph Cj

will be a community if the actual number of links that
connects nodes in Cj is bigger than the expected one
when all nodes in the network are randomly connected,
this is to say, when li/L− (di/2L)

2
> 0. Clearly this last

condition depends on the global parameter L Then, we
say that the community definition associated with QN is
non-local

III. COMMUNITY RECOGNITION
ALGORITHMS

In this section we review the algorithm presented in I,
based on edge removal (hereafter referred as ER), and de-

scribe our approach based on Simulated Annealing (here-
after referred as SA) for the maximization of QN .

A. Community recognition via edge removal

Newman and Girvan [Newman & Girvan, 2004] have
proposed to study the structure of the network by an-
alyzing the effect of the removal of links with highest
betweenness. The betweenness bij of a given link lij is :

bij =
∑

paths

α−1

no

∑

lkmǫpathno

δ(lij − lkm) (2)

with
∑

paths the sum over all paths joining the nn

nodes, αno is the degeneracy of the path between nodes
n and o, and

∑

lkmǫpathno
is the sum over all the links

lkm that form the path under consideration. In this way
the link with highest betweenness is the one that appears
most often when we study all the components of all the
minimum paths between all pairs of nodes.

According to this prescription:
i)One calculates the betweenness of all the links in the

network. ii) The one with the highest betweenness is
removed.

The process is continued until a disjoint cluster is ob-
tained. Afterwards,the same procedure is applied to each
of the resulting subgraphs.

Special care is to be taken when the highest between-
ness is degenerate. Because it is not possible to foresee
which will be the optimum cut, we should select at ran-
dom the link to be removed.

In this way, partitions with 2, 3, ..., N
′

subsets can be
obtained. The best one, according to the discussion in
the previous section, is the one that maximizes the mag-
nitude QN .

B. Simulated Annealing Analysis

We now describe a methodology for the calculation of
the maximum modularity resorting to a Simulated An-
nealing [Dorso & Randrup, 1993] calculation in the space
of the partitions of the network under analysis. Sim-
ulated Annealing is a generalization of the well known
Metropolis Monte Carlo (MMC) procedure. MMC con-
sists in the realization of a Markov Chain in the space
of the configurations of the system according to certain
transition probabilities chosen in such a way that the
asymptotic frequency of each state satisfies the Boltz-
mann distribution exp(−βEi)/Z with β = (1/kT ) where
T is the Temperature of the system , Ei the energy of
state i and Z the canonical partition function. The
transition probability qij reads:

qij = min(1, exp(−β(Ej − Ei))



In Simulated Annealing the same procedure is em-
ployed but instead of using the Temperature of the sys-
tem we use a pseudo Temperature, τ, which controls
the behavior of the transition probability and instead
of the energy, the observable that we want to maxi-
mize. The pseudo temperature τ is monotonously low-
ered until an extremum of the relevant observable is at-
tained. In our case the Markov Chain is performed in
the space of the partitions of the network under consid-
eration. The transition probabilities read, in our case,
qij = min(1, exp(−β′(Qj − Qi)) with β′ = 1/τ and Ek

has been replaced by Qk, the modularity of partition k.
Moreover, because we are looking for the maximum of the
modularity (QNj−QNi) stands for (QNinitial− QNfinal).

IV. CASE STUDY

In order to check the properties of the two approaches
above mentioned, we have found it helpful to analyze
the following simple undirected graph Fig.1A). The ad-
vantage of dealing with such a small and simple graph
is that the calculations can be performed by hand and
the properties of the recognition algorithms can be easily
understood.

In Fig.1) we show the comparison between the results
obtained with the above mentioned algorithms (see figure
captions for details).

We first analyze what happens when we apply the edge
removal (ER) approach:

1)We search for the links with highest betweenness,
in this case there is degeneration and links l10,11, l10,12,
l12,13, l11,13 , stand on an equal footing. We then choose
one at random and remove it. In our example we choose
l12,13 obtaining the graph displayed in Fig.1B).

2) We repeat step 1) and we find that the edge with
highest betweenness is l10,11. It should be noticed that
as a consequence of removing this link the graph breaks
up in two pieces Fig.1C). The value of Q is in this case
Q = 0.409.

