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(Dated: November 2008)

We study exact solutions to Cosmological Topologically Massive Gravity (CTMG) coupled to
Topologically Massive Electrodynamics (TME) at special values of the coupling constants. For
the particular case of the so called chiral point lµG = 1, vacuum solutions (with vanishing gauge
field) are exhibited. These correspond to a one-parameter deformation of GR solutions, and are
continuously connected to the extremal Bañados-Teitelboim-Zanelli black hole (BTZ) with bare
constants J = −lM . At the chiral point this extremal BTZ turns out to be massless, and thus it
can be regarded as a kind of ground state. Although the solution is not asymptotically AdS3 in
the sense of Brown-Henneaux boundary conditions, it does obey the weakened asymptotic recently
proposed by Grumiller and Johansson. Consequently, we discuss the holographic computation of
the conserved charges in terms of the stress-tensor in the boundary. For the case where the coupling
constants satisfy the relation lµG = 1+2lµE, electrically charged analogues to these solutions exist.
These solutions are asymptotically AdS3 in the strongest sense, and correspond to a logarithmic
branch of selfdual solutions previously discussed in the literature.

PACS numbers: 04.60.Kz, 04.70.-s, 04.70.Bw

I. INTRODUCTION

In the last year and a half there has been a revived interest in three-dimensional gravity. This was
mainly motivated by E. Witten’s proposal [1] that Einstein gravity in AdS3 is holographically dual to
a holomorphically factorizable CFT2. This idea has attracted considerable attention, and led to intense
debate [2, 3, 4, 5]. Another model of three-dimensional gravity that has attracted much attention recently
is Topologically Massive Gravity (TMG), which corresponds to three-dimensional Einstein gravity coupled
to a gravitational Chern-Simons term without torsion [6]; namely,

IG =
1

2κ2

∫

M

d3x
√−g(R+

2

l2
) +

1

4κ2µG

∫

M

d3xǫλµνΓρ
λσ(∂µΓσ

ρν +
2

3
Γγ

µρΓ
σ
νγ) + B (1)

with l−2 = −Λ and κ2 = 8πG, and where B stands for the boundary term which we are not writing explicitly
here (see (16) below). The three-dimensional gravity theory defined by (1) contains a local massive graviton
degree of freedom [6, 7], and it also admits black hole solutions [8], what makes TMG a very interesting
model to be explored.

One of the interesting properties of TMG is that its holographic description [9] in terms of a CFT2 captures
several interesting features of the AdS3/CFT2 realization. As in the case of Einstein gravity in AdS3, the
asymptotic isometry group of TMG in this background is generated by two copies of the Virasoro algebra
with non-trivial central extension. When the gravitational Chern-Simons coupling µG takes the special value
µG = 1/l, the central charge of left-moving excitations in the boundary theory vanishes, leading to the still
controversial suggestion that the theory might be chiral [10]; see also [11]-[23].

In addition to AdS3, other backgrounds of TMG have recently shown to be of great interest. In particular,
warped versions of AdS3 have led to fabulous applications such as the description of extremal four-dimensional
Kerr black holes [24, 25, 26, 27, 28, 29]. The connection of these backgrounds to Gödel black holes [27] are
also very interesting.

http://arXiv.org/abs/0811.4464v3
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Here, we will be concerned with Topologically Massive Gravity coupled to its electromagnetic analog,
the Topologically Massive Electrodynamics (TME). The gauge theory action is given by the Maxwell term
coupled to abelian Chern-Simons term; namely

IE = −1

4

∫

M

d3x
√−gFµνF

µν +
µE

4

∫

M

d3xǫµνρAµFνρ. (2)

In this paper, we will consider the special case lµG = 1 − 2ǫ with ǫ = −lµE . The reason why we are
particularly interested in this relation between coupling constants is that such theories admit a class of
solution with interesting properties. For instance, particular features of exact solutions at lµG = 1 (ε = 0)
were noticed even before the chiral gravity conjecture [15] was formulated; see for instance [30]. At these
points of the space of parameters several exact solutions reported in the literature are seen to coincide, and
it is precisely when this degeneracy happens that new solutions with interesting properties usually come
up. In particular, at the chiral point the solutions we will describe here correspond to an asymptotically
AdS3 solutions of TMG in vacuum (with vanishing gauge field). We discuss the theory at the chiral point
in Section II, where we present these vacuum solutions and discuss their properties in detail. In Section
III, we generalize the solutions to the case of TMG charged under TME theory with lµG = 1 + 2lµE . The
charged solutions turn out to be asymptotically AdS3, with a gauge field configuration that diverges at the
horizon. We also discuss the relation between the solutions we present here with self-dual solutions previously
reported in the literature. We summarize the results in Section IV.

