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ABSTRACT

In this article, we introduce the τ condition, which is weaker than
the L2 di�erentiability. If a function satis�es the τ condition on
two points of R, we prove the existence and characterization of
the best local polynomial approximation on these points.
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1. Introduction

Let x1 ∈ R, x1 6= 0, x2 = −x1, and let a > 0 be such that Ia,i := [xi − a, xi + a],

1 ≤ i ≤ 2, are disjoint. Let L be the space of an equivalence class of Lebesgue

measurable real functions de�ned on Ia := Ia,1 ∪ Ia,2. For each Lebesgue

measurable set A ⊂ Ia, with |A| > 0, we consider the seminorm on L,

‖f ‖A :=

(

|A|−1

∫

A
|f (x)|2dx

)1/2

,

where |A| denotes the measure of the set A.

If 0 < ǫ ≤ a, we denote Iǫ,i = [xi−ǫ, xi+ǫ], ‖f ‖ǫ,i = ‖f ‖Iǫ,i and ‖f ‖ǫ = ‖f ‖Iǫ
For a nonnegative integer s, let 5s be the linear space of algebraic polynomials

of degree at most s.

Henceforward, we consider n, q, r ∈ N∪ {0} such that n+ 1 = 2q+ r, r < 2.

If f ∈ L2(Iǫ), it is well known (see [1]) that there exists a unique best ‖.‖ǫ

approximation of f from 5n, say Pǫ(f ), satisfying

‖f − Pǫ(f )‖ǫ ≤ ‖f − P‖ǫ , P ∈ 5n,

and it is characterized by the condition
∫

Iǫ

(f − Pǫ(f ))(x)P(x)dx = 0, P ∈ 5n. (1.1)
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146 H. H. CUENYA ET AL.

If f is an even (odd) function, it is easy to see that Pǫ(f ) is an even (odd) poly-

nomial. If limǫ→0 Pǫ(f ) exists, say P0(f ), it is called the best local approximation

of f on {x1, x2} from 5n.

We recall that a function f ∈ L2(Ia,i) is L
2 di�erentiable of order s at xi and,

according to Calderón and Zygmund in [2], f ∈ t2s (xi) if there exists Qi ∈ 5s

such that

‖f − Qi‖ǫ,i = o(ǫs), ǫ → 0. (1.2)

We also write t2−1(xi) = L2(Ia,i). It is well known that there exists at most one

polynomial verifying (1.2) (see [3]).

The best local approximation at one point was formally introduced and

studied in an article by Chui, Shisha and Smith [4]. In [5], this problem was

considered for certain class of di�erentiable functions in the ordinary sense on

two points. Later, in [3], [6], and [7], the authors extended it for L2 di�erentiable

and lateral L2 di�erentiable functions on k points. In a recent article [8], the

existence of the best local approximation for a class of functions satisfying Cp

condition at one point was considered.

All of the exponents in this work will be nonnegative integers. We introduce

the following de�nition.

De�nition 1.1. A function f ∈ L2(Ia,i) satis�es the τ condition of order s at xi,

if there exists Qi ∈ 5s such that

∫ xi+ǫ

xi−ǫ

(f − Qi)(x)(x
2 − x2i )

jdx = o(ǫs+j+1), 0 ≤ j ≤ s, ǫ → 0. (1.3)

If f veri�es (1.3), we say that f ∈ τs(xi).

Let τs(±xi) := τs(xi) ∩ τs(−xi) and t2s (±xi) := t2s (xi) ∩ t2s (−xi).

We have the following uniqueness result.

Theorem 1.2. Let f ∈ L2(Ia,i). Then there exists at most a polynomial Qi ∈ 5s

satisfying (1.3).

