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We consider the interaction of two perfectly conducting plates of arbitrary shape that are inside a

nonsimply connected cylinder with transverse section of the same shape. We show that the existence of

transverse electromagnetic (TEM) modes produces a Casimir force that decays only as 1=a2, where a is

the distance between plates. The TEM force does not depend on the area of the plates and dominates at

large distances over the force produced by the transverse electric and transverse magnetic modes,

providing in this way a physical realization of the 1þ 1-dimensional Casimir effect. For the particular

case of a coaxial circular cylindrical cavity, we compute the transverse electric, transverse magnetic and

TEM contributions to the force, and find the critical distance for which the TEM modes dominate.
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I. INTRODUCTION

In the last years, there has been an increasing interest in
the Casimir effect [1]. The new generation of experiments
[2] allowed a precise determination of the Casimir force,
and stimulated theoretical calculations of the forces for
different geometries, including finite temperature and con-
ductivity corrections.

The analysis of the dependence of the Casimir force with
the geometry is therefore of both theoretical and experi-
mental relevance. In this paper, we will point out that, in
nonsimply connected electromagnetic cavities, the pres-
ence of transverse electromagnetic (TEM) modes produces
an additional contribution to the Casimir force, that it is
independent of the section of the cavity and decays slower
than the contributions of transverse electric (TE) and trans-
verse magnetic (TM) modes. As far as we know, this is the
first example in the literature that illustrates the relevance
of the TEM modes in the static Casimir effect (for its
relevance in the dynamical Casimir effect see [3,4]).

Concretely, wewill consider the interaction between two
identical perfectly conducting plates that are inside a very
long cylinder of the same section, that is also perfectly
conducting. These geometries are usually referred to as
‘‘Casimir pistons’’ [5], and have received considerable
attention recently [6–8]. One of the reasons that triggered
these investigations was the reconsideration of the Casimir
energy for rectangular boxes, since repulsive forces have
been predicted when considering only the zero-point en-
ergy of the internal modes of the rectangular cavities [9].
The validity of these results has been disputed [5] for at
least two related reasons: the omission of the contribution
of the external modes, and the ambiguity in the renormal-
ization of the divergent quantities (however, there is no
consensus in the literature on these issues; see for instance
[10]). In any case, the advantage of the pistons is that, as
long as the surfaces are perfectly conducting, one can
compute the Casimir energy and forces unambiguously
and without considering the external modes to the cavity.

The new aspect that we will introduce in this paper is the
consideration of nonsimply connected cavities (see Fig. 1),
allowing for the existence of TEM modes.
The paper is organized as follows. In Sec. II we will

describe the different contributions to the zero-point en-
ergy in a nonsimply connected cavity. We will see that the
Casimir energy for TEM modes is equivalent to that of a
massless scalar field living in 1þ 1 dimensions and sat-
isfying Dirichlet boundary conditions on the plates.
Moreover, the Casimir energy for TE and TM modes is
equivalent to that of a set of massive, 1þ 1-dimensional
scalar fields, with the masses determined by the eigenfre-
quencies associated to the transverse section of the cavity.
We will discuss the behavior of the force when the distance
between the plates is much larger or much smaller than the
transverse dimensions of the cavity, and conclude that the
TEM force dominates above a critical distance. In Sec. III
we will present a detailed analysis of the particular case of
a coaxial cavity of circular section. We will evaluate the
contributions of TE and TM modes to the Casimir energy
for this geometry using a combination of the analytical
result for a 1þ 1 massive field and Cauchy’s theorem to

FIG. 1. Two pistons separated by a distance a inside a non-
simply connected cavity (the annular region between two cylin-
ders of arbitrary section). The system is enclosed between
another two plates separated by a distance L � a. All surfaces
are perfect conductors.
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perform the summation over the effective masses. We will
also compare these contributions with that coming from
TEM modes, and find the critical distance as a function of
the radii of the inner and outer cylindrical shells.
Section IV contains our final remarks.