II. VACUUM SOLUTIONS AT THE CHIRAL POINT

A. Topologically massive gravity and its solution

The equations of motion of TMG follow from varying (1) with respect to the metric gµν . In presence of
matter (consider in particular (2)), these equations read

Rµν − 1

2
Rgµν − 1

l2
gµν +

1

µG

Cµν = κ2Tµν , (3)

where Λ = −l2, Tµν is the stress-tensor of the electromagnetic field, and Cµν is the Cotton tensor, given by

Cµν =
1

2
ε αβ

µ ∇αRβν +
1

2
ε αβ

ν ∇αRµβ . (4)

In three dimensions the Weyl tensor identically vanishes, and the Cotton tensor is the one that comes
to play its role: It is a traceless tensor that vanishes if and only if the metric is locally conformally flat.
Traceless condition implies that all the solutions of the field equations satisfy

R = − 6

l2
− 2κ2T µ

µ ,

and one finds that all three-dimensional Einstein manifolds solve (3).
Let us begin by considering the theory at the chiral point lµG = ±1. At this point, we can consider

solutions with vanishing gauge field, and the coupling µE then takes an arbitrary value. More precisely, at
the chiral point lµG = 1 one finds a vacuum solution of TMG, whose metric reads

ds2 = −N2(r)dt2 +
dr2

N2(r)
+ r2(Nφ(r)dt − dφ)2 +N2

k (r)(dt − ldφ)2 (5)

where

N2(r) =
r2

l2
− κ2M +

κ4M2l2

4r2
, Nφ(r) =

κ2Ml

2r2
, (6)
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and

N2
k (r) = k log((r2 − κ2Ml2/2)/r20), (7)

where k and r0 are two real arbitrary constants. We use the convention ǫtrφ = +1. It is not hard to verify
that (5) solves (3) in vacuum when lµG = 1.

That is, metric (5) represents an exact solution of Topologically Massive Gravity that emerges at the chiral
point. The Cotton tensor associated to this solution is proportional to k, so that it is a genuine solution
to TMG in the sense that it does not solve Einstein equation, except for the particular case k = 0 where
the metric becomes the extremal BTZ black hole [31, 32]. For all values of k the metric is clearly circularly
symmetric and static, and thus compatible with SO(2) × R symmetry.

In its ADM form, the metric reads

ds2 = −N 2
⊥(r)dt2 +

dr2

N2(r)
+ R2(r)(dφ −Nφ(r)dt)2, (8)

where we have defined

N 2
⊥(r) = N2(r) − r2N2

φ(r) −N2
k (r) + R2(r)N 2

φ (r), (9)

and

R2(r) = r2 + l2N2
k (r), Nφ(r) = R−2(r)(r2Nφ(r) + lN2

k (r)). (10)

Metric (5) is actually nicely behaved. Despite the abstruse form of the off-diagonal component gφt, the
determinant of the metric is clearly det g = −r2, and the metric is Lorentzian for all values of the radial
coordinate r. The metric seems to present a horizon at r2 = κ2Ml2/2. Nevertheless, for k 6= 0 the metric
in its form (5) is not defined for r2 ≤ κ2Ml2/2 (for k = 0 region r2 < κ2Ml2/2 would correspond to the
interior of the BTZ black hole). Let us analyze this aspect together with the geodesic structure in more
detail: At r2 = κ2Ml2/2, function N2

k diverges while N2 vanishes. Then, by analyzing the geodesic equation
for massive particles, one observes that the divergence of N2

k contributes to the radial effective potential with
a term like ∼ −(k/r2) log(r2 − κ2Ml2/2). This means that, for k > 0, massive particles are scattered back
when they approach r2 = κ2Ml2/2, and this means that, at least for positive k, the ”horizon” is not actually
there. In fact, for k > 0 the circle r2 = κ2Ml2/2 turns out to be located at infinite geodesic distance from
any point. For k < 0 the geodesic distance to a point at r2 = κ2Ml2/2 turns out to be finite. However, by
taking a look at the angular component of the geodesic equation one realizes that the trajectories of massive
particles wind indefinitely around the circle defined by r2 = κ2Ml2/2 and thus these geodesic cannot be
extended across this circle [33].

