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In this work, we performed a quantitative structure activity relationship (QSAR) model for a family of 5-
lipoxygenase (5-LOX) inhibitors using k-means clustering and linear discriminant analysis (LDA) for the
selection of training and test sets andmultivariate linear regression (MLR) for the independent variable selection.
With the k-means clustering method, the total set of compounds (58 derivatives of 5-Benzylidene-2-
phenylthiazolinones) was divided in two clusters according to a simple discriminant function. We found that
piID (conventional bond order ID number) molecular descriptor discriminates correctly 100% of the compounds
of each clusters. Thirty different models divided in three series were analyzed and the series with representative
training and test sets (series 3) had the most predictive models. The statistical parameters of the best model
are Rtrain = 0.811 and Rtest = 0.801. We found that a rational selection in the setting-up of training and test
sets allows to obtain the most predictive models and the random selection is sometimes unsuitable, especially,
when the total set of compounds can be classified in different clusters according to structural features.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

The 5-lipoxygenase (5-LOX) is a key enzyme involved in the
first step of the synthesis of leukotrienes (LTs), a type of eicosanoid
inflammatory mediators. The dysregulation of this enzyme causes
various inflammatory diseases such as asthma, inflammatory bowel
disease (IBD), chronic obstructive pulmonary disease (COPD), arthritis,
psoriasis, and atherosclerosis [1–3]. It has been recently reported that
increased production of LTs is associated with the increased risk for
myocardial infarction, stroke [4] and cancer [5]. Most of the drugs
that inhibit LT production are based on the suppression of the ligand–
receptor interaction, inhibition of leukotriene A4 hydrolase or indirect
interference in the activation of 5-LOX [6,7]. At the moment, the
only drug approved as a direct 5-LOX inhibitor is Zileuton (N-[1-
(1-benzothien-2-yl)ethyl]-N-hydroxyurea), Fig. 1 [8]. With the aim of
finding new drugs that present fewer adverse effects than Zileuton,
many 5-LOX inhibitors have been designed and synthesized in the
recent years [9–15].

One of the most used tools in drug design aided by computers is the
quantitative activity–structure relationship (QSAR). This methodology
is a mathematical hypothesis based on the assumption that the
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molecular structure is responsible for the biological activity of a
compound. Thus, entities with similar molecular structure would
present the same biological activity. Since 2011, eight QSAR studies
specifically targeted to 5-LOX inhibitors have been performed, showing
the current interest in the development of newQSARmodels specific for
5-LOX inhibitors which serve to elucidate the key structural features for
the inhibition [16–23].

In QSAR, the relationship between the molecular structure and the
biological activity is quantified by means of a mathematical equation
using the activity as the dependent variable and the structural parame-
ters (calledmolecular descriptors) as independent variables. The search
and development of an optimal QSARmodel that relates the dependent
and independent variables can be generally divided into three stages:
data preparation, data analysis, and model validation. These stages
are carried out using several mathematical techniques. The last
step, model validation, is a crucial aspect which is performed once
the model has been built. The most commonly used criteria for
validation are the leave-one-out (loo) and leave-more-out (l%o) cross-
validations, external validation (using a test set) and y-randomization
approach. A high value of the statistical feature (R2 N 0.5) in the cross-
validations is considered proof of the high predictive ability of a
model. Within the data analysis stage, the partial least squares (PLS),
the multivariate linear regression (MLR), and the artificial neural
network (ANN) are the techniques used for the selection of a subset of
the most relevant molecular descriptors [24].
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Fig. 1.Molecular structure of Zileuton.
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Other interesting approaches not so commonly used in this type of
studies are the k-means clustering and linear discriminant analysis
(LDA). The selection of the sets (training and test sets) during the data
preparation stage is generally performed using random selection.
However, this may be inappropriate when the data set can be divided
in different clusters according to the structural characteristics. In these
cases, if random selection is applied, all members of the validation set
can belong to the same group yielding a set unrepresentative of the
whole. The k-means clustering is a statistical method that is used to
assign groups (clusters) according to certain properties that the
elements have in common (molecular descriptors) [25]. So, aided by
this method, the members of training and test sets can be selected so
as to be representative of the existing clusters and the total data set.
LDA is the other statistical method used to characterize or separate
two or more classes of objects and in the dimensionality reduction.
This method allows obtaining a linear regression which discriminates
the objects in each group and thus, it is able to find features (descrip-
tors) responsible for such discrimination. Unfortunately, few QSAR
studies combine these techniques and the selection of the training and
test set becomes random.