Proof. Assume that Qi,Qi ∈ 5s and verify (1.3). It is easy to see that T(x) =

(Qi − Qi)(x) :=
∑s

m=0 am(x − xi)
m satis�es

s
∑

m=0

am

∫

Iǫ,i

(x − xi)
m+j(x + xi)

jdx = o(ǫs+j+1), 0 ≤ j ≤ s, ǫ → 0. (1.4)
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NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION 147

We put a−1 = 0. If am = 0 for all m, −1 ≤ m ≤ l < s, then al+1 = 0. In fact,

considering j = l + 1 in (1.4), we get

al+1

∫

Iǫ,i

(x − xi)
2l+2(x + xi)

l+1dx

+

s
∑

m=l+2

am

∫

Iǫ,i

(x − xi)
m+l+1(x + xi)

l+1dx = o(ǫs+l+2). (1.5)

Since the summation in (1.5) is O(ǫ2l+4), we have

al+1

∫

Iǫ,i

(x − xi)
2l+2(x + xi)

l+1dx = o(ǫ2l+3). (1.6)

Therefore, al+1

∫

Iǫ,i
(x − xi)

2l+2dx = o(ǫ2l+3), i.e., al+1 = 0. This proves the

lemma.

For f ∈ τs(xi)(τs(−xi)), we denote byQ
s
xi
(f )(Qs

−xi
(f )) the unique polynomial

of degree s verifying (1.3) at the points xi(−xi).

The proof of the next theorem immediately follows.

Theorem 1.3. Let s be a nonnegative integer number. Then τs(xi) is a linear

space and the operator Ds : τs(xi) → 5s de�ned by Ds(f )(x) = Qs
xi
(f )(x), is

linear. Moreover, τs+1(xi) ⊂ τs(xi) and for f ∈ τs+1(xi), we have Ds+1(f )(x) =

Ds(f )(x) + α(x − xi)
s+1, α ∈ R.

Now, if f ∈ τs(xi) we can de�ne the j-th τ derivative of f at xi by

f (j)(xi) = (Qs
xi
(f ))(j)(xi), 0 ≤ j ≤ s. (1.7)

Remark 1.4. We have t2s (xi) ⊂ τs(xi). In fact, using the Hölder inequality we

can see that the polynomial in 5s that veri�es ‖f − Qi‖ǫ,i = o(ǫs) also satis�es

(1.3). In addition, the inclusion is strict as is shown in the following example. Let

f (x) = sin( 1
x−xi

), x 6= xi . It is easy to see that f ∈ τ0(xi), since f is odd. On other

hand, if f ∈ t20(xi), then there exists a constantα ∈ R such that ‖f−α‖ǫ,i = o(1).

Since ‖f − α‖ǫ,i = ‖f + α‖ǫ,i, we get that α = 0. However, ‖f ‖ǫ,i 6= o(1), as we

show below.

For ǫm = xi +
1

mπ
we have

‖f ‖2ǫm,i = mπ

∫ xi+
1

mπ

xi

sin2
(

1

x − xi

)

dx

≥ mπ sin2
(

mπ +
π

4

)

∞
∑

l=m

∫ xi+
1

(l+1)π− π
4

xi+
1

(l+1)π+ π
4

dx ≍ m

∞
∑

l=m

1

l2
9 0.
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148 H. H. CUENYA ET AL.

In Section 2, we estimate the order of certain determinants depending on ǫ,

and we prove some lemmas concerning to algebraic polynomials.

The main results of this article are in Section 3. We prove the existence

of the best local approximation of a function f on {x1,−x1} from 5n, and

we give a characterization of it under the following conditions: (a) n is even,

f ∈ τq(±x1), and the odd part of f belongs to t2q−1(x1) (Theorem 3.7). (b) n is

odd, f ∈ τq−1(±x1), and the odd part of f belongs to t2q−2(x1) (Theorem 3.11).

Our theorems extend the mentioned results proved in [3] to a wider class of

functions in L2. We remark that the existence of best local approximation in5n

is unknown for functions non L2 di�erentiable even in two points.

2. Auxiliary results

We begin this section by estimating the order of the determinant of certain

matrix depending on ǫ.

Lemma2.1. Let u ∈ N∪{0} and let A = (ajl) be amatrix of order (u+1)×(u+1),

with ajl = ajl(ǫ) :=
∫ 1+ǫ

1−ǫ
(x2−1)j+lw(x)dx, 0 ≤ j, l ≤ u,where w is a continuous

function in a neighborhood of 1 such that w(1) = 1. Then the determinant of A,

say D(ǫ), satis�es

D(ǫ) = (M + o(1))ǫ(u+1)2 , (2.1)

where M is a non null constant.

