
Therapeutic benefit of melatonin in experimental feline uveitis

Introduction

Acute or chronic uveitis is a frequent ophthalmic disorder
which constitutes one of the main causes of irreversible
blindness in domestic cats. Although uveitis may be caused
by corneal ulceration, penetrating wounds, blunt trauma,

immune-mediated disease, lens-induced uveitis and neopla-
sia, common infectious systemic diseases are the most
frequent causes of uveitis in cats [1]. Feline immunodefi-

ciency virus (FIV), feline infectious peritonitis virus (FIP),
feline leukemia virus (FeLV), Toxoplasma gondii, Crypto-
coccus neoformans, and Histoplasma capsulatum are the

most frequent infectious agents implicated in the disease.
However, Blastomyces dermatitidis, Coccidioides immitis
and Candida albicans [1–4], Bartonella henselae [5], feline

herpesvirus 1 (FHV 1) [1], Cuterebra spp [6], Mycobacte-
rium bovis, Mycobacterium tuberculosis and Mycobacterium
avium [7], and a Metastrongylidae [3] were also associated
with feline uveitis.

At present, in addition to treatments for an identifiable
primary cause, the symptomatic treatment for feline uveitis
mainly consists in the administration of corticosteroids,

directed toward reduction in pain and lesions of ocular
tissues [8]. However, when used as a systemic therapy, the
immunosuppressive effect of corticosteroids may contribute

to the development of the systemic disease, and their
chronic topical use might lead to ocular hypertension [9].
Non-steroidal anti-inflammatory drugs are also indicated

for uveitis treatment in cats, but when used topically (for
anterior uveitis), they may delay the corneal reparative
process [10], and after a systemic use (for posterior uveitis),
they may affect platelets and induce acute renal insuffi-

ciency and gastrointestinal hemorrhage or ulceration [8].
Moreover, it has been shown that only 33% of cats with
systemic disease-associated uveitis respond to this treat-

ment [11].
Uveitis has several common characteristics among spe-

cies. However, many medications that are successfully used

in humans or dogs for uveitis treatment are not well
tolerated by cats. Therefore, the selection of appropriate
drugs is limited in felines. Experimental models of feline
uveitis could greatly facilitate the understanding of the

cellular events involved in ocular inflammation as well as
the development of new therapeutic strategies. We have
recently demonstrated that an intravitreal injection of

lipopolysaccharide (LPS) in cats mimics many of the
clinical, biochemical, functional and histological features
of feline uveitis [12].

Although uveitis is one of the main causes of eye
morbidity and loss of visual functions, the complexity of
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biochemical and immune mechanisms involved in its
generation and development remains largely unknown.
Several lines of evidence support the possibility that the

disease is because of damage generated by infiltrated
leukocytes which release cytokines [13, 14], and other
inflammatory mediators, like arachidonic acid metabolites
[15], reactive oxygen species [16, 17], and nitric oxide (NO)

[18], among many others. Arachidonic acid metabolites
regulate vascular permeability, chemotaxis, and contribute
to uveitis amplification [19, 20]. In addition, activated

phagocytes synthesize large amounts of NO through a
reaction catalyzed by the inducible isoform of NO synthase
(iNOS) [21, 22].

Melatonin is an endogenous neuromodulator in the
retina of vertebrates [23–25]. It was demonstrated that
melatonin has an immunomodulatory role, and it may
provide neuroprotection in different systems [26–28]. More-

over, melatonin possesses widespread free radical scaveng-
ing and antioxidant activities in different tissues [29, 30],
including the retina [31, 32]. We have shown that melatonin

may directly react with NO yielding at least one stable
product, N-nitrosomelatonin [33]. In addition to a direct
scavenging of NO, low concentrations of melatonin sig-

nificantly decrease hamster retinal NOS activity and
L-arginine uptake, indicating that melatonin may be a
potent inhibitor of the retinal nitridergic pathway [34]. In

fact, it was demonstrated that melatonin is protective
against oxidative damage in situations where NO is known
to account for molecular destruction [35]. Moreover, it was
demonstrated that melatonin inhibits cyclooxygenase activ-

ity [36]. Several lines of evidence support the possibility that
melatonin may act as a protective agent in ocular condi-
tions such as photokeratitis, cataract, retinopathy of

prematurity, ischemia/reperfusion injury, and glaucoma
[31, 32]. In this context, the aim of the present work was to
analyze the therapeutic effect of melatonin in feline LPS-

induced uveitis.