From (5) we also notice that gtt vanishes at r2 = κ2Ml2 + kl2 log((r2 − κ2Ml2/2)/r20), and this always
happens if k ≤ 0. In particular, we know that for the spinning BTZ (i.e. k = 0) the radius r = κ2Ml2

defines its ergosphere [32]. For k > 0, however, metric function gtt only vanishes if the parameters satisfy

κ2M ≥ 2k(1 − log(l2k/r20)). (11)

For instance, let us consider the case M = 0, for which the metric (5) takes the simple form

ds2 =
l2

r2
dr2 +

r2

l2
(dφ2 − dt2) + k log(

r2

l2
)(dt− dφ)2 =

l2

r2
dr2 +

r2

l2
dx+dx− + k log(

r2

l2
)(dx−)2, (12)

where we defined x± = φ ± t, we absorbed a factor l in φ, and fixed r0. From this expression we observe
that if k < 0 the component gtt vanishes at r2 = −2|k|l2 log(r/r0), and that gφφ may also vanish depending
on r0. On the other hand, if k > 0 then the component gφφ vanishes at r2 = −2kl2 log(r/r0), and gtt may
also vanish.
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Now, let us move on and discuss the asymptotic behavior of (5). In the large r limit, metric (5) takes the
asymptotic form

gtt = −r
2

l2
+ O(log(r)) + O(1), grr =

l2

r2
+ O(r−4), (13)

gφφ = r2 + O(log(r)) + O(1), gφt = O(log(r)) + O(1). (14)

We observe from this large r expansion that this solution is not asymptotically AdS3 according to the
definition given by Brown and Henneaux in [34]. Nevertheless, (5) does still obey the weakened AdS3

asymptotic recently proposed by Grumiller and Johansson in [12, 21]. To see this, let us set l = 1 for
notational convenience, and define the new coordinates x± = φ±t and y = r−1. In terms of these coordinates,
the large r expansion of (5) reads

g−− = O(log(y)) + O(1), g−+ = y−2 + O(1), gyy = y−2 + O(1), (15)

together with g++ = 0 and gy± = 0. It is worth noticing that asymptotic behavior (15) is strictly included in
the boundary conditions proposed in [12, 21], which, in addition, would also permit a next-to-leading behavior
like g+y = O(y) and gy− = O(y log(y)). These weakened boundary conditions were recently discussed within
the context of chiral gravity, and these were shown to be consistent with conformal asymptotic symmetry.
In turn, this would permit to define a consistent stress-tensor in the boundary. Our solution can be thought
of as a realization of the boundary conditions of [12, 21].

B. Conserved charges and boundary terms

Because the off-diagonal term in (5) grows logarithmically ∼ 2k log(r) at large distance [35], it turns out
that metric (5) is not asymptotically AdS3 in the sense of [34]. However, we can still proceed to compute
conserved charges of this solution by holographic methods. After all, the solution is still asymptotically AdS3

in the sense of the boundary conditions recently proposed in [12, 21]. Then, we can resort to the method
of defining an effective stress-tensor induced on the boundary ∂M, as in the case of asymptotically locally
AdS3 solutions [38] (see also the seminal paper [39]).

Consider the action with the boundary term,

IG =
1

2κ2

∫

M

d3x
√−g(R+

2

l2
) +

1

κ2

∫

∂M

d2y
√−γK +

1

4κ2µG

∫

M

d3xǫλµνΓρ
λσ(∂µΓσ

νρ +
2

3
Γσ

µτΓτ
νρ) (16)

where K =TrK = Ki
i is the trace of the extrinsic curvature Kij . Here, we see the Gibbons-Hawking term

B appears. This action can be expressed in terms of Gaussian coordinates ds2 = dη2 + γijdx
idxj , with

Kij = 1
2∂ηγij . This reads [9, 12]

IG =
1

2κ2

∫

M

d2y dη
√−γ(R(2) +K2 − Tr(K2) +

2

l2
) +

+
1

4κ2µG

∫

M

d2y dη ǫij(−2K l
i∂ηKjl + Γl

in∂ηΓn
jl + 2Kn

k Γl
inΓk

jl +K l
n∂jΓ

n
il + Γl

jn∂iK
n
l ) (17)

where TrK2 = Kj
iK

i
j . In this expression, the Gibbons-Hawking term does not appear because it cancels

against a total derivative coming from the bulk contribution. Expression (17) turns out to be an action for
the metric γij , which corresponds to the induced metric in the boundary. The stress-tensor T ij associated
to the boundary manifold [39] is then obtained by varying (17) with respect to γij and evaluating it on-shell;
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namely, δIG = 1
2

∫

∂M
d2x

√−γT ijδγij . The conserved charges computed with this stress-tensor (see (20)
below) diverge and then it is necessary to regularize the action by adding an appropriate counter-term [9].
Such counter-term turns out to be a cosmological constant term in the boundary; namely

∆IG = − 1

lκ2

∫

d2y
√−γ, (18)

which only depends on geometric quantities of the boundary, not affecting the equations of motion in the
bulk. A similar counter-term can be seen to appear when analyzing other backgrounds of TMG. For instance,
if one considers the warped AdS3 black hole of [8, 26], the counter-term in the boundary is also given by
(18) but replacing the overall factor −1/lκ2 by a µG-dependent factor that coincides with that in (18) when
µG = 3/l [40].