Proof. Since A is a Gramian matrix of the set of linearly independent polyno-

mials {(x2 − 1)j}uj=0 with the inner product 〈·, ·〉w,ǫ on [1 − ǫ, 1 + ǫ], then

D(ǫ) 6= 0. For each pair j, l, the functions (x + 1)j+lw(x) is continuous and

(x − 1)j+l is a integrable function with constant sign on the intervals [1 − ǫ, 1)

and (1, 1 + ǫ], therefore by the First Value Mean theorem for integration there

exist η := η(ǫ, j, l) ∈ [1, 1 + ǫ] and η′ := η′(ǫ, j, l) ∈ [1 − ǫ, 1] such that

ajl = w(η)(η + 1)j+lbjl + w(η′)(η′ + 1)j+lb′
jl, 0 ≤ j, l ≤ u, (2.2)

where bjl = bjl(ǫ) :=
∫ 1+ǫ

1 (x − 1)j+ldx and b′
jl = b′

jl(ǫ) :=
∫ 1
1−ǫ

(x − 1)j+ldx.

We observe that ajl = [2j+l + ojl(1)]bjl +[2j+l + o′
jl(1)]b

′
jl, where ojl(1), o

′
jl(1)

are functions of the variable ǫ which tend to zero as ǫ → 0.

It is well known that if p is an arbitrary permutation of the set S =

{0, 1, . . . , u}, then

det(A) =
∑

p

sg(p)

u
∏

j=0

ajp(j). (2.3)

We consider the matrix B = (bjl) and B
′ = (b′

jl). By Lemma 2.1 in [9] we obtain

det(B) =
∑

p sg(p)
∏u

j=0 bjp(j) = Cǫ(u+1)2 , where C is a constant non null.
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NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION 149

In addition, it is easy to see that

det(B′) =
∑

p

sg(p)

u
∏

j=0

b′
jp(j) =

∑

p

sg(p)(−1)n(n+1)
u

∏

j=0

bjp(j) = det(B). (2.4)

On the other hand, expanding
∏u

j=0 ajp(j) in groups of terms containing only the

factors b, only the factors b′, and the mixed products, we have

u
∏

j=0

ajp(j) =

u
∏

j=0

[2j+p(j) + ojp(j)(1)]bjp(j) +

u
∏

j=0

[2j+p(j) + o′
jp(j)(1)]b

′
jp(j) + Kǫ(u+1)2

+ op(ǫ
(u+1)2) = 2u(u+1)

u
∏

j=0

bjp(j) + 2u(u+1)
u

∏

j=0

b′
jp(j) + Kǫ(u+1)2

+ o′
p(ǫ

(u+1)2), (2.5)

for some constant K. Then, from (2.3)–(2.5) we get D(ǫ) = (M + o(1))ǫ(u+1)2 ,

whereM = 2u(u+1)+1C + K.

Lemma 2.2. Let s, u ∈ N ∪ {0}, s ≤ u. Let C = (cjl) be the matrix of order

(u + 1) × (u + 1) de�ned by

cjl := cjl(ǫ) =

{

〈(x2 − 1)j, (x2 − 1)l〉w,ǫ 0 ≤ j, l ≤ u, l 6= s,

ǫj+u+1Oj(1) 0 ≤ j ≤ u, l = s,
(2.6)

where w is as in Lemma 2.1 and Oj(1) is a function of the variable ǫ which is

bounded for ǫ → 0. Then the determinant of C, say N(s, ǫ), satis�es N(s, ǫ) =

O(ǫu−s+(u+1)2).

If in (2.6) we replace Oj(1) by oj(1), then N(s, ǫ) = o(ǫu−s+(u+1)2), 0 ≤ s ≤ u.

Proof. Let C′
jl denote the sub matrix of C, where we have omitted the j-th �le

and the l-th column. Expanding the determinant of C′
jl by elements of the s-th

column, we obtain

N(s, ǫ) =

u
∑

j=0

(−1)j+scjsdet(C
′
js) =

u
∑

j=0

ǫj+u+1Oj(1)det(C
′
js). (2.7)

Let p := pjs be an arbitrary bijection of the set {0, . . . , j − 1, j + 1, . . . , u} onto

{0, . . . , s − 1, s + 1, . . . , u}. Then

det(C′
js) =

∑

p

sg(p)

u
∏

k=0,k6=j

akp(k), (2.8)

where the elements akp(k) were given in Lemma 2.1.
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150 H. H. CUENYA ET AL.