In the present work we have developed a QSAR analysis for a
series of 5-Benzylidene-2-phenylthiazolinones with 5-LOX inhibitory
activity [9,10]. In contrast with other papers, we have employed the
goodness of k-means clustering, linear discriminant analysis (LDA)
and multivariate linear regression (MLR) to perform a thorough search
of a predictive QSAR model.

2. Materials and methods

2.1. Data set

The data set used in this study is composed of 58 derivatives of 5-
Benzylidene-2-phenylthiazolinones with known 5-LOX inhibitory
activity. This set and the experimental activities were extracted from
two studies performed by the same research group [9,10]. The IC50

values (concentration of a compound required to inhibit 50% of the
5-LOX activity) exhibit a range of activity from 60 to 11,000 nM. They
were converted to the corresponding log(1/IC50) and used as the
dependent variable in QSAR investigations. The values of the biological
activity aswell as the numbering of the compounds included in the data
set are presented in Table 1.

2.2. Geometric optimizations and molecular descriptors

The molecular structure of the 58 compounds was optimized at
the semiempirical PM3 (parametric method-3) method using the
Polak-Ribiere algorithm and a gradient norm limit of 0.01 kcal Å−1

with Hyperchem 7.0 package. Then, a set of 1497molecular descriptors
were computed using the Dragon program [26] including all types of
descriptors such as Constitutional, Topological, Geometrical, Charge,
GETAWAY (Geometry, Topology and Atoms-Weighted AssemblY),
WHIM (Weighted Holistic Invariant Molecular descriptors), 3D-MoRSE
(3D-Molecular Representation of Structure based on Electron diffrac-
tion), Molecular Walk Counts, BCUT descriptors, 2D-Autocorrelations,
Aromaticity Indices, Randic Molecular Profiles, Radial Distribution Func-
tions, Functional Groups, Atom-Centered Fragments, Empirical and
Properties. The descriptors with a correlation higher than 0.9 were
removed. Thus, the redundant information was avoided and the full set
was reduced to 1195 molecular descriptors.
2.3. The k-means clustering

The k-means clustering is one of the simplest algorithms that
solve the clustering problem [27]. This approach follows a simple
and easy way to classify a given object through a certain number of
fixed clusters (k). In QSAR studies, the results of k-means clustering
have been utilized to perform a correct division of data sets into
training and test sets using some characteristic information such as
the calculated molecular descriptors [28–30]. In the present study, the
data set of 58 compounds (objects) was analyzed assigning different
values (2, 3 and 4) to the variable k using Matlab 7.0 [31]. Thus, the
possibility that the total data set can be divided in 2, 3 and 4 clusters
was investigated.
2.4. Linear discriminant analysis

The linear discriminant analysis (LDA) is amethod used to find a lin-
ear combination of features which characterizes or separates (discrimi-
nates) two or more classes of objects (compounds in these study) [32,
33]. In some QSAR studies, the LDA was utilized to identify structural
features that separate the active and inactive compounds [34]. Here,
we use LDA to get a multivariate discriminant function that achieves
the separation of compounds of the different clusters obtained from
the k-means clustering. Thus, the variables (molecular descriptors)
that cause this discrimination can be identified. The calculations of
LDA were performed using Matlab 7.0 [31].
2.5. Development and validation of the QSAR model

The data set was divided into training and test set (80% and 20% of
the total data set, respectively). A series of 31 different combinations
of training and test sets were screened.

All the QSAR models were developed employing the replacement
method (RM) as the molecular descriptor selection approach [35]. In
earlier reports [36,37], this method has been proven to produce linear
QSAR models that are quite close to the full search methods with
lower computational cost [38,39]. The RM is an efficient optimization
tool which generates multivariate linear QSAR models by searching an
optimal subset of d descriptors from a set of D descriptors (d ⋘ D)
with minimum standard deviation (S) of the model. The regression co-
efficient (R) and the standard deviation (S) were the statistic parame-
ters used for the quantified the models qualify.

The models developed in this study were validated with a test set
which does not belong to the training set. In addition, the QSAR selected
as the optimal model was also validated using: a) the leave-one-out
(loo) and b) the leave-more-out (l%o) cross-validation procedures,
generating a million cases of random data removal for l%o, where the
% is ≈20 (twelve compounds); and c) y-randomization. This last
validation consists in the interchange of the experimental property
such that the property value and the compound do not match. We
carried out 10,000 cases of y-randomization. The algorithms used in
this work are included in Matlab 7.0 [31].