Including the counter-term (18), and in the case of asymptotically AdS3 spaces, the boundary stress-tensor
takes the form

2κ2T ij = 2(Kij − γijTrK − 1

l
γij) +

1

µG

ǫk(i(γj)l∂ηKkl + 2∂ηK
j)
k ). (19)

This expression can be used to compute conserved charges associated to isometries on the boundary ∂M.
One is mainly concerned with the conserved charges that are associated to Killing vectors ∂t and ∂φ, which
correspond to the mass and the angular momentum respectively. To define the charges it is convenient to
make use of the ADM formalism adapted to the boundary ∂M. Then, the charges are defined by [39]

Q[ξ] =

∫

dsξiujTij , (20)

where ds is the volume element of the constant-t surfaces at the boundary, u is a unit vector orthogonal to
the constant-t surfaces, and ξ is the Killing vector that generates the isometry in ∂M.

To see how it works, let us consider the BTZ solution, whose metric is

ds2 = −N2(r)dt2 +
dr2

N2(r)
+ r2(dφ+Nφ(r)dt)2 (21)

with

N2(r) =
r2

l2
− κ2M +

κ4J2

4r2
, Nφ(r) =

κ2J

2r2
, (22)

It is straightforward to compute the mass and the angular momentum of (21) following the recipe described
above. The mass and the angular momentum of BTZ black hole in TMG are then given by

MBTZ = M +
J

l2µG

, JBTZ = J +
M

µG

, (23)

respectively. It is well known [8, 9] that this result differs from the charges of the same solution for GR, which
are recovered if 1/µG = 0. In particular, these values for the mass and angular momentum in TMG imply
that at the chiral point µG = 1/l all the BTZ black holes in TMG fulfill the relation JBTZ = lMBTZ = lM+J .
More specifically, if J = −lM at the chiral point both the mass and the angular momentum vanish.

Then, we can use the same idea to compute the mass and angular momentum of (5). It yields

M(k) =
6πk

κ2
, J(k) = −6πlk

κ2
, (24)

This is consistent with the fact that (5) is a perturbation of the extremal BTZ black hole with J = −lM
at the chiral point µG = 1/l. Recall that BTZ black hole with bare parameters obeying J = −lM in chiral
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gravity have zero mass and zero angular momentum, and then we interpret it as the ground state for (5).
Notice that, as long as Newton constant is positive, the BTZ black hole in TMG have positive mass, and our
solution (5) has also positive mass for k > 0. Conversely, if we adopt the wrong sign for Newton constant
(what amounts to change κ2 → −κ2 in (1) but keeping κ2M unchanged) then the BTZ black hole turns out
to have negative mass, while (5) has positive mass for k < 0.

Before concluding this section, let us mention that at the point lµG = −1 one also finds a vacuum solution
of TMG with the form

ds2 = −N2(r)dt2 +
dr2

N2(r)
+ r2(Nφ(r)dt + dφ)2 +N2

k (r)(r2 − κ2Ml2/2)(dt+ ldφ)2. (25)

Unlike solution (5), this metric tends to that of the extremal BTZ black hole when r approaches the
horizon r2 = κ2Ml2/2. The off-diagonal term in (25), however, grows in more drastic way, behaving like
∼ 2kr2 log r at large distances.

Also, a charged solution at the chiral point exists, and it has a form like (5) and (25) with its charge
associated to k. Now, we move on to discuss charged solutions.

III. CHARGED SOLUTIONS WITH A CHERN-SIMONS TERM

A. The solutions

In this section, we will show that solution (5) admits a natural generalization when TMG is coupled to
TME (2) if the coupling constants satisfy

lµG = 1 + 2lµE . (26)

For further convenience, we define the parameter ε = −lµE = 1
2 (1 − lµG), which is an arbitrary real

number. In particular, the theory at the chiral point corresponds to ε = 0 and ε = 1. For the case
lµG = 1 + 2lµE = 1 − 2ε > 1, the metric of the charged solution takes the form

ds2 = −N2(r)dt2 +
dr2

N2(r)
+ r2(dφ −Nφ(r)dt)2 −N2

Q(r)(dt − ldφ)2 (27)

with

N2(r) =
r2

l2
− κ2M +

κ4M2l2

4r2
, Nφ(r) =

κ2Ml

2r2
,

and with

N2
Q(r) =

1

2
κ2Q2(r2 − κ2Ml2/2)−lµE log(

(

r2 − κ2Ml2/2
)