Multiplying by ǫj+s+1 and its inverse in (2.8), from (2.7) we get

N(s, ǫ) =

u
∑

j=0

ǫu−sOj(1)



ǫj+s+1
∑

p

sg(p)

u
∏

k=0,k6=j

akp(k)



 . (2.9)

Since the expression in the bracket is O′
j(ǫ

(u+1)2), from (2.9) we obtain

N(s, ǫ) =

u
∑

j=0

ǫu−sO′′
j (1)ǫ

(u+1)2 = O(ǫu−s)ǫ(u+1)2 . (2.10)

Finally, the last assertion of the lemma analogously follows to the above

proof.

As a consequence of the previous lemmas, we get some results on the nets of

even polynomials.

Lemma 2.3. Let Tǫ(x) =
∑q−1

l=0 bl(ǫ)x
2(x2 − 1)l be a net of polynomials in 52q

such that
∫ 1+ǫ

1−ǫ

Tǫ(x)(x
2 − 1)jdx = o(ǫq+j), 0 ≤ j ≤ q − 1. (2.11)

Then

bl(ǫ) = o(ǫq−l−1), 0 ≤ l ≤ q − 1. (2.12)

In particular, the net {Tǫ}ǫ>0 converges to zero as ǫ → 0.

Proof. From (2.11), we have the following linear system,

q−1
∑

l=0

ajl(ǫ)bl(ǫ) = o(ǫq+j), 0 ≤ j ≤ q − 1, (2.13)

where ajl(ǫ) was introduced in Lemma 2.1 with w(x) = x2. Now, applying

Lemma 2.1 and Lemma 2.2 with u = q− 1, and later the Cramer rule we obtain

(2.12).

Lemma 2.4. Let Tǫ(x) =
∑q

l=0 bl(ǫ)(x
2 − 1)l be a net of polynomials in 52q. If

∫ 1+ǫ

1−ǫ

Tǫ(x)(x
2 − 1)jdx = O(ǫq+j+1), 0 ≤ j ≤ q, (2.14)

then for each 0 ≤ l ≤ q,

bl(ǫ) = O(ǫq−l) and T(l)
ǫ (±1) = O(ǫq−l). (2.15)

In particular, the net {Tǫ}ǫ>0 is uniformly bounded on compact sets as ǫ → 0.
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NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION 151

Proof. From (2.14) we have the following linear system,

q
∑

l=0

ajl(ǫ)bl(ǫ) = O(ǫq+j+1), 0 ≤ j ≤ q,

where ajl(ǫ) was introduced in Lemma 2.1 with w = 1. Now, applying Lemma

2.1 and Lemma 2.2 with u = q, and later the Cramer rule we obtain

bl(ǫ) = O(ǫq−l), 0 ≤ l ≤ q. (2.16)

The Leibnitz rule implies that

T(s)
ǫ (1) =

q
∑

l=0

bl(ǫ)

s
∑

m=0

(

s

m

)

[(x − 1)l](m)[(x + 1)l](s−m)|x=1

=

s
∑

l=0

bl(ǫ)

(

s

l

)

l![(x + 1)l](s−l)|x=1 = O(ǫq−s), 0 ≤ s ≤ q,

where the last equality is a consequence of (2.16).

Since Tǫ is even, then T
(s)
ǫ (−1) = (−1)sT

(s)
ǫ (1) = O(ǫq−s), 0 ≤ s ≤ q.

An analogous proof to the previous lemma with u = q − 1 gives the next

lemma.

Lemma2.5. Let Tǫ(x) =
∑q−1

l=0 bl(ǫ)(x
2−1)l be a net of polynomials in52q−2. If

∫ 1+ǫ

1−ǫ

Tǫ(x)(x
2 − 1)jdx = o(ǫq+j), 0 ≤ j ≤ q − 1, (2.17)

then bl(ǫ) = o(ǫq−l−1), 0 ≤ l ≤ q − 1. In particular, the net {Tǫ}ǫ>0 converges

to 0 as ǫ → 0.