Materials and methods

Animals

All animal procedures were conducted in strict accordance
with the Association for Research in Vision and Ophthal-
mology Statement for the Use of Animals in Ophthalmic

and Vision Research. Cats were obtained from the research
colony of the Facultad de Ciencias Veterinarias, Univers-
idad Nacional del Centro de la Provincia de Buenos Aires.

Twenty intact young European short-hair male cats
(2.5 ± 0.5 kg) that were seronegative for T. gondii, FIV,
and FeLV were housed individually in a temperature- and

light-controlled environment (fluorescent lights were
automatically turned on and off every 12 hr). Cats were
fed a balanced diet, and water was available ad libitum.
Cats were adapted to human contact for 4–6 wk. Prior to

inclusion in the study, each cat�s physical and ophthalmo-
logic health conditions were determined based on the
results of general and ocular examinations. Ocular exam-

ination included Schirmer tear test measurements (Schirmer
tear test strips; Schering-Plough Animal Health Corp.,
Union, NJ, USA), fluorescein staining (Love Sudamericana

Laboratory, Buenos Aires, Argentina), applanation tonom-
etry (Tono-Pen XL; Mentor, Norwell, MA, USA), biomi-
croscopy (Slit lamp HLS 150; Heine Optotechnik,

Herrsching, Germany), and direct ophthalmoscopy (Heine
Beta 200; Heine Optotechnik).

Intravitreal injections

Cats were anesthetized via intramuscular administration of
ketamine hydrochloride (15 mg/kg) and xylazine hydro-

chloride (1.5 mg/kg). By use of a disposable 1-mL syringe
with a 25-gauge needle, 20 lg of LPS from Salmonella
typhimurium (Sigma, St Louis, MO, USA) in 100 lL of

sterile saline solution (0.9% NaCl) was injected intravitre-
ally into the right eye, and the left eye was injected
intravitreally with 100 lL of sterile vehicle. A drop of
topical anesthetic (0.5% sterile proparacaine hydrochloride

ophthalmic solution, Anestalcon; Alcon Laboratories,
Buenos Aires, Argentina) was instilled before injection of
vehicle or LPS. The single intravitreal injection of vehicle or

LPS was given at a location 5 mm posterior to the limbus
and was directed toward the optic nerve to avoid trauma to
the lens. Before and after injections, the conjunctival sac

was thoroughly rinsed with sterile saline solution.

Melatonin administration

A group of ten cats received 3 mg of melatonin (Eliseum
Laboratory, Buenos Aires, Argentina) orally at 9:00 hr,
1 day before and every day after vehicle and LPS injection,

up to 45 days postinjections.

Clinical score

During a period of 45 days after intravitreal injections, cats
were evaluated for signs of ocular pain, conjunctival

hyperemia, chemosis, keratic precipitates, aqueous flare,
hypopyon, hyphema, miosis, iridial swelling, iris hetero-
chromia, synechiae, and cataracts using a slit lamp, as well
as for vitreal opacity, retinal detachment, chorioretinitis,

and optic neuritis, by direct and indirect ophthalmoscopy.
Clinical severity of the inflammatory signs was assessed at
several time points after injection of vehicle or LPS and was

graded on a scale from 0 to 50 (Table 1). Miosis was
quantified in reference to the pupil size. Severity of other
clinical signs was graded by assignment of the following

scores: 0 (absent) or 1 (present), 0–2 (0 = absent,
1 = moderate, and 2 = severe), or 0–3 (0 = absent,
1 = mild, 2 = moderate, and 3 = severe). For synechiae,

the criterion was based on the number of synechiae
(0 = absent, 1 = one, 2 = two, and 3 = 3 or more) and
aqueous flare was quantified in accordance with the scale
described by Hogan [37, 38]. Despite changes in the

anterior portions of the eyes, it was possible to observe
alterations induced by LPS in the posterior portions
because in all examined eyes, cataracts were mainly

immature (not complete) and miosis was severe but not
complete even 24 hr after the injection. Each eye was
examined by two observers, who were unaware of the

treatment applied. Clinical signs were graded, and a
cumulative score was assigned to each eye by each observer.
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The mean of the cumulative clinical scores assigned by the
two observers was recorded as the clinical score for a given
eye at a given time point. At each time point, the mean

values from vehicle- or LPS-injected eyes in animals
untreated or treated with melatonin were averaged to
compute the group mean ± S.E. clinical score.