As we continue in this way we will obtain that the next
breaking of the network takes place when removing link
l10,12. By removing this link we obtain 3 clusters with a
modularity value of Q = 0.405. Notice that the removal
of l11,13 is equivalent to removing l10,12, giving a different
graph with the same value of Q.

We now apply the SA approach. i)If no restriction
on the number of partitions is imposed, we obtain the
result displayed in Fig.1E). In this case the original net-
work is broken into 3 subsets with a modularity value of
Q = 0.446, ii)If, on the other hand, we restrict the num-
ber of partitions to two, we obtain the result displayed
in Fig.1D) , which is the same graph as the one obtained
using ER for two subsets (of course the equivalent con-
figuration resulting from the removal of l10,12 and l11,13

can be obtained as well)
It is relevant to notice that the best result according

to SA cannot be reached using ER, because in order
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FIG. 1: Development of community structures in terms of
the ER and SA analysis. Full arrows denote steps in the ER
approach. Dotted arrows denote results from SA methodol-
ogy. Starting from network A by applying ER methodology
we first get to network B and, after the second removal of
a link, to network C. On the other hand, starting from the
same initial network the SA will give network D if we impose
the constraint that the final configuration should display two
communes. If we do not impose any constraint the result ac-
cording to SA will be network E. It is important to notice
that network E is unreachable from network C. This is the
main drawback of the ER approach.

to get the graph displayed in Fig.1E), from the previous
step in the calculation (Fig.1C), the link l10,11 must be
reconstructed, but this step is not allowed in the ER
methodology.

From this analysis it is clear that the SA algorithm
is able to find a better (as measured by the quantity
Q) solution to the communality analysis than the ER
criterion.

The reason why the ER approach fails to reach the
best result is because this methodology is local and ir-
reversible. On the other hand, when we analyze the se-
quence of results obtained with SA when we impose the
condition of having 2, 3, 4,... partitions, we see that in go-
ing from two partitions to three partitions the link l10,11

appears again. This is no problem in SA because we are
working with different groupings of the nodes and all the
information about the links is conserved at all times.



V. QUANTITATIVE COMMUNITY
DEFINITIONS

In order to formalize the qualitative definition of
community stated in the Introduction, we consider a
graph G containing N nodes, with ki the degree of
node i ∈ G. If C is a subgraph of G with kin

i and kout
i

the number of links of node i ∈ C that connect it to
nodes inside and outside of C respectively. There are
two quantitative community definitions introduced by
Radicchi et al [Radicchi et al., 2004]:

i) Community in strong sense: C is a community
in strong sense if:

kin
i > kout

i ∀i ∈ C (3)

ii) Community in weak sense: C is a community
in weak sense if:

∑

i∈C

kin
i >

∑

i∈C

kout
i (4)

In words: a subgraph C ⊂ G will be a community in
the strong sense if each of its nodes has more links con-
necting it with nodes in C than those that connect it
with other nodes not belonging to C. In the similar way,
C ⊂ G will be a community in the weak sense if the sum
of the numbers of links that interconnect nodes inside C
is larger than the sum of all links that connect nodes in
C with nodes not belonging to C. These community def-
initions are simple, intuitive and local : given a subgraph
C ⊂ G we can decide if it constitutes a community, in
either strong or weak sense, without knowledge of the
entire structure of G.

A. Merit factors for the weak and strong
community definitions.

Given a graph G and a m-subgraphs partition
{Cj}1≤j≤m, where each subgraph Cj ⊂ G constitutes
a community according to any of the local definitions
mentioned in the previous section, we want to define a
quantity that measures the “quality” of each of the result-
ing communities. In the context of the above mentioned
local framework, this quantity must only depend on the
local characteristics of the subgraph Cj . Following the
weak and strong definitions of community, the more in-
ternal links a community has, with respect to the external
ones, the “stronger” it will be. If ki = kin

i + kout
i is the

degree of node i ∈ Cj , where kin
i and kext

i are the num-
ber of internal and external links for node i, we define the
“community strength” (S) that measures the normalized
difference between the number of internal and external
links for nodes in Cj :

S(Cj) =
∑

i∈Cj

kin
i − kout

i

2L(Cj)
(5)

were L(Cj) = 1

2

∑

i∈Cj
ki. Then, −1 ≤ S(Cj) ≤ 1, and

it achieves its maximum value 1 when kout
i = 0 , ∀i ∈

Cj , i.e., when the subgraph Cj is isolated. Cj will be a
community in weak sense if S(Cj) > 0.