3. Existence of the best local approximation

In this section, we prove the existence of the best local approximation. Without

loss of generality, we assume x1 = 1. In fact, for x1 > 0 we consider the function

h̃(t) = h(−x1t), t ∈ [−1−ǫ/x1,−1+ǫ/x1] and h̃(t) = h(x1t), t ∈ [1−ǫ/x1, 1+

ǫ/x1]. It easy to see that if h ∈ τs(±x1) then h̃ ∈ τs(±1) and if h ∈ t2s (±x1) then

h̃ ∈ t2s (±1). In addition, the best approximation of h on [−1− ǫ,−1+ ǫ]∪ [1−

ǫ, 1 + ǫ] from 5n is the best approximation of h̃ on [−1 − ǫ/x1,−1 + ǫ/x1] ∪

[1 − ǫ/x1, 1 + ǫ/x1] from 5n.
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152 H. H. CUENYA ET AL.

3.1. The n even case

In this subsection we assume n even, i.e., r = 1, and f ∈ τq(±1). For q ≥ 1, we

de�ne the following set

S(f ) = {H ∈ 52q : H(j)(±1) = f (j)(±1), 0 ≤ j ≤ q − 1}.

Let S0 ∈ S(f ) be a �xed polynomial. Then any polynomial inS(f ) can bewritten

as S0(x) + λ(x2 − 1)q, λ ∈ R. If q = 0 we put S(f ) = 50.

We consider the function g = f − S0. According to (1.7) and Theorem 1.3, it

is easy to see that

g ∈ τq(±1), g(j)(±1) = 0, 0 ≤ j ≤ q − 1, and S(f ) = S0 + S(g). (3.1)

The proof of the following lemma is immediate.

Lemma 3.1. It veri�es that Pǫ(f ) = S0 + Pǫ(g). In addition, P0(g) exists if and

only if P0(f ) exists, and P0(f ) = S0 + P0(g).

Now, our purpose is to prove the existence and characterization of P0(g).

We consider the even and odd parts of g, i.e., ge(x) =
g(x)+g(−x)

2 and go(x) =
g(x)−g(−x)

2 , respectively. If there exist P0(g
e) and P0(g

o), clearly P0(g) = P0(g
e)+

P0(g
o).

Lemma 3.2. It veri�es that ge, go ∈ τq(±1).

Proof. By (3.1), g ∈ τq(±1), and Q
q
±1(g)(x) = α±1(x ∓ 1)q for some real

numbers α−1,α+1, which verify

1.
∫ 1+ǫ

1−ǫ
(g(x) − α+1(x − 1)q)(x2 − 1)jdx = o(ǫq+j+1), 0 ≤ j ≤ q.

2.
∫ −1+ǫ

−1−ǫ
(g(x) − α−1(x + 1)q)(x2 − 1)jdx = o(ǫq+j+1), 0 ≤ j ≤ q.

If in b) we make the change of variable x = −t, and then we add the equation

a) member to member, we obtain
∫ 1+ǫ

1−ǫ

(ge(x) − γ+1(x − 1)q)(x2 − 1)jdx = o(ǫq+j+1), 0 ≤ j ≤ q, (3.2)

where γ+1 := α+1+(−1)qα−1
2 . So, Q

q
+1(g

e)(x) = γ+1(x − 1)q and ge ∈ τq(+1).

An analogous proof with the polynomials

Q
q
−1(g

e)(x) = γ−1(x + 1)q, Q
q
±1(g

o)(x) = β±1(x ∓ 1)q, (3.3)

where γ−1 := (−1)qα+1+α−1
2 ,β−1 := α−1−(−1)qα+1

2 ,β+1 := α+1−(−1)qα−1
2 , yields

ge ∈ τq(−1) and go ∈ τq(±1).

Proposition 3.3. If go ∈ t2q−1(1), then P0(g
o) = 0.
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Proof. According to (3.3) we have
∫ 1+ǫ

1−ǫ

(go(x) − β+1(x − 1)q)(x2 − 1)jdx = o(ǫq+j+1), 0 ≤ j ≤ q. (3.4)

Therefore,
∫ 1+ǫ

1−ǫ

go(x)(x2 − 1)jdx = o(ǫq+j), 0 ≤ j ≤ q − 1. (3.5)

Thus, Q
q−1
1 (go) = 0 and go ∈ τq−1(1). From hypothesis, there is Q ∈ 5q−1

such that ‖go − Q‖ǫ,1 = o(ǫq−1). By Remark 1.4 and Theorem 1.2, Q = 0

holds.