/r20),

and the electromagnetic field takes the form

A(r) = A0

(

r2 − κ2Ml2/2
)

)−lµE/2(dt+ ldφ), A2
0 = Q2 2(lµE + 1)

lµE(2lµE + 1)
. (28)

Again, metric (27) corresponds to a deformation of the extremal BTZ black hole, which corresponds to
the uncharged case Q = 0. If lµE > 0, function N2

Q in (27) diverges at the horizon r2 = κ2Ml2/2, but the
curvature invariants remain constant. In fact, for all the solutions we find the Ricci scalar

R = − 6

l2
, (29)
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and the Kretschmann scalar,

RµνρσR
µνρσ = RµνR

µν =
12

l4
; (30)

and one also finds CµνC
µν = 0.

It is worth noticing that (29) holds even for charged solutions. This implies that the gauge field configu-
ration is such that T µ

µ = 0. We will return to this point below. It is also interesting that the Kretschmann
scalar turns out to be independent of the parameters of the solution Q and M . This is a curious fact since
solutions of Einstein gravity coupled to matter yielding traceless stress-tensor generically depend on the
integration constants of the solution [41]. The fact that both the Ricci and Kretschmann scalars take the
same value for all the members of the family of metrics (27) could lead to suspect that all these geometries
correspond to discrete quotients of the same (vacuum) space. However, this cannot be the case for all the
solutions since the case Q = 0 (resp k = 0 in (5)) is locally AdS3 while Q 6= 0 has non vanishing Cotton
tensor.

The asymptotic behavior of (27) is determined by the following expansion

gtt = −r
2

l2
+ O(1) + O(r−2lµ

E log(r)), grr =
l2

r2
+ O(r−4),

gφφ = r2 + O(1) + O(r−2lµ
E log(r)), gφt = O(1) + O(r−2lµ

E log(r)),

and grφ = grt = 0. That is, solutions (5) are asymptotically AdS3 for lµE = −ε > 0. However, for lµE > 0,
the gauge field (28) diverges at the horizon r2 = κ2Ml2/2. It turns out that solutions for which the gauge
field vanishes at the horizon (e.g. for lµE < 0) diverges dramatically at the boundary, and viceversa, and
thus no hair is allowed in this sense.

B. The logarithmic branch of self-dual solutions

As mentioned, the fact that the Ricci scalar of (27) takes the value R = −6l−2 tells us that these charged
solutions satisfy the traceless condition T µ

µ = 0, which in three-dimensions implies FµνF
µν = 0. This is

reminiscent of the self-dual solutions discussed by Ait Moussa and Clément in [42]. Then, a natural question
is whether our solutions are somehow related to those of [42]. We will see that, even though solutions (27)
were not considered in [42], these can be obtained starting from the ones considered in that paper by taking
the limit lµG → 1 + 2lµE appropriately, and then extending the manifold. To see this, let us define the
coordinate

2

µE

ρ = r2 − κ2Ml2

2
.

In terms of the new radial coordinate ρ the metric (27) takes the form

ds2 = −(
2

l2µE

ρ+
1

2
Q2ρ−lµ

E log (ρ) − 1

2
M)dt2 − l(Q2ρ−lµ

E log(ρ) −M)dtdφ+

+
l2dρ2

4ρ2
+ l2(

2

l2µE

ρ− 1

2
Q2ρ−lµE log (ρ) +

1

2
M)dφ2, (31)

where we defined

Q2 = (µE/2)lµ
Eκ2Q2, M = κ2M.
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In [42], similar solutions were considered for the case lµG − 1 6= 2lµE , and these have the slightly different
form

ds2 = −(
2

l2µE

ρ+
1

2
Q2ρ−lµE +

1

2
J ρ(1−lµG)/2 − 1

2
M)dt2 − l(Q2ρ−lµE + J ρ(1−lµG)/2 −M)dtdφ +

+
l2dρ2

4ρ2
+ l2(

2

l2µE

ρ− 1

2
Q2ρ−lµE − 1

2
J ρ(1−lµG)/2 +

1

2
M)dφ2. (32)

Therefore, solutions (27) arise in the limit lµG → 1 + 2lµE of (32). At the point (26), two independent
solutions to the field equations degenerate and thus the logarithmic form ∼ Q2ρ−lµE log ρ stands as a new
linear independent solution. The other solution ∼ J ρ−lµ