Table 1
Structure and biological activity (nM) of the total set of compounds.

ID. mol R1 R2 IC50 (nM)a log (1/IC50) Predicted b

log (1/IC50)

1 4-CH3 4-OCH3 210 −2.322 −2.611
2 4-Cl 4-OCH3 90 −1.954 −2.106
3 4-OCH3 4-OCH2CH2CH3 210 −2.322 −2.596
4 4-OCH3 4-Br 90 −1.954 −2.196
5 4-OCH3 4-F 550 −2.740 −2.397
6 4-OCH3 3-Cl 100 −2.000 −1.633
7 4-OCH3 2-Cl 180 −2.255 −2.438
8 4-OCH3 4-COPh 150 −2.176 −1.860
9* 4-OCH3 3-OH, 4-NO2 4660 −3.668 –

10 4-OCH3 4-NHCOCH2CH3 760 −2.881 −2.885
11* 4-OCH3 4-NHCOCH2CH2Ph 11050 −4.043 –

12 4-OCH2CH2CH3 4-Cl 80 −1.903 −2.692
13 3-OPh 4-Cl 90 −1.954 −1.786
14 4-OCH2Ph 4-Cl 80 −1.903 −1.961
15 4-OCH2CH2CH3 4-OCH3 2140 −3.330 −2.859
16 4-OPh 4-OPh 90 −1.954 −2.137
17* 4-OCH3 4-OCH3 4000 −3.602 –

18 4-OCH3 4-NH2 630 −2.799 −2.683
19 4-OCH2CH3 H 500 −2.699 −2.726
20 3-Cl 4-CH3 300 −2.477 −2.584
21 2-OH, 3-OCH3 , 5-Cl H 300 −2.477 −2.771
22 2-OH, 3-OCH3 H 540 −2.732 −2.943
23 3-OCH3, 4-OH, 5-Cl H 3000 −3.477 −3.063
24 3-OCH3, 4-OH, 5-NO2 H 3000 −3.477 −3.306
25 4-OCH3 4-CH3 300 −2.477 −2.477
26 2-OCH3 , 5-OCH3 4-CH3 130 −2.114 −2.383
27 2-OCH3 , 3-OCH3, 4-OCH3 4-CH3 400 −2.602 −2.793
28 2-OCH3 , 4-OCH3 4-CH3 980 −2.991 −2.803
29 2-OH, 3-OCH3 4-CH3 1300 −3.114 −2.964
30 3-OCH3, 4-OH, 5-Cl 4-CH3 2700 −3.431 −3.001
31 3-OCH2CH3, 4-OH, 5-Cl 4-CH3 1250 −3.097 −3.018
32 H 4-CH3 350 −2.544 −2.582
33 t-Bu H 300 −2.477 −2.435
34 4-OCH3 H 90 −1.954 −1.959
35 4-OCH3 H 150 −2.176 −2.164
36 4-OCH2(O)OCH3 4-CH3 190 −2.279 −2.730
37 4-OCH3 4-OCH2C(O)OCH3 580 −2.763 −2.510
38 4-OCH3 4-OH 650 −2.813 −2.551
39 4-OCH3 4-OCH3 110 −2.041 −2.498
40 4-OCH3 4-NH2 130 −2.114 −2.588
41 4-OCH3 4-C(O)CH3 120 −2.079 −2.462
42 4-OCH3 3-C(O)CH3 110 −2.041 −2.150

43 4-OCH3 80 −1.903 −2.016

44 3-OH, 4-OCH3 80 −1.903 −2.180

45 4-OPh 60 −1.778 −1.892

46 4-Cl 70 −1.845 −1.961

47 4-Cl 130 −2.114 −2.237

48* 4-OCH3 4310 −3.634 –
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Table 1 (continued)

ID. mol R1 R2 IC50 (nM)a log (1/IC50) Predicted b

log (1/IC50)

49* 4-OCH3 5840 −3.766 –

50 4-OCH3 570 −2.756 −2.591

51 4-OPh 130 −2.114 −2.294

52 4-OPh 140 −2.146 −2.294

53 4-CH3 230 −2.362 −1.921

54 H 300 −2.477 −2.102

55 4-OCH3 2080 −3.318 −2.302

56* 4-ONH2 6260 −3.797 –

57 170 −2.230 −1.821

58 790 −2.898 −3.002

⁎Compounds considered outliers.
a Experimental IC50 obtained by the S100 assay [9,10].
b log(1/IC50) predicted from Eq. (2).
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Fig. 2. Dispersion plot of log(1/IC50) values. The numbered points are the outlier
compounds.