Intraocular pressure assessment

Intraocular pressure (IOP) was assessed on days 3 and 10

after intravitreal injection, as previously described [11].
Tonometric measurements were performed by a single
investigator using a Tono-Pen XL applanation tonometer

(Mentor�). Cats were manually restrained, and a drop of
topical anesthetic (0.5% sterile proparacaine hydrochloride

ophthalmic solution, Anestalcon�; Alcon Laboratories)
was applied to the cornea immediately before tonometry.
Five independent IOP readings (standard error [S.E.]

<5%) were obtained from each eye, and IOP was
determined as the mean of these readings. IOP measure-
ments were performed at the same time each day (between
11:00 hr and noon) to correct for diurnal variations [39].

Inflammatory cells and protein concentration in
aqueous humor

On days 2, 7, 14, 21, and 28 after intravitreal injections, a
sample of aqueous humor (AH) was obtained from both

eyes by paracentesis. For this purpose, cats were anesthe-
tized via intramuscular administration of ketamine hydro-
chloride (15 mg/kg) and xylazine hydrochloride (1.5 mg/kg).
Then, the conjunctival sac was thoroughly rinsed with

sterile saline solution. After fixing the eye from the
superotemporal bulbar conjunctivae and by use of a
disposable 1-mL syringe with a 25-gauge needle, 400 lL
of AH was collected slowly and with the minimal vacuum
pressure needed to obtain the samples, avoiding touching
the iris, lens, and corneal endothelium. The number of

infiltrating cells and protein concentration were determined
in each sample. For cell counting, AH samples were
centrifuged at 800 g for 5 min at 4�C. Then, 360 lL of

supernatant was extracted for protein concentration mea-
surement, and the remainder was suspended in 20 lL of
sodium and potassium EDTA salts (0.342 m, pH 7.2) for
cell counting. Red cells were lysed in a 1:10 acetic acid

dilution. Inflammatory cells were counted using a Neu-
bauer camera and light microscopy. The number of cells per
field (equivalent of 0.1 lL) was counted, and the number of

cells per microliter of AH was obtained by averaging the
results of four fields and referring to the sample volume
before centrifugation.

Protein content was measured by the method proposed
by Lowry et al. [40] with bovine serum albumin as a
standard.

Electroretinography

On day 30 after the intravitreal injections, electroretino-

grams (ERGs) were registered as previously described,
using an Akonic BIO-PC equipment (Akonic, Buenos
Aires, Argentina). [12] Briefly, after 120 min of dark

adaptation, cats were anesthetized as described earlier;
phenylephrine hydrochloride (2.5%) and 1% tropicamide
(Alcon-Mydril; Alcon Laboratories) were applied to both

eyes to dilate the pupils, and the corneas were intermittently
irrigated with balanced salt solution to prevent keratopa-
thy. Each cat was placed facing the stimulus at a distance of
20 cm. A reference electrode was placed halfway between

the temporal canthus and the ear, a grounding electrode
was attached subcutaneously to the occipital crest, and a
contact lens electrode (ERG jet electrode; LKC Technol-

ogies, Gaithersburg, MD, USA) was placed in the central
cornea. Anesthesia did not rotate the globes, and eyelids
were fixed using a blepharostat. A 16-W red light was used

to enable accurate electrode placement. This maneuver did
not significantly affect dark adaptation and was switched

Table 1. Score system used to grade the clinical severity of lipo-
polysaccharide-induced uveitis in cats

Clinical sign Score

Pain
Photophobia 0 or 1
Blepharospasm 0 or 1
Epiphora 0 or 1

Conjunctival hyperemia 0 or 1
Chemosis 0 or 1
Keratic precipitates 0 or 1
Corneal edema 0 or 1
Corneal vascularization 0 or 1
Tyndall effect 0–4
Hyphema