E = J ρ(1−lµ
G

)/2 contributes by setting the scale ρ0

(related to r0 in (27)) where the logarithm vanishes.
The case (32) we consider here is somehow special. It is continuously connected to the vacuum solutions

(5) and (25). Likely, solution (5) can be associated to a particular limit of solutions studied in [44].
Notice that for Q = 0 the region −l2µEκ

2M/4 6 ρ < 0 corresponds to the region inside the horizon of the
extremal BTZ black hole. Recall that for k < 0 the point ρ = 0 is at finite geodesic distance from any point
located at ρ > 0, and the geodesics end there. On the other hand, for k > 0 the point ρ = 0 is at infinite
geodesic distance, as it happens for the self-dual solutions considered in [42].

C. Reduced field equations

The relation with the self-dual solutions (32) suggests that we could use the techniques used [42] to rederive
our solutions (31). The idea in [42] was to reduce the field equations of TMG to a relativistic dynamical
system which is easily solved by choosing the appropriate ansatz.

Consider with [42] the following parameterization of the metric

ds2 = hab(ρ)dx
adxb +

1

ζ2R2(ρ)
dρ2, A(ρ) = ψa(ρ)dxa, (33)

where a, b = 0, 1, with x0 = t, x1 = ϕ, and htt+hφφ = 2T , htt−hφφ = 2X , hφt = Y . Here, X0 = T ,X1 = X ,
and X2 = Y , are functions of ρ that satisfy the Minkowski product R2 = X

2 = −T 2 +X2 + Y 2 = ηijX
iXj

with i, j = 0, 1, 2. We also denoted ψ0 = At and ψ1 = Aφ for convenience.
In terms of this variables, the action takes the form

IG + IE =
1

2

∫

d2x

∫

dρ

(

1

2κ2
ζẊiẊ

i +
2

κ2l2
ζ−1 +

1

2κ2µG

ζ2εijkX
iẊjẌk + ζψ̇Σ0ΣiX

iψ̇ − µEψΣ0ψ̇

)

(34)

where X = (X0, X1, X2), Xi = ηijX
j with i, j, k = 0, 1, 2. We also denoted Ẋ = ∂ρX, Ẍ = ∂2

ρX, etc. The

components of the vector Σ = (Σ0,Σ1,Σ2) are given by Σ0 = σ1, Σ0 = iσ2σ1, and Σ2 = σ3, where σi are
the Pauli matrices acting on the two-component vectors ψ = (ψ0, ψ1). Notice also that ζ stands in (34) as
a Lagrange multiplier. The first two terms in the action above correspond to the Einstein-Hilbert term and
the cosmological constant term, while the third one corresponds to the gravitational Chern-Simons term.
On the other hand, the terms involving ψ come from the gauge field A = ψadx

a with a = 0, 1.
The products in (34) are defined as X · Y = X iY jηij , (X ∧ Y)k = ηklεijlX

iY j , and then the action can
be written as follows

IG + IE =
1

2

∫

d2x

∫

dρ

(

1

2κ2µG

ζ2
X · (Ẋ ∧ Ẍ) +

1

2κ2
ζẊ2 + ζψ̇Σ0

Σ · Xψ̇ − µEψΣ0ψ̇ +
2

κ2l2
ζ−1

)

, (35)

Varying this action with respect to ψ, we find
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∂

∂ρ
(ζ(Σ · X)ψ̇ + µEψ) = 0. (36)

This equation yields

ζṠE =
2µE

R2
X ∧ SE , with SE = −κ

2

2
ψ̄Σψ (37)

Also, varying (35) with respect to X we find

Ẍ =
ζ

2µG

(3(Ẋ ∧ Ẍ) + 2(X ∧ ...
X)) − 2µ2

E

ζ2R2
(SE − 2

R2
X(SE ·X)) (38)

and

SE · X =
ζ2R2

2µ2
E

(X · Ẍ− 3ζ

2µG

X · (Ẋ ∧ Ẍ)). (39)

The Hamiltonian constraint comes from varying (35) with respect to ζ,

H =
1

4κ2
(Ẋ2 + 2X · Ẍ − ζ

µG

X · (Ẋ ∧ Ẍ) − 4

l2ζ2 ) = 0. (40)

Now, let us look for solutions of the form

X(ρ) = uG(ρ) + vF (ρ) (41)

where F and G are functions of ρ, while u and v are two vectors such that u · v = ηiju
ivj = 0, and

v
2 = ηijv

ivj = 0. This implies u ∧ v = λv, that is ηklεijlu
ivj = λvk, where λ is an arbitrary constant. We

can make the choice [43]

u =
1

2l
(1 − l2, 1 + l2, 0), v = −1

4
(1 + l2, 1 − l2,∓2l) (42)

and then u
2 = ηiju

iuj = 1. Then, we have two possible choices for λ, namely λ = ±1, which correspond to
each possibility for the sign ± in (42). This ambiguity in the sign will be ultimately related to the sign of
lµG.