The definition of Eq. 5 is valid for unweighted net-
works, but it can be extended to the case with weighted
links. In such a case, we must interpret ki as the sum of
the weights of the links that connect to node i, for both
kin

i and kout
i .

We now introduce the merit factor QW for the weak
community definition as the sum of S(Cj) over all sub-
graphs Cj ⊂ G:

QW =

m
∑

j=1

S(Cj) =

m
∑

j=1

∑

i∈Cj

kin
i − kout

i

2L(Cj)
(6)

As in the case of QN : the bigger QW is, the better the
m-subgraphs partition {Cj}1≤j≤m of G will be, in the
sense of weak community definition. Then, it is possi-
ble to implement the optimization algorithms developed
for QN for this new merit factor QW . Because, each
subgraph Cj ⊂ {Cj}1≤j≤m must satisfy the weak com-
munity definition we include an extra constraint into the
optimization process:

S(Cj) > 0 ∀Cj ⊂ {Cj}1≤j≤m (7)

Now, our definition of optimal partition can be stated
in the following way:

Definition: the optimal m-subgraphs partition
{Cj}1≤j≤m of a graph G in the weak sense is that one
with maximal merit factor QW =

∑

j S(Cj), such that

S(Cj) > 0 , ∀Cj ⊂ {Cj}1≤j≤m.

In the same spirit we now define a merit factor QS for
the strong community definition:

QS =

m
∑

j=1

S(Cj) =

m
∑

j=1

∑

i∈Cj

kin
i − kout

i

2L(Cj)
(8)

with the constraint

(kin
i − kout

i ) > 0 ::: ∀i ∈ Cj (9)

Definition: the optimal m-subgraphs partition

{Cj}1≤j≤m of a graph G in the strong sense is that one
with maximal merit factor QS =

∑

j S(Cj), such that

(kin
i − kout

i ) > 0, ∀ i ∈ Cj ⊂ {Cj}1≤j≤m.

In next section we will show some application examples
of this new merit factors in networks partition problems.

VI. EXAMPLES

A. Zachary’s karate club network.

In all examples presented in this section we have used
a optimization algorithm based in simulated annealing,



FIG. 2: Best partition for Zachary network (color online).
Squares and circles denote the two communities obtained with
our approach when the number of communities are fixed in
two. This partition perfectly corresponds to the one consigned
by Zachary in [Zachary, 1977]

described in previous sections, but for our new merit fac-
tors.

The Zachary’s Karate Club network [Zachary, 1977],
has turned into an unavoidable example in publications
about community structure. This network represents the
relationships between members of a karate club at a Uni-
versity in the 1970s, and it has been shown that it has a
strong community structure in previous studies [Newman
& Girvan, 2004 ;Medus et al., 2005]. Applying the op-
timization algorithm for the weak community definition
merit factor QW , we obtained, for the unweighted version
of Zachary network, a partition in three communities of
17 (C1), 12(C2) and 5 (C3) nodes with QW = 1.792 (Fig.
2). When the number of communities was restricted to
two, we obtained the actual partition in two commu-
nities of 17 nodes each one observed by Zachary, with
QW = 1.487 (circles and squares in Fig. 2).

With this analysis we can know, in addition, the
strength S(Cj) of each community Cj in the network.
For the best partition of Zachary network in three com-
munities of 17 (C1), 12 (C2) and 5 (C3) nodes, we have:
S(C1) = 0.744 , S(C2) = 0.548 and S(C3) = 0.0.5,
with C1 as the strongest community. On the other
hand, the partition into two communities, is composed
by two strong communities of 17 nodes each one, with
S(C) = 0.744. .