None 0
£ 33% of the anterior chamber 1
>33% of the anterior chamber 2

Hypopyon
None 0
£ 33% of the anterior chamber 1
>33% of the anterior chamber 2

Miosis
None 0
Mild 1
Moderate 2
Severe 3
Maximal 4

Iridial swelling 0–2
Iridial hyperemia or rubeosis 0–2
Synechiae 0–3
Iris heterochromia 0–2
Cataract 0–3
Lens subluxation or luxation 0–2 or 3
Vitritis 0–3
Chorioretinitis (active or inactive) 0–3
Optic neuritis 0–3
Negative menace response 0–3
Pupillary light reflex

Fast 0
Slow 1
Absent 3

Maximum cumulative clinical score 50

Severity of clinical signs was graded by assignment of scores of 0
(absent) or 1 (present), scores of 0–2 (0 = absent; 1 = moderate;
and 2 = severe), or scores of 0–3 (0 = absent; 1 = mild;
2 = moderate; and 3 = severe). Miosis was quantified in reference
to the pupil size. For synechiae, the criterion was based on the
number of synechiae (0 = absent; 1 = one; 2 = two; and
3 = three or more).
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off during the recordings. ERGs were recorded from both
eyes simultaneously and ten responses to flash of white light
(5 ms; 0.2 Hz) from a photic stimulator (light-emitting

diodes) set at maximum brightness (9 cd s/m2 without a
filter) were amplified, filtered (1.5-Hz low-pass filter; 1000-
Hz high-pass filter; notch activated) and averaged. The
ERG a-wave amplitude was measured as the difference in

amplitude between the recording at onset and the trough of
the negative deflection and the b-wave amplitude was
measured as the difference in amplitude between the trough

of the a-wave and the peak of the b-wave. Electroretino-
graphic responses were averaged for each run (ten tests).
Runs were repeated three times at 5-min intervals to

confirm consistency, and the mean of these runs was used
for subsequent analysis.

Histological examination

Forty-five days after the intravitreal injections, both eyes
from four cats (two cats untreated and two cats treated with

melatonin) randomly selected were enucleated by use of a
transconjunctival enucleation technique. Cats were anes-
thetized and immediately euthanized via intravenous

administration of pentobarbital sodium (80 mg/kg) and
diphenylhydantoin sodium (10 mg/kg) (Euthanyle, Brou-
wer, Buenos Aires, Argentina). The ocular globes were

immediately placed in a fixative solution (4% formaldehyde
in 0.1 m phosphate buffer, pH 7.4) for 4 hr. Then, globes
were carefully incised with a razor blade in the central
cornea making a small window to allow a better access of

fixative. This maneuver did not affect any structure of the
eye. After fixation for 48 hr, eyes were sectioned along the
horizontal meridian through the optic nerve head, and

photomicrographs were obtained 1.5 mm from the optic
nerve head center. Retinal sections (5 lm thick) were
stained with hematoxylin and eosin stain.

Statistical analysis

Statistical analysis of results was made by a two-way

ANOVA followed by a Tukey�s or Student�s t-test, as
stated.

Results

Clinical severity scores were assessed on 16 occasions (at

days 1, 3, 5, 8, 10, 12, 15, 17, 19, 22, 24, 26, 29, 35, 40, and
45 after intravitreal injection) in vehicle- and LPS-injected
eyes from cats untreated or treated with melatonin. Mean

clinical scores for eyes in each group were averaged, and
results are shown in Fig. 1. In all eyes injected with LPS
from animals untreated with melatonin, signs of ocular
inflammation developed, whereas no signs of uveitis were

evident in vehicle-injected eyes. The treatment with mela-
tonin significantly decreased the clinical score induced by
LPS during the entire study period, except for day 1. Fig. 2

shows representative photographs of typical inflammatory
signs that developed in cats injected with LPS in the
absence or presence of melatonin. LPS-associated effects

were most commonly signs of pain, conjunctival hyperemia,
chemosis, hypopyon, hyphema, miosis, aqueous flare,

iridial swelling, tumefaction and rubeosis iridis, vitritis,
chorioretinitis, and partial secondary blindness. The pres-
ence of melatonin significantly reduced the occurrence of
clinical inflammatory signs. IOP from eyes injected with

vehicle or LPS in the absence or presence of melatonin was
assessed at 3 and 10 days after intravitreal injections. In the
absence of melatonin, LPS induced a significant decrease in

IOP as compared with vehicle-injected eyes, whereas this
parameter was significantly higher in cats treated with
melatonin at 10 (but not 3) days after injections (Fig. 3). In

vehicle-injected eyes, melatonin did not affect IOP (data not
shown).
At different time points after injections, the number of

inflammatory cells and protein concentration was assessed
in samples of AH from eyes injected with vehicle or LPS in
the absence or presence of melatonin. LPS provoked a
significant increase in AH cell count that lasted for 14 days.