125M.F. Andrada et al. / Chemometrics and Intelligent Laboratory Systems 143 (2015) 122–129
3. Results and discussion

3.1. Outliers compounds

One point to consider before carrying out a QSAR study is that the
range of biological activity covered should be as large as possible and
symmetrically distributed around its mean [40]. To address this issue
an analysis of the data dispersion was performed. As can be seen in
the plot of log(1/IC50) presented in Fig. 2, the distribution of the data
is not quite symmetrical around the mean (−2.58). Therefore, consid-
ering a limit value of ±1.5 S (1.5 times the standard deviation) around
the mean, six values lied out of the range (compounds id. 9, 11, 17, 48,
49, and 56, see Fig. 2). These compounds were considered outliers and
the total set was reduced to 52 compounds.

3.2. k-Means clustering analysis

Thek-means clusteringmethod, incorporated in the softwarepackage
Matlab 7.0, was used to analyze the possibility to split the data set into
clusters. The total set was separated into two, three and four clusters



Table 2
Compounds of the two clusters obtained by the k-means clustering.

Cluster
no.

Id. compounds Compounds in
the cluster

1 1 2 3 4 5 6 7 8 10 12 13 14 15 18 19 20 21
22 23 24 25 26 27 28 29 30 31 32 33 34 35
36 37 38 39 40 41 42 43 44 46 47 50 53 55

45

2 16 45 51 52 54 57 58 7
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(k = 2, 3 and 4) and the results are displayed as silhouette plots (num-
bers of cluster versus silhouette values) in Fig. 3. The silhouette plot rep-
resents ameasure of how close each point that belongs to one cluster is to
the points of the neighboring clusters [41]. The silhouette values range
from+1 (points that are very distant from neighboring clusters) to−1
(points that are probably assigned to the wrong cluster). A value equal
to 0 (zero) is assigned to points that cannot be ascribed to any cluster.

The silhouette plot of the data separated into two clusters (Fig. 3, top
left panel) shows that almost all points in each cluster have a large
silhouette valuewhich indicates that the clustermembers are separated
from the neighboring clusters. The partitioning into three clusters
(Fig. 3, top right panel) leads to one cluster populatedwith high positive
value points (cluster 2) and two clusters (cluster 1 and 3) that contain
many points with low silhouette values, and a few points with negative
values, indicating that these two clusters are not well separated or
classified. The bottom panel of Fig. 3 contains the silhouette plot of
the same data, but now partitioned into 4 clusters. The values indicate
that this is probably not the right number of clusters since two of the
clusters contain points with mostly low silhouette values and others
with negative values. So, the results of k-means clustering indicate
that the total set has two clearly marked clusters which compounds
are tabulated in Table 2.

3.3. Linear discriminant function

A linear function (DF), which discriminates between the compounds
of both clusters, was developed assigning the values −1 and 1 to all
Fig. 3. Plots of the k-means clustering for k ranging from 2 to 4. Two clusters (top
compounds from clusters 1 and 2, respectively. These values were
used as dependent variable and the molecular descriptors calculated
with Dragon software package as the independent variables. In this
way, if the application of the discriminant function to a compound
gives a value of DF b 0, it belongs to cluster 1, and if DF N 0, the
compound belongs to cluster 2. The discriminant ability (expressed as
the percentage of reproducibility) was assessed by the percentage of
correct classifications attained for each cluster and for a test set of six
compounds extracted from the total set.

Five different discriminant functions were analyzed using 1 to 5
independent variables which minimize the standard deviation (S) of
the function, Table 3. The five discriminant functions present an
excellent capacity to discriminate the clusters and separate correctly
100% of the compounds. However, the 100% of reproducibility is
achieved using only one molecular descriptor (piID) and the DF is
left panel), three clusters (top right panel) and four clusters (bottom panel).



Table 3
Results of linear discriminant analysis.