II. CASIMIR ENERGY IN NONSIMPLY
CONNECTED CAVITIES

Let us consider a very long electromagnetic cylindrical
cavity, with an arbitrary section. We will assume that the
cavity is nonsimply connected, i.e. that there is a second
cylinder, also of arbitrary section, inside the larger one (see
Fig. 1). The cavity is the annular region between the two
cylinders and contains two plates (pistons) separated by a
distance a (the pistons cover only the annular region
between the cylinders). All surfaces are perfectly conduct-
ing. The z direction is the axis of the cavity, and we will
denote by x? the coordinates in the transverse sections.

At the classical level, the electromagnetic field admits a
description in terms of independent TE, TM and TEM
modes, which are defined with respect to the z direction.
This is possible due to the particular geometries we are
considering, that have an invariant section along the z axis.
The TE and TM electromagnetic degrees of freedom can
be written in terms of two different vector potentials ATE

and ATM with null divergence and z component [11]. The
TE electric and magnetic fields are given by

E TE ¼ � _ATE; BTE ¼ r�ATE; (1)

while the TM fields are given by the dual relations

B TM ¼ _ATM; ETM ¼ r�ATM: (2)

The vector potentials can be written in terms of the so-
called (scalar) Hertz potentials [3,12] as

A TE ¼ ẑ�r�TE; ATM ¼ ẑ�r�TM: (3)

The Hertz potentials �TE and �TM satisfy the wave equa-
tion with Dirichlet and Neumann boundary conditions on
the lateral surfaces, respectively. Both potentials satisfy
Dirichlet boundary conditions on the pistons. The eigen-
functions can be chosen of the form

�TE;TMðt; z;x?Þ ¼ e�iwt sin

�
n�z

a

�
’TE;TMðx?Þ; (4)

where n is a positive integer and ’TE;TM are eigenfunctions

of the transverse Laplacian

r2
?’TE;TM ¼ ��2’TE;TM: (5)

Therefore, the eigenfrequencies associated to the TE and
TM modes are

wTE
k;n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
n�

a

�
2 þ �2

kD

s
; wTM

k;n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
n�

a

�
2 þ �2

kN

s
;

(6)

where �2
kD and �2

kN are the eigenvalues of Eq. (5) when the

eigenfunctions satisfy Dirichlet and Neumann boundary
conditions, respectively.
When the cylindrical cavity is nonsimply connected, in

addition to the TE and TMmodes one should also consider
the TEM modes, for which both the electric and magnetic
fields have a vanishing z component. Working with the
usual vector potentialA, the TEM solutions are of the form

Aðx?; z; tÞ ¼ A?ðx?Þ�TEMðz; tÞ;
E ¼ �ð@t�TEMÞA?; B ¼ ð@z�TEMÞẑ�A?;

(7)

where �TEMðz; tÞ is an additional scalar field. The trans-
verse vector potential has vanishing rotor and divergence,
and a zero tangential component on the transverse surfaces.
Therefore, A? is a solution of an electrostatic problem in
the two transverse dimensions (in hollow cylindrical cav-
ities the transverse potential vanishes and TEM modes do
not exist). The scalar field �TEM satisfies Dirichlet bound-
ary conditions on the longitudinal boundaries z ¼ 0
and z ¼ a, and the longitudinal wave equation ð@2t �
@2zÞ�TEM ¼ 0. Thus, the eigenfrequencies of the TEM
modes are

wTEM
n ¼ n�=a: (8)

In order to obtain the Casimir energy we introduce the
regularized quantities

EregðaÞ ¼ 1

2

X
n

wTEM
n e��wTEM

n

þ 1

2

X
n;k

ðwTE
k;ne

��wTE
k;n þ wTM

k;n e
��wTM

k;n Þ

� ETEM
reg ðaÞ þ ETE

regðaÞ þ ETM
reg ðaÞ; (9)

and two additional pistons separated at a very large dis-
tance L, enclosing the system. The physical Casimir en-
ergy is defined as the difference

EðaÞ ¼ EregðaÞ þ 2Ereg

�
L� a

2

�
� 3Ereg

�
L

3

�
(10)

in the limit when the cutoff � tends to zero. Note that one
can compute independently the TE, TM and TEM contri-
butions to the energy. Note also that, as the pistons only
cover the annular region between the cylinders, the internal
modes of the smaller cylinder will be irrelevant for the
interaction between plates.
To proceed, we note that the Casimir energy for this

geometry is formally equivalent to that of a set of scalar
fields living in 1þ 1 dimensions and satisfying Dirichlet
boundary conditions at z ¼ 0 and z ¼ a. Indeed, Eq. (8)
implies that the TEM Casimir energy is equivalent to that
of a massless scalar field, and the result is very well known
[13]:

ETEMðaÞ ¼ � �

12a
: (11)
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From Eq. (6) we see that the TE and TM Casimir energies
correspond to that of a set of massive scalar fields, with
masses given by �kD and �kN . The Casimir energy Em for a
field of mass m in 1þ 1 dimensions has been computed
previously by many authors [14] using different methods of
regularization (see, in particular, Ref. [8] for a calculation
with an exponential cutoff). It reads [15]

EmðaÞ ¼ � 1

2�

Xþ1

l¼1

mK1ð2lmaÞ
l

; (12)

where K1 is the modified Bessel function of the second
kind. Using this result and the analogy between the TE and
TM eigenfrequencies [Eq. (6)] with the eigenfrequencies
of massive scalar fields in 1þ 1 dimensions, we can easily
obtain the TE and TM contributions to the Casimir energy
in the cylindrical cavity

ETEðaÞ þ ETMðaÞ ¼ � 1

2�

Xþ1

l¼1

�X
�kD

�kDK1ð2l�kDaÞ
l

þX
�kN

�kNK1ð2l�kNaÞ
l

�
: (13)

This equation has been previously obtained in Ref. [7]
using a different method. We stress that the formula is
valid for a cavity of arbitrary section. The energy can in
principle be computed through a numerical evaluation of
the eigenvalues of the transverse Laplacian. Alternatively,
as we will describe in the next section, the summation over
the eigenvalues can be performed using Cauchy’s theorem.
The force between pistons is easily obtained taking the
derivative of the energy with respect to a.

Let us now discuss some generic properties of the differ-
ent contributions to the Casimir energy. At small distances,
when the separation between pistons is much smaller than
the transverse dimensions of the cavity, one expects the
proximity force approximation (PFA) to describe accu-
rately the contributions of TE and TM modes. Indeed,
using heat kernel techniques it can be shown [7] that, in
this limit

ETEðaÞ þ ETMðaÞ � � �2

720

A

a3
; (14)

where A is the area of the transverse sections. This is of
course the well known result for parallel plates. It is worth
stressing that the geometric properties of the transverse
section, as the area, are contained in the eigenvalues �kD

and �kN , which play the role of the masses of the fields in
the 1þ 1-dimensional analogy.

On the other hand, in the opposite limit we have �a �
1. The TE and TM contributions to the Casimir energy are
dominated by the lowest eigenvalue �MIN, and have the
typical exponential suppression associated to massive
fields, i.e.

ETEðaÞ þ ETMðaÞ � ��

ffiffiffiffiffiffiffiffiffiffiffiffi
�MIN

16�a

s
e�2�MINa; (15)

where � is the multiplicity of the eigenvalue.
From these results, we conclude that, at small distances,

the total Casimir energy is dominated by the TE and TM
contributions: it behaves as 1=a3 as for parallel plates, and
it is proportional to the area of the pistons. For distances
larger than a critical value a > ac, the TEM is the leading
contribution, and gives a long range Casimir energy that
decays only as 1=a. This contribution, typical of a massless
scalar field in 1þ 1 dimensions, is nonextensive, i.e. does
not depend on the area of the pistons. The value of ac
depends of course on the particular form of the transverse
section.
There are some additional properties which can be ob-

tained using dimensional analysis. Let us denote by l1 and
l2 the typical lengths associated to the sections of the
internal and external cylinders of the cavity, respectively.
On dimensional grounds we expect

ETE þ ETM ¼ 1

a
f

�
a

l2
;
l1
l2

�
: (16)

If the critical distance is defined by

f

�
ac
l2
;
l1
l2

�
¼ � �

12
; (17)

then we have that

ac ¼ l2gðl1=l2Þ: (18)

In the particular case l1 � ac; l2, on physical grounds we
expect the functions f and g defined above to have well
defined limits:

ETE þ ETM � 1

a
f

�
a

l2
; 0

�
; ac ¼ l2gð0Þ: (19)