Afterward, this parameter did not differ with that observed
in vehicle-injected eyes. At days 2, 7, and 14 after
intravitreal injection of LPS, significantly fewer inflamma-

tory cells were observed in the AH from melatonin-treated
cats, as shown in Fig. 4. No cells were observed in the AH
from vehicle-injected eyes of animals untreated or treated

with melatonin throughout the study.
Aqueous humor protein concentration was significantly

higher in LPS-injected eyes in the absence than in the
presence of melatonin at day 14, 21, and 28 postinjection of

LPS (Fig. 5). Protein concentration in vehicle-injected eyes
did not change along the study or between animals un-
treated and treated with melatonin (i.e., 0.47±0.05 mg/mL,

Fig. 1. Effect of melatonin on the clinical score in lipopolysac-
charide (LPS)-induced uveitis. Mean ± S.E. of clinical scores as-
signed to each eye of 20 cats at days 1, 3, 5, 8, 10, 12, 15, 17, 19, 22,
24, 26, 29, 35, 40, and 45 following a single intravitreal injection of
LPS in one eye and vehicle in the contralateral eye, in the absence
or presence of melatonin (n = 10 eyes/group). At all time points,
the clinical score was significantly higher in the absence than in the
presence of melatonin, except for day 1. *P < 0.05, **P < 0.01,
by Student�s t-test.
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and 0.51±0.07 mg/mL, in the absence and presence of
melatonin, respectively).

To analyze retinal function, scotopic ERGs were
recorded before (pre-injection) and at 30 days postinjec-

tions. The average amplitudes of ERG a- and b- waves, as
well as representative scotopic ERG traces from cat eyes,
are shown in Fig. 6. The injection of LPS decreased

scotopic ERG a- and b-wave amplitude, whereas the
treatment with melatonin significantly prevented the effect
of LPS on ERG a- and b-wave amplitude. No differences

between pre-injection values and those obtained in vehicle-
injected eyes were observed (data not shown). The ERG

a- and b-wave latency did not differ among vehicle- and
LPS-injected eyes from animals untreated or treated with
melatonin.
Retinas from eyes submitted to different treatments were

examined by light microscopy at 45 days after LPS injec-
tion (Fig. 7). No signs of inflammation were evident in the
anterior segment of eyes injected with vehicle or LPS with

or without melatonin (data not shown). In the retinas from
eyes injected with vehicle, no signs of inflammation were
evident (Fig. 7A), whereas retinal folds and loss of photo-

receptors were seen in those injected with LPS (Fig. 7B). In
addition, a high number of inflammatory cells (lympho-
cytes) mainly located in the inner retina, and disorganiza-

tion of the axons from the nerve fiber layer was observed.
The treatment with melatonin significantly preserved the
retinal structure (Fig. 7C).

(A) (B)

(C) (D)

Fig. 2. Representative photographs of
clinical signs observed 2 days after the
injection of lipopolysaccharide (LPS)
(right eye) and vehicle (left eye), in the
absence (A) or in the presence (B) of
melatonin. Magnification of an eye in-
jected with LPS in the absence (C) and in
the presence (D) of melatonin. (C) Note
the occurrence of miosis, iridial swelling,
and aqueous flare (grade 3). (D) Note a
slight miosis and iridial swelling, as well as
aqueous flare (grade 1). In vehicle-injected
eyes, no inflammatory signs were observed
in the absence or in the presence of mel-
atonin.

Fig. 3. Effect of lipopolysaccharide (LPS) in the absence or in the
presence of melatonin on intraocular pressure, at 3 and 10 days
after intravitreal injections. In the absence of melatonin, LPS in-
duced a significant decrease in this parameter, at both time points,
whereas melatonin reversed the effect of LPS at 10 days after
injection. Data are mean ± S.E. (n = 6 eyes per group),
*P < 0.05, **P < 0.01 versus vehicle, a: P < 0.05 versus LPS, by
Tukey�s test.