DM no. Molecular descriptors R S % Reproducibility

Cluster 1 Cluster 2

1 pilD 0.971 0.163 100 100
2 PCD D/Dr10 0.980 0.137 100 100
3 pilD RDF045u G1p 0.988 0.109 100 100
4 nR06 PCD MWC10 BELe2 0.992 0.088 100 100
5 pilD D/Dr10 MWC10 HOMT BELe2 0.996 0.062 100 100

Table 4
Results of QSARmodels and the test set used in each one. The molecular descriptor num-
ber of model is named DM, the regression coefficient and standard deviations are identi-
fied as R and S, respectively. The train subscripts correspond to training set and the test
subscripts to test set.

Series 1

Models DM Test set a Rtrain Strain Rtest Stest

1 3 5 6 13 15 24 28 37 42 50 55 0.805 0.264 0.730 0.692
2 4 4 7 18 19 22 30 35 40 44 50 0.807 0.299 0.772 0.448
3 4 2 3 6 10 17 25 27 28 33 46 50 0.813 0.304 0.687 0.418
4 3 2 15 18 20 21 31 40 43 53 55 0.803 0.286 0.518 0.567
5 4 7 10 18 24 25 26 28 30 40 46 0.803 0.280 0.785 0.491
6 3 2 6 15 27 31 33 40 50 53 55 0.800 0.289 0.525 0.558
7 4 10 18 24 25 26 28 30 42 43 46 0.791 0.282 0.786 0.524
8 4 7 13 15 18 20 27 30 40 44 55 0.863 0.236 0.549 0.665
9 4 1 8 13 14 19 33 36 40 43 53 0.803 0.315 0.639 0.380
10 4 2 13 19 20 22 34 35 38 43 50 0.788 0.321 0.781 0.329

Means values 0.807 0.287 0.677 0.507

Series 2

Models DM Test set b Rtrain Strain Rtest Stest

11 4 5 10 16 45 47 51 52 55 57 58 0.828 0.292 0.737 0.520
12 4 3 15 16 40 45 51 52 55 57 58 0.872 0.248 0.404 0.597
13 5 13 16 30 42 45 51 52 55 57 58 0.856 0.259 0.797 0.552
14 4 2 16 19 23 45 51 52 55 57 58 0.811 0.289 0.702 0.530
15 4 16 36 38 45 46 51 52 55 57 58 0.821 0.294 0.653 0.478
16 3 4 5 16 45 46 51 52 55 57 58 0.795 0.305 0.668 0.424
17 4 1 8 16 39 45 51 52 55 57 58 0.833 0.289 0.415 0.747
18 4 16 26 30 37 45 51 52 55 57 58 0.841 0.270 0.551 0.568
19 4 5 7 16 42 45 51 52 55 57 58 0.809 0.307 0.687 0.362
20 3 16 33 35 37 45 51 52 55 57 58 0.765 0.334 0.523 0.561

Means values 0.823 0.288 0.613 0.533

Series 3

Models DM Test set c Rtrain Strain Rtest Stest

21 4 1 6 23 29 30 32 41 47 51 57 0.822 0.272 0.722 0.637
22 4 6 8 16 19 33 37 40 46 52 0.800 0.300 0.765 0.431
23 4 7 10 14 18 32 38 39 41 52 58 0.811 0.307 0.801 0.333
24 4 3 10 25 26 30 34 39 43 51 54 0.816 0.292 0.784 0.411
25 4 2 6 16 27 28 33 37 45 46 50 0.801 0.304 0.777 0.454
26 4 8 10 15 16 18 19 20 23 35 57 0.856 0.252 0.711 0.619
27 4 3 5 8 12 16 37 39 41 47 52 0.818 0.302 0.507 0.521
28 3 7 13 16 19 26 32 39 47 50 51 0.765 0.335 0.561 0.391
29 3 1 8 12 19 20 39 40 41 45 54 0.858 0.269 0.567 0.549
30 4 3 10 19 24 29 30 34 47 54 57 0.791 0.289 0.756 0.535

Means values 0.813 0.292 0.695 0.488
Kennard–Stones

31 3 8 20 22 23 24 25 27 28 51 53 0.748 0.408 0.712 0.573

a Test set including only compounds from cluster 1.
b Test set including all the compounds from cluster 2 (in bold font) and three

compounds from cluster 1.
c Test set including eight compounds from cluster 1 and two from cluster 2 (in bold

font), according to Table 2.
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found to be a simple equation with one independent variable. The DF
equation (Eq. (1)) is:

DF ¼ −1:0959þ 2:72� 10−6piID
R ¼ 0:971 R2 ¼ 0:944 S ¼ 0:163

ð1Þ

Eq. (1) was validated applying it to a test set (compounds Id. 6, 29,
30, 32, 47, and 57) showing a 100% reproducibility and an excellent
discriminant capacity.