By the Hölder inequality, we obtain
∣

∣

∣

∣

∫ 1+ǫ

1−ǫ

go(x)(x2 − 1)jxdx

∣

∣

∣

∣

≤ K‖go‖ǫ,1ǫ
j+1 = o(ǫq+j), 0 ≤ j ≤ q − 1. (3.6)

On the other hand, from the characterization of Pǫ(g
o)

∫ 1+ǫ

1−ǫ

(go − Pǫ(g
o))(x)(x2 − 1)jxdx = 0, 0 ≤ j ≤ q − 1, (3.7)

taking into account that the integrand is an even function. From (3.6) and (3.7),

it follows that
∫ 1+ǫ

1−ǫ

xPǫ(g
o)(x)(x2 − 1)jdx = o(ǫq+j), 0 ≤ j ≤ q − 1. (3.8)

Since {(x2−1)jx}
q−1
j=0 is a basis of the subspace of the odd polynomials in52q−1,

we can write

Pǫ(g
o)(x) =

q−1
∑

l=0

bl(ǫ)(x
2 − 1)lx.

Therefore, (3.8) and Lemma 2.3 imply that Pǫ(g
o) → 0, as ǫ → 0.

Proposition 3.4. The net of polynomials {Pǫ(g
e)}ǫ>0 is uniformly bounded on

compact sets, as ǫ → 0.

Proof. From (3.2) we get
∫ 1+ǫ

1−ǫ

ge(x)(x2 − 1)jdx = O(ǫq+j+1), 0 ≤ j ≤ q. (3.9)

Now, (1.1) implies that
∫ 1+ǫ

1−ǫ

(ge − Pǫ(g
e))(x)(x2 − 1)jdx = 0, 0 ≤ j ≤ q, (3.10)
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because the integrand is an even function. From (3.9) and (3.10), it follows that
∫ 1+ǫ

1−ǫ

Pǫ(g
e)(x)(x2 − 1)jdx = O(ǫq+j+1), 0 ≤ j ≤ q. (3.11)

Expanding Pǫ(g
e) in terms of the basis {(x2 − 1)j}

q
j=0, from (3.11) and

Lemma 2.4, it follows that {Pǫ(g
e)}ǫ>0 is uniformly bounded on compact sets,

as ǫ → 0.

The proof of the next lemma follows directly.

Lemma 3.5. Let P ∈ 52q be an even polynomial. Then, there exist two unique

even polynomials, say U ∈ S(ge) and S ∈ 52q−2, such that P = U + S.

Now, given a polynomial P ∈ 52q, let P∗ ∈ 5q be de�ned by

P∗(x) = γ+1(x − 1)q − q!−1U(q)(1)(x − 1)q −

q−1
∑

l=0

l!−1P(l)(1)(x − 1)l, (3.12)

whereU is the polynomial mentioned in Lemma 3.5 and γ+1 was introduced in

(3.2). If q = 0, we omit the last term in (3.12).

We consider the linear functional F : L2([0, 1]) × 52q → R de�ned by

F(h,P) =

∫ 1+ǫ

1−ǫ

(h − P)(x)
(x2 − 1)q

ǫ2q+1
dx. (3.13)

Lemma 3.6. Let {Pǫ(g
e) = Uǫ +Sǫ}ǫ>0 ⊂ 52q be a net of polynomials where Uǫ

and Sǫ are as in Lemma 3.5. Then Sǫ → 0 and F(0, Pǫ(g
e)∗) = o(1), as ǫ → 0.

Proof. Clearly Pǫ(g
e)(j)(±1) = S

(j)
ǫ (±1), 0 ≤ j ≤ q − 1. Pǫ(g

e) is an even

polynomial satisfying (3.11), thus Lemma 2.4 implies that S
(j)
ǫ (±1) = O(ǫq−j),

0 ≤ j ≤ q − 1. Since Sǫ ∈ 52q−2, Sǫ → 0.