Fig. 4. Effect of lipopolysaccharide (LPS) in the absence or in the
presence of melatonin on aqueous humor cell number. Cell count
was significantly higher in the absence than in the presence of
melatonin at days 2, 7, and 14 postinjection of LPS. Data are
mean ± S.E. (n = 10 eyes per group), *P < 0.05, **P < 0.01
versus LPS-injected eyes, by Student�s t-test.
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Discussion

Uveitis is a major cause of visual disability in cats.
Although the number of cats examined in this study was
relatively small, the present results indicate that the
biochemical, clinical, functional, and histological altera-

tions induced by this particular model of experimental
uveitis were significantly reduced in cats daily treated with
melatonin. It was previously shown that melatonin sig-

nificantly reduces edematous effects of experimental uveitis
in the guinea pig retina, [41] and that it prevents ocular
inflammatory signs induced by LPS injection in the golden

hamster [42]. The present results further support the
preventive action of melatonin in experimental uveitis, by
showing its beneficial effect in cat eyes.
Experimental models of uveitis were developed in several

species by LPS intravenous, intraperitoneal, or footpad

administration. We used an intravitreal injection of LPS,
because this maneuver avoids systemic inflammation and
allows the use of the contralateral eye as control, minimiz-
ing the number of animals, and decreasing their mortality.

We have previously shown that a single intravitreal
injection of LPS in cats mimics several features of feline

Fig. 5. Effect of lipopolysaccharide (LPS) in the absence or in the
presence of melatonin on aqueous humor protein concentration.
This parameter was significantly higher in the absence than in the
presence of melatonin at days 14, 21, and 28 postinjection. Data are
mean ± S.E. (n = 10 eyes per group), *P < 0.05 versus LPS-in-
jected eyes, by Student�s t-test.

Fig. 6. Upper panel: Scotopic electroretinogram (ERG) a- and b-
wave amplitude in the eyes of cats before (pre-injection) and at day
30 after an intravitreal injection of lipopolysaccharide (LPS), in the
absence or in the presence of melatonin. A significant reduction in
the amplitude of scotopic ERG a- and b-wave amplitude was ob-
served in eyes injected with LPS, whereas these reductions were not
seen in cats treated with melatonin. Data are mean ± S.E. (n = 10
eyes per group), **P < 0.01 versus control, a: P < 0.01 versus
LPS, by Tukey�s test. Lower panel: Representative scotopic ERG
traces from eyes submitted to different treatments.

(A) (B) (C)

Fig. 7. Representative photomicrographs of transverse sections of retinas from one eye injected with vehicle (A), one eye injected with
lipopolysaccharide (LPS) in the absence of melatonin (B) and one eye injected with LPS in the presence of melatonin (C). In the vehicle-
injected eye, the retinal architecture appears normal. In the eye injected with LPS in the absence of melatonin, alterations in photoreceptors
and middle portion of the retina are apparent. Note the inward foldings of the external segments of photoreceptors (asterisks) and
inflammatory cell infiltration in the inner portion of the retina (arrow). The presence of melatonin preserved the retinal structure. H&E
staining, 40·.
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uveitis, including disruption of the blood–ocular barrier
integrity, with characteristic clinical signs [12]. Endotoxin-
induced uveitis is a well-validated model of uveitis in

different species [15, 43–45]. However, few studies have
previously addressed the temporal course of ocular alter-
ations after injection of LPS, and largely only short-term
(24 hr to 7 days) consequences were reported [46–48]. Our

previous results show that at least in cats, the duration of
the effect of LPS is longer than previously estimated [12]. In
the presence of melatonin, a significant reduction of clinical

signs induced by LPS was observed. This effect was not
specific for particular signs, because a reduction of all of
them was evident in the presence of melatonin. As

hypotony is a cardinal sign of primary uveitis, IOP was
assessed in eyes injected with vehicle or LPS in the absence
or presence of melatonin. As previously shown, LPS
induced a significant decrease in IOP [12], whereas mela-

tonin reversed the effect of LPS at 10 days after the
injection.