The topological descriptor piID or πID (conventional bond order ID
number) is a molecular weighted path number obtained by weighting
graph edges with conventional bond order [42]. This ID number
accounts for multiple bonds in the molecule; for saturated molecules
each bond weight is equal to one, therefore the ID number coincides
with the total path count. The literature indicates that this descriptor
was mainly proposed to univocally identify a molecule by a single real
number, the aim being to obtain a highly discriminatory power suitable
for chemical documentation [43,44].

3.4. Development of QSAR model

The search of a predictive QSAR model was carried out by
performing 31 different combinations of training and test sets. In all
cases the training sets were comprised of 80% of the total set and the
test sets by 20% (ten compounds).

The first ten models were analyzed using a test set with all
compounds from cluster 1 and the training set includes all compounds
of cluster 2 (series 1), Table 4. The next ten models were tested with a
test set including all the compounds from cluster 2 and three
compounds from cluster 1, and the training set was formed only with
compounds of cluster 1 (series 2). The test set used in the next ten
models was built utilizing 20% of the compounds from clusters 1 and
2, and 80% of the compoundswere assigned to the training set (series 3).
Finally, the test set of model 31 was selected using the Kennard–Stone
algorithm [45]. The results are listed in Table 4.

The average values of the statistical parameters indicate that series 3
presents the highest predictive power. In series 1, all of the compounds
of cluster 2 are included in the training set and the test set only has
compounds from cluster 1. This distribution causes that any sets are
representative of the whole. Series 2 presents an acceptable calibration
(Raverage = 0.823) due to all compounds of training set belonging to
cluster 1. However, the validation of the models is poor because the
test set with the seven compounds of cluster 2 and three of cluster 1 is
not representative of the training set. The best cases were found using
series 3 and the Kennard–Stone algorithm because the training and
test sets are representative of both clusters. However series 3 presents
better statistical parameters.

All the developed models comply with the classic semiempirical
“rule of thumb”, which indicates that at least six or seven data points
(i.e. compounds) should be present by descriptor [43]. According to
the number of compounds of the training set (N= 42), a linear regres-
sion model containing from 1 to 6 descriptors (selected from a total of
1497) would provide sufficient information about the relationship be-
tween the biological activity and the structure of the compounds. Series
2 has models with higher number of descriptors than the rest of the se-
ries. Therefore, the models of series 1 and 3 are simpler QSAR models
with high predictive capability.

Model 23 from series 3 (highlighted in bold in Table 4) was selected
as the most predictive QSAR model. This model shows high calibration
and validation parameter values (Rtrain = 0.811 and Rtest = 0.801,
respectively). The mathematical equation (Eq. (2)) and the statistical
parameters are:

log 1=IC50ð Þ ¼ –0:612−1:184 IC1þ 0:143 RDF100m
þ0:625 Mor11pþ 15:901 R5eþ

Rtrain ¼ 0:811 R2
train ¼ 0:658 Strain ¼ 0:307 Rloo ¼ 0:746

Sloo ¼ 0:352 Rtest ¼ 0:801 R2
test ¼ 0:643 Stest ¼ 0:333

Rl20%o ¼ 0:645 Sl20%o ¼ 0:441 Srand ¼ 0:400

ð2Þ



Table 5
Correlation matrix of the molecular descriptor of model 23, Eq. (2).

IC1 RDF100m Mor11p R5e+

IC1 1.000 0.172 0.225 0.476
RDF100m 0.172 1.000 0.385 0.113
Mor11p 0.225 0.385 1.000 0.475
R5e+ 0.476 0.113 0.475 1.000
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The validation of the selected model was carried out through
four different methods: leave-one-out, leave-more-out, employing a
test set and y-randomization. The regression coefficients Rloo, Rl%o and
Rtest exceed the accepted value of 0.50. In addition, the smallest Srand
value (Srand = 0.400) achieved through the analysis of 10,000 cases of
y-randomization was greater than the value found (S = 0.307) when
true calibration was considered, showing that the developed QSAR
model is predictive [44].