On the other hand,

F(ge, Pǫ(g
e) + Pǫ(g

e)∗) =

∫ 1+ǫ

1−ǫ

(ge(x) − γ+1(x − 1)q)
(x2 − 1)q

ǫ2q+1
dx

−

∫ 1+ǫ

1−ǫ

q!−1S
(q)
ǫ (1)(x − 1)q

(x2 − 1)q

ǫ2q+1
dx

−

∫ 1+ǫ

1−ǫ

2q
∑

l=q+1

l!−1Pǫ(g
e)(l)(1)(x − 1)l

(x2 − 1)q

ǫ2q+1
dx.

(3.14)

D
ow

nl
oa

de
d 

by
 [

D
av

id
 E

du
ar

do
 F

er
re

yr
a]

 a
t 2

0:
20

 0
3 

Fe
br

ua
ry

 2
01

6 



NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION 155

From (3.2) and by making the change of variable x = 1 + ǫt in (3.14), we get

F(ge, Pǫ(g
e) + Pǫ(g

e)∗) = o(1) −

∫ 1

−1
q!−1S

(q)
ǫ (1)t2q(2 + ǫt)qdt

−

2q
∑

l=q+1

ǫl−ql!−1Pǫ(g
e)(l)(1)

∫ 1

−1
t2q(2 + ǫt)qdt.

(3.15)

Proposition 3.4 implies that Pǫ(g
e) = O(1) as ǫ → 0. Therefore, since Sǫ → 0

we obtain F(ge, Pǫ(g
e)+Pǫ(g

e)∗) = o(1). In addition, from (3.10) it follows that

F(ge, Pǫ(g
e)) = 0. In consequence, we get F(0, Pǫ(g

e)∗) = o(1).

Now, we establish one of our main results.

Theorem 3.7. Let n = 2q and let f ∈ τq(±1) be such that f o ∈ t2q−1(1). Then

there exists the best local approximation of f on {−1, 1} from 5n. Moreover, if

S0 ∈ S(f ) and g = f − S0 then

P0(f )(x) = S0(x) +
g(q)(1) + (−1)qg(q)(−1)

q!2q+1
(x2 − 1)q. (3.16)

Proof. Since f o ∈ t2q−1(1) then go ∈ t2q−1(1). So, Proposition 3.3 implies that

P0(g
o) = 0. Therefore, it is su�cient to �nd P0(g

e). From Lemma 3.6, (3.11)

and Lemma 2.4, we have

F(0, Pǫ(g
e)∗) = o(1), and ǫl−qPǫ(g

e)(l)(1) = O(1), 0 ≤ l ≤ q, (3.17)

From Lemma 3.5, Pǫ(g
e) = Uǫ + Sǫ with Uǫ ∈ S(ge), and so Uǫ(x) =

λǫ(x
2 − 1)q, λǫ ∈ R. In consequence, from (3.12), (3.13), (3.17) and by making

the change of variable x = 1 + ǫt, we conclude
∫ 1

−1
(2qλǫ − γ+1)t

2q(2 + ǫt)qdt = o(1). (3.18)

Proposition 3.4 implies that Pǫ(g
e) = O(1). Further, by Lemma 3.6 Sǫ → 0,

thus λǫ = O(1). Now, if {λǫm} is a sequence converging to λ0, from (3.18) we get
∫ 1

−1
(2qλ0 − γ+1)t

2q2qdt = 0, (3.19)

i.e.,

λ0 =
γ+1

2q
=

g(q)(1) + (−1)qg(q)(−1)

q!2q+1
. (3.20)

Therefore, the net {λǫ}ǫ>0 converges to λ0, i.e., Pǫ(g
e)(x) →

γ+1
2q (x2 − 1)q

= P0(g
e)(x) by (3.17). Finally, Lemma 3.1 implies (3.16).
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3.2. The n odd case

In this subsection we assume n odd, i.e., r = 0, and f ∈ τq−1(±1). Let

R0 ∈ 52q−1 be the polynomial determined by the conditions R
(j)
0 (±1) =

f (j)(±1), 0 ≤ j ≤ q − 1, and let g = f − R0. According to (1.7) and Theorem

1.3, it is easy to see that

g ∈ τq−1(±1), g(j)(±1) = 0, 0 ≤ j ≤ q − 1. (3.21)

Remark 3.8. We observe that Lemma 3.1 holds with R0 instead of S0. Further

by (3.21), Q
q−1
±1 (g) = 0.