In terms of the ansatz (41)-(42), the Hamiltonian constraint (40) reads

.

G
2
+ 2G

...

G− 4
l2µ2

E

= 0. (43)

On the other hand, the equations of motion give

SE =
λµE

4µG

G2(−3
.

F
..

G+ 3
.

G
..

F + 2G
...

F − 2F
...

G)v + (Gu + Fv)G
..

G− 1

2
(

..

Gu +
..

Fv)G2. (44)

Varying with respect to ρ we obtain ṠE . We find X ∧ SE with R2 = G2, and we can go back to (37) and
find

ṠE =
2

R2
X ∧ SE ,
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with ζ = µE .
Then, we can solve both for u and for v. Before doing this, let us further specify the ansatz

G(ρ) = aρ F (ρ) = κ2Q2ρε ln ρ− κ2M (45)

where Q and M are two arbitrary real constants, while a and ε are two real parameters to be determined.
This ansatz automatically satisfies the equation for u, and thus we only have to solve for v. The Hamiltonian
constraint (40) demands

a2 = − 4Λ

µ2
E

=
4

l2µ2
E

(46)

which is only possible if Λ = −l−2 < 0. Then, we have a = ±2/lµE .
On the other hand, from the equation for v we find

µE

µG

a2

(

ε− 1

2

) (

1

2
ελa− 1

)

ε(ε− 1) = a
(ε

2
a− λ

)

ε(ε− 1), (47)

and

µE

µG

a3λε

(

2ε2 − 9

4
ε+

1

2

)

+ a2ε

(

−3

2
ε+ 1

)

=
µE

µG

a2

(

3ε2 − 3ε+
1

2

)

− a (2ε− 1)λ. (48)

Let us first analyze the cases 0 6= ε 6= 1. From (47) we find that λ = ±1 and a = ±2/ε, what implies
lµE = ±ε. Then, from both (47) and (48) we get µG/µE = (2ε− 1)/ε. That is,

lµG = 2lµE ∓ 1. (49)

For these cases ε = 0 and ε = 1, equation (47) is trivially satisfied and we get no restriction for a and µE .
For ε = 0 equation (48) yields lµG = 1, which corresponds to the chiral point. In fact, ε = 0 corresponds to
the solution (5) since for this configuration we also find ψ0 = ψ1 = 0, so that

Aµ = 0. (50)

Similarly, for ε = 1 equation (48) implies lµG = −1 with ψt = ψϕ = 0, and this is solution (25).
For the generic case, the metric takes the form

ds2 =

(

± 2

l2µE

ρ− 1

2
κ2Q2ρ±lµE log (ρ) +

1

2
κ2M

)

dt2 + l
(

κ2Q2ρη log (ρ) − κ2M
)

dtdϕ

−l2
(

± 2

l2µE

ρ+
1

2
κ2Q2ρ±lµE log (ρ) − 1

2
κ2M

)

dϕ2 +
l2

4ρ2
dρ2 (51)

and the gauge field configuration is

A(ρ) =

√

2Q2(1 − ε)ρε

ε(2ε− 1)
(dt+ ldφ) = Q

√

2(1 ∓ lµE)

lµE(2lµE ∓ 1)
ρ±lµ

E
/2(dt+ ldφ). (52)

Expressions (51)-(52) correspond to solutions (27). Thus, we have rederived solutions (27) by using the
method of [42]. This method also permits to compute conserved charges of the solutions in a rather systematic
way. This amounts to calculate the so called super-angular momentum J, which is a current that gathers



11

the conserved charges of this type of background with two commuting Killing vectors. The expression for
such current is

J = L + SG + SE

where

L =
1

2κ2
X ∧ Ẋ, SG =

1

4κ2µG

(

2X ∧ (X ∧ Ẍ) − Ẋ ∧ (X ∧ Ẋ)
)

.