When we performed the community analysis using the
strong community merit factor QS , we obtained two com-
munities: C1 with 29 nodes (S(C1) = 0.943) and C2 with
5 nodes (S(C2) = 0.5). In Fig. 2 can be observed that
node 10 has one internal and one external link and this
situation can not be allowed in strong community defi-
nition. For this reason, the communities with 17 and 12
nodes are joined together.

FIG. 3: Bottlenose dolphin network. This network has a size
of 62 nodes and it is known from direct observation that it
has two communities. In this figure squares and tringles de-
note the communities detected by our Strong Community ap-
proach and the colors (shades of gray) show the results of the
weak community approach. Notice that the optimization ac-
cording to Qw merely subdivides the communities obtained
through Qs optimization.

B. The bottlenose dolphins network

Another social network which has attracted consid-
erable interest is the one corresponding to the bot-
tlenose dolphins network, which has been fully analyzed
in [Lusseau, 2003] . This social network is composed by
62 nodes and it is known to consist of two communities
of sizes 41 and 21 nodes each. Following the approach
proposed in this work we first analyze this network ap-
plying the QN analysis in our Simulated annealing ap-
proach. The result of this analysis is the partition of the
network in four communes composed by 21, 16, 13, and
12 nodes each. When we perform the optimization of
the Weak community definition we obtain five commu-
nities of 20, 12, 11, 10, 9 nodes each. Finally when the
dolphin network is analyzed in terms of the Strong com-
munity definition we obtain the actual partition in two
communities of 41 and 21 nodes each. These last two
results are displayed in Fig. 3. In this figure we show
the two communities according to the Strong commu-
nity definition as triangles (41 nodes community) and as
squares (21 nodes community). The corresponding anal-
ysis according to the Weak community definition further
divides the previous two communities and are denoted by
the different shades of gray (see caption for details). It
is interesting to notice that all the communities detected
by the optimization of QN are communities in the weak
sense but the resulting partition is suboptimal.



VII. CONCLUSIONS

In this work we have proposed new merit factors to
recognize communities in networks. These merit factors
are more realistic that the ones currently in use in the
literature because they strictly adhere to what a commu-
nity is expected to be, i.e., a subset of nodes which are
more connected among themselves than to the rest of the
network under consideration.

We started by putting forward this qualitative defini-
tion of a community and then we reviewed the meaning
of the quite popular measure of the quality of a given
partition known as the modularity QN . As we have
discussed above, the community definition associated to
this quantity is non-local and does not necessarily corre-
sponds to the aforementioned qualitative definition. One
of the consequences of the non-local character intrinsic
to this quantity is the limit resolution problem as stated
in [Fortunato & Barthélemy, 2007].

In order to recognize communities in networks that
strictly adhere to the qualitative definition, we have used
(following [Radicchi et al., 2004]) two local community
definitions: weak and strong . In order to use this defini-
tions to recognize communities we have developed a cri-
teria to quantify the strength of a community (S). After-
wards, we have defined two merit factors associated with
S which we named QS ,and QW . As with QN the problem
of recognizing communities in a network is mapped onto a
optimization problem, i.e., the communities in a network
are the elements of the partition which maximizes QS,or
QW . We have performed the optimization of these merit
factors on some standard networks by implementing an
algorithm in the spirit of simulated annealing. The limit
resolution intrinsic to the QN definition is not present in
our approach.

It is worth noticing at this point that the solution to
the detection of communities in the strong sense is also
a solution in the weak sense but not necessarily optimal.
On the other hand, the converse is generally not true.

The strong community definition tends to give larger
communities because of its inability to deal with nodes
that are equally shared by two highly connected sub-
graphs, but on the other hand has the nice property that
it is the only one that gives no partition for symmet-
ric string networks and , for example, solves exactly the
bottle nose dolphins network.

We finally note that the main purpose of this work
was to show the properties of our new definitions of the
strength of communities, according to which the com-

munity recognition problem is transformed into a opti-
mization one. The method used to solve the resulting
optimization problem (simulated Annealing in partition
space) is quite powerful but intrinsically slow. If very big
networks, comprising millions of nodes, are to be ana-
lyzed with our definitions, new, faster, approaches are to
be devised.
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