Using Remark 3.8, with an analogous proof to Lemma 3.2 we get the next

lemma.

Lemma 3.9. It veri�es that ge, go ∈ τq−1(±1) with Q
q−1
±1 (ge) = Q

q−1
±1 (go) = 0.

Proposition 3.10. If go ∈ t2q−2(1), then P0(g
e) = P0(g

o) = 0.

Proof. From Lemma 3.9 we get
∫ 1+ǫ

1−ǫ

ge(x)(x2 − 1)jdx = o(ǫq+j), 0 ≤ j ≤ q − 1. (3.22)

Now, (1.1) implies that
∫ 1+ǫ

1−ǫ

(ge − Pǫ(g
e))(x)(x2 − 1)jdx = 0, 0 ≤ j ≤ q − 1, (3.23)

because the integrand is an even function. From (3.22) and (3.23) it follows that
∫ 1+ǫ

1−ǫ

Pǫ(g
e)(x)(x2 − 1)jdx = o(ǫq+j), 0 ≤ j ≤ q − 1. (3.24)

Since n is odd, then Pǫ(g
e) is an even polynomial in 52q−2. Expanding Pǫ(g

e)

in terms of the basis {(x2 − 1)j}
q−1
j=0 , from (3.24) and Lemma 2.5 it follows that

P0(g
e) = 0.

Next, we prove that P0(g
o) = 0. Since go ∈ t2q−2(1), there exists Q ∈ 5q−2

such that ‖go − Q‖ǫ,1 = o(ǫq−2). By Remark 1.4, t2q−2(1) ⊂ τq−2(1). From

Theorem 1.3 and Lemma 3.9 we get Q = Q
q−2
1 (go) = 0.

By Hölder inequality we obtain
∣

∣

∣

∣

∫ 1+ǫ

1−ǫ

go(x)(x2 − 1)j(x − 1)dx

∣

∣

∣

∣

≤ K‖go‖ǫ,1ǫ
j+2 = o(ǫq+j), 0 ≤ j ≤ q − 1,

(3.25)
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for some constant K. By Lemma 3.9,
∫ 1+ǫ

1−ǫ

go(x)(x2 − 1)jdx = o(ǫq+j), 0 ≤ j ≤ q − 1. (3.26)

From (3.25) and (3.26) we have,
∫ 1+ǫ

1−ǫ

go(x)(x2 − 1)jxdx =

∫ 1+ǫ

1−ǫ

go(x)(x2 − 1)j(x − 1)dx

+

∫ 1+ǫ

1−ǫ

go(x)(x2 − 1)jdx = o(ǫq+j). (3.27)

On the other hand, (1.1) implies that
∫ 1+ǫ

1−ǫ

(go − Pǫ(g
o))(x)(x2 − 1)jxdx = 0, 0 ≤ j ≤ q − 1, (3.28)

because the integrand is an even function. From (3.27) and (3.28) we get
∫ 1+ǫ

1−ǫ

Pǫ(g
o)(x)(x2 − 1)jxdx = o(ǫq+j), 0 ≤ j ≤ q − 1. (3.29)

Since Pǫ(g
o) is an odd polynomial in 52q−1, we can expand Pǫ(g

o) in terms of

the basis {(x2 − 1)jx}
q−1
j=0 . Therefore, from (3.29) and Lemma 2.3 it follows that

xPǫ(g
o) → 0, as ǫ → 0, i.e., P0(g

o) = 0.

Now, we establish the second main result.

Theorem 3.11. Let n = 2q − 1 and let f ∈ τq−1(±1) be such that f o ∈ t2q−2(1).

Then there exists the best local approximation of f on {−1, 1} from 5n, and it is

determined by the conditions

P
(j)
0 (f )(±1) = f (j)(±1), 0 ≤ j ≤ q − 1.

Proof. Since f o ∈ t2q−2(1), then go ∈ t2q−2(1). In consequence, by Proposition

3.10 we get P0(g) = 0. Finally, the theorem follows from Remark 3.8.
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