As previously described, the intravitreal injection of LPS

in cats provoked a significant increase in cell number and
protein concentration in AH, indicating a disruption of the
blood–ocular barrier integrity [12]. The LPS-induced

increase in AH cell number reached a maximal value at
day 2 after LPS injection. Afterward, the number of cells in
LPS-injected eyes progressively decreased, reaching base-

line values at 21 days postinjection. A longer-lasting effect
of LPS was observed on AH protein concentration. In this
case, a significant effect of LPS persisted until day 28
postinjection. The fact that the concentration of protein in

AH samples remained increased for a longer period than
cell number is compatible with a partial repair of the
disrupted blood–ocular barrier during last phases of the

inflammatory process. Melatonin, which showed no effect
on AH cell number in vehicle-injected eyes, induced a
significant decrease in AH cell number at days 2, 7, and 14,

and reduced protein concentration at days 14, 21 and 28
postinjection of LPS, indicating that melatonin may par-
tially protect the blood–ocular barrier at early and late

stages of the inflammatory process. Similarly, it was shown
that melatonin attenuates the postischemic increase in
blood–brain barrier permeability following ischemic stroke
in mice [49], and reduces cerebral edema and decreases

blood–brain barrier permeability in rats [50]. In addition, it
was demonstrated that melatonin protects endothelial
barrier and preserves microvascular blood perfusion after

ischemia/reperfusion in the hamster cheek pouch [51].
Furthermore, the present findings are compatible with the
observations by Kaur et al. [52] who demonstrate that

melatonin protects the inner blood–retinal barrier in the rat
hypoxic retina and from those by Sande et al. [42] which
indicate that melatonin preserves the ultrastructure of
blood–ocular barriers in LPS-injected hamster eyes.

Electroretinography has been successfully used to non-
invasively and objectively measure retinal function follow-
ing a wide range of retinal insults (e.g. toxic agents,

infection, vasculopathy, and photic lesions) in several
species [51–56]. To assess the effect of LPS on retinal
function, scotopic flash ERGs were registered. A significant

reduction in ERG a- and b-wave amplitude was observed
in LPS-treated eyes, which was diminished with melatonin

treatment. Several lines of evidence indicate that there is a
close relationship between the degree of ocular inflamma-
tion and the depression of the ERG [54]. The a-wave of the

flash ERG is classically thought to represent photoreceptor
activity, whereas the b-wave reflects bipolar and Müller cell
functions. Although the assessments of retinal function and
histological characteristics were not performed at the same

interval after injection (i.e. 30 and 45 days after the
injection of vehicle and LPS, respectively), the results also
support a correlation between retinal morphology and the

electroretinographic activity. Inward foldings of photore-
ceptor external segments and infiltrating cells were
observed in the inner region of retinas from eyes injected

with LPS in the absence of melatonin, indicating damage
to the outer, middle, and inner regions of the retina. As
melatonin preserved the ERG a- and b-wave amplitude
and the retinal structure, these results suggest that the

protection induced by melatonin could be a panretinal
phenomenon.
There remain to be established the mechanism/s

involved in the protection induced by melatonin. In that
sense, it has been previously shown that reducing NO
levels [57, 58], manipulating intracellular redox status with

antioxidants [59], and inhibiting prostaglandin synthesis
[58] can reduce experimental uveitis. There is a very large
body of evidence documenting melatonin as an antioxi-

dant [31, 60–62]. In addition, we have shown that
melatonin is a potent inhibitor of the retinal nitridergic
pathway [34], and it has anti-inflammatory effects in the
golden hamster eye [42]. These results suggest that

melatonin could be a useful resource in the management
of uveitis, because it exhibits antioxidant and antinitrid-
ergic properties, and may decrease the levels of prosta-

glandins. Feline uveitis, a disease with potentially blinding
sequelae (synechiae, cataracts, secondary glaucoma, loss of
vision), remains a challenging field to Veterinary Ophthal-

mology, as the disease causes significant morbidity and the
use of traditional forms of treatment is restricted by
limited effectiveness and potential side effects. Therefore,

the establishment of alternative anti-inflammatory ap-
proaches is desirable to decrease the rate and degree of
these complications. The present results suggest that
melatonin could be a resource in the management of

feline uveitis. Alone or combined with corticosteroid
therapy, the anti-inflammatory effects melatonin may
decrease the rate and degree of corticosteroid-induced

complications. Although in the present study only the
preventive effect of melatonin in one model of feline
experimental uveitis was examined, these results support

that even as preventive strategy, melatonin might become
a future consideration for uveitis treatment in cats.
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fellowship from CONICET. The authors thank Dr. Ro-
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