Evaluated in (51), these take the form

L =
λa

2
(Q2(ε− 1)ρε log ρ+Q2ρε +M)v,

SG =
a2

4µG

(

(2ε− 1)(ε− 1)Q2ρε log ρ+ (4ε− 3)Q2ρε −M
)

v,

and, from (44), we can also find the expression for SE . For the vacuum solution (5), which corresponds to
the case ε = 0, we find

J = − 2k

lκ2
v, (53)

where we have set a to take a convenient value. Notice that (53) turns out to be proportional to k/κ2,
like in (24). In [45] the computation of conserved charges from the expression for J is discussed in detail,
and the mass and angular momentum can be computed as quantities associated to Killing vectors ∂t and
∂φ respectively. Remarkably, the mass and angular momentum computed with this method agree with our
result (24), which was calculated by considering the stress-tensor in the boundary [46]. We will not give
the details of this computation here; instead, we draw the reader’s attention to the very interesting papers
[8, 42, 44] and [47].

IV. SUMMARY

We have studied solutions to Cosmological Topologically Massive Gravity at special values of the coupling
constants. First, we considered the theory at the chiral point, for which vacuum solution (5) was exhibited.
This solution corresponds to a one-parameter deformation of GR solutions and is continuously connected
to the extremal BTZ black hole. To be more precise, solution (5) has two parameters, k and M , and when
k = 0 the solution turns out to be the extremal BTZ black hole with bare parameters satisfying J = −lM .
It is well known that for all values of J and M , the BTZ black holes in TMG at the chiral point [15] satisfy
the extremality relation JBTZ = lMBTZ = lM + J . In turn, the (massless) extremal BTZ with lM + J = 0
can be thought of as a kind of ground state of solutions (5), which are labeled by a real number k.

Solution (5) fails to be asymptotically AdS3 in the sense of Brown-Henneaux boundary conditions [34],
and this is because of a logarithmic damping at large distances. Nevertheless, it is still asymptotically AdS3

in the sense of the boundary conditions recently proposed by Grumiller and Johansson in [12, 21]. Then, the
holographic computation of conserved charges in terms of the boundary stress-tensor yielded (24), and the
mass and angular momentum turn out to be proportional to k/κ2. Therefore, the sign of the mass of (5) can
be chosen to be opposite to that of the BTZ black hole in this theory. That is, if one adopts the negative
sign for the Newton constant (as it is usual in TMG) then the solutions with positive mass (k < 0) are those
that allow geodesic to reach the radius r2 = κ2Ml2/2 at finite proper time, while for the case k > 0 that
circle is at infinite geodesic distance.

We also considered solutions (27), which are charged analogues to (5) that exist when the coupling con-
stants satisfy the relation lµG = 1 + 2lµE . Unlike vacuum solutions we found at the chiral point, their
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charged analogues may have a stronger damping at large distance and then represent asymptotically AdS3

solutions in the sense of [34]. However, for asymptotically AdS3 solutions both the gauge field and the
effective potential of the geodesic equation for massive particles diverge at the horizon.

Like vacuum solutions, charged solutions (27) have constant scalar curvature R = −6l−2. This implies
that the corresponding gauge field configurations fulfill the condition T µ

µ = FµνF
µν = 0. This is reminiscent

of the self-dual solutions studied in reference [42], and we have actually shown that solutions (27) can be
thought of as a limiting procedure starting from the self-dual solutions of [42].

It is also remarkable that both solutions (5) and (27) have constant Kretschmann scalar, given by
RµνσρR

µνσρ = 12l−4. This means that all the quadratic invariants turn out to be independent of the
two parameters of the solutions. Nevertheless, it is worth emphasizing that both M and Q still represent
actual parameters labeling the solutions, as they enter in the computation of the charges in a non trivial
way, and, besides, parameter Q is the one that permits to interpolate between (27) and the extremal BTZ
black hole.

Before concluding, let us comment on the relation between the solutions we discussed here and a class of
pp-wave solutions recently discussed in the literature. Just recently, we were taught [48] that solution (5) can
be obtained from one of the pp-wave solutions considered in [49] by an appropriate coordinate transformation,
in addition to the compactification of the direction we denoted by φ. The metrics considered in [49] have
the form

ds2 = dR2 + e2Rdx+dx− +R f(x−)(dx−)2, (54)

where f(x−) is an arbitrary function of x− (see Eq. (3.21) of Ref. [49], with l = 1, µ = 1, ρ = R, u = x+/2,
v = x−, and x− = t− φ, with φ being compact). It is easy to see that (54) can be written as our solution
(5) by means of the appropriate coordinate transformation. For instance, consider the case M = 0, as in
(12), which takes the form (54) by choosing f = 2k and defining the radial coordinate R = log(r). A similar
relation holds between (25) and the solution presented in Eq. (3.22) of [49] for the case lµG = −1. This
allows to interpret our charged solutions (27) as a generalization of some of the solutions considered in [49].

The solution we have presented here generalizes the extremal BTZ black hole solution at the chiral point,
and it represents an exact realization of the boundary conditions proposed in [12, 21].
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