The values of log(1/IC50) predicted by Eq. (2) are listed in Table 1 and
are graphically depicted in Fig. 4. The plot in the top panel of this figure
shows the good correlation that exists between the predicted and the
experimental activity values of the compounds of training and test
sets. The plot in the bottom panel represents the quality of the leave-
one-out validation.
3.5. Molecular descriptors and the 5-LOX inhibitory activity

We performed an exhaustive search of a QSAR model to predict
the 5-LOX inhibitory activity, expressed as log(1/IC50), of a series of 5-
Benzylidene-2-phenylthiazolinones. According to the obtained model
(model number 23 of Table 4), the most relevant molecular descriptors
related to the 5-LOX inhibitory activity are IC1, RDF100m, Mor11p and
R5e+. The correlationmatrix, given in the Table 5, indicates that the in-
formation provided by each descriptor to the model is not redundant,
showing a maximum correlation of 0.476 between IC1 and R5e+. A
brief description of the four descriptors is shown in Table 6.
-4

-3.5

-3

-2.5

-2

-1.5

-1

-4 -3.5 -3 -2.5 -2 -1.5 -1

P
re

d
ic

te
d

 V
al

u
es

Experimental values

Training set

Test set

-4

-3.5

-3

-2.5

-2

-1.5

-1

-4 -3.5 -3 -2.5 -2 -1.5 -1

P
re

d
ic

te
d

 V
al

u
es

Experimental values

Training set

leave one out

Fig. 4. Top: Experimental log(1/IC50) versus predicted log(1/IC50). Bottom: Experimental
log(1/IC50) versus predicted log(1/IC50) for the leave one out validation.
The standardization of the regression coefficients of Eq. (2), allows
assigning a greater importance to the molecular descriptors with larger
absolute standardized coefficient values [46]. The most important
descriptor in the selected model is IC1, which is an Information Content
descriptor. The negative sign in Eq. (2) indicates that log(1/IC50) values
are indirectly related to this descriptor. The second most important
descriptors are R5e+ and RDF100m, which are an R index weighted
by atomic Sanderson electronegativity and radial distribution function
(RDF), respectively. The weighting of the R indexes encode information
about substituents differently from unweighted indexes. In this case,
the largest values of this descriptor can be expected when high electro-
negative atoms are situated far from the center of the molecule at a
topological distance of 5 bonds. The radial distribution function (RDF)
is a kind of molecular descriptor defined for an ensemble of atoms,
and may be interpreted as the probability distribution for finding an
atom in a spherical volume of certain radius, incorporating different
types of atomic properties in order to differentiate the nature and
contribution of atoms to the property being modeled. This descriptor
also reveals an enthalpic contribution on activity (related to the inter-
actions of hydrogen bond and van der Waals types) and it is important
for hydrophobic interactions with an enzyme [47,48]. Since these
descriptors have a positive contribution to the model, it is expected
that the log(1/IC50) increases with the increase of their values. The
Mor11p descriptor has less influence on the activity. This descriptor
belongs to the 3D-MoRSE descriptors and is weighted by atomic
polarizabilities.
4. Conclusion

In this work, we have developed a QSARmodel with high predictive
capacity which can be used to predict the 5-LOX inhibition activity of
new 5-Benzylidene-2-phenylthiazolinones derivatives. We have found
that biological activity is related to the structural information provided
by IC1, RDF100m, Mor11p and R5e+ molecular descriptors. In the
search of this predictive model, we have used the k-means clustering
and LDA approach to find the possible clusters and perform the most
representative selection of training and test sets. The statistical param-
eter of themodel (Rtrain=0.811, Rtest = 0.801) shows the great stability
that exists between the results obtained in the calibration and
the validation when a rational selection of the training and test
sets is performed, proving that the random selection is sometimes
inappropriate.

We consider that the information provided in this article can be used
to develop the most representative QSAR model and for future investi-
gations and development of new potential 5-LOX inhibitors.
Table 6
Description of the molecular descriptors of the QSAR model.

Name Description Block

IC1 Information content index (neighborhood
symmetry of 1-order)

Information indices

RDF100m Radial distribution function - 100/weighted
by mass

RDF descriptors

Mor11p Signal 11 / weighted by polarizability 3D-MoRSE descriptors
R5e+ R maximal autocorrelation of lag 5/weighted

by Sanderson electronegativity
GETAWAY descriptors
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