Indeed, this limit can be achieved by inserting a thin wire
inside a hollow cavity, so that the TE and TM modes of the
hollow cavity are not disturbed, and so the TE and TM
contributions to the zero-point energy are almost indepen-
dent of the presence of the wire. In this situation the critical
distance becomes a linear function of l2. We will confirm
this property in the particular example described in the next
section.
The existence of the long range Casimir TEM force is of

conceptual interest. One can wonder whether it is also
relevant from an experimental perspective, i.e. if there is
a chance of measuring this force in future experiments.
There are two major limitations: on the one hand, being
nonextensive in the area of the plates, the absolute value of
the force is very small, and therefore it could only be
measured at extremely short distances. Moreover, in this
regime, the Casimir force would be dominated by the TE
and TM contributions, unless the area of the plates is also
small. We therefore address the question of whether the
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TEM contribution to the force can be a significant fraction
(�) of the total Casimir force in the PFA regime; i.e. we are
interested in a configuration in which FTEM � �ðFTE þ
FTMÞ. For the sake of concreteness we study the case where
the geometry of the plates is such that its area may be
written as bðl22 � l21Þ, where b is some coefficient (this
occurs, for instance, with a circle and any regular polygon).
Within these assumptions, the conditions imposed to the
forces become the following conditions in the parameters:

b � A

a2
� 20

��
; (20)

where the first inequality follows from the validity of the
PFA. This shows that, in principle, there is a region in the
parameter space where the TEM force could be a signifi-
cant fraction of the force, even in the proximity limit.
However, we stress again that the smallness of the TEM
force implies that its measurement is presently extremely
difficult.

III. COAXIAL CYLINDRICAL CAVITY OF
CIRCULAR SECTION

In this section we present and solve an explicit example
of a nonsimply connected cavity. We compute the Casimir
energy for a cavity formed by two concentric perfectly
conducting circular cylinders closed by two (also nonsim-
ply connected) plates in its extremes. The configuration is
similar to that in Fig. 1 but with both inner and outer
cylinders having circular sections of radii r1 and r2, re-
spectively. We also study the Casimir force between the
plates.

As discussed in the previous section, the vacuum energy
of this nonsimply connected cavity will have contributions
coming from the TEM modes, besides the usual TE and
TMmodes. The existence of TEMmodes can be confirmed
by obtaining explicitly the transverse vector potential A?
defined in Eq. (7), that for this particular geometry reads

A? ¼ x̂?
jx?j : (21)

The TEM mode contribution to the energy is given by
Eq. (11), and is independent of r1 and r2, as stated above.

On the other hand, the TE and TM mode contributions
do not have such a simple expression and do depend on r1
and r2. To obtain this contribution, we may start from the
already finite expression given in Eq. (13) and use
Cauchy’s theorem to convert the sum over �D’s and �N’s
into a closed path integral in the complex plane of an
appropriate function.

If fðzÞ is a function with ’’1’’-valued simple poles at z ¼
�kD and z ¼ �kN for all �kD;kN , then we may compute the

sum in � ¼ �kD;kN in Eq. (13) as a Cauchy integral,

X
�

�K1ð2l�aÞ
l

¼ 2�i
Z
C
z
�K1ð2lzaÞ

l
fðzÞ; (22)

if the contour C encloses all the poles of fðzÞ in z ¼ �kD;kN

and the function K1ð2lzaÞ is analytic in the interior of the
curve. The explicit form of fðzÞ comes out after observing
that in the case of the cavity between two perfectly con-
ducting concentric cylinders of radius r1 and r2, the
Dirichlet and Neumann eigenfrequencies—which corre-
spond to the TE and TM modes, respectively—are all the
solutions of (see [16])

Jnð�r1ÞNnð�r2Þ � Jnð�r2ÞNnð�r1Þ ¼ 0;

J0nð�r1ÞN0
nð�r2Þ � J0nð�r2ÞN0

nð�r1Þ ¼ 0;
(23)

with n any integer number. (Notice that if � is a solution,
then�� is also a solution, but since both correspond to the
same eigenfunction we may keep only the � > 0 solutions
to avoid double counting.) From here it is easy to see that

fðzÞ ¼ X
n

d

dz
ln½ðJnðzr1ÞNnðzr2Þ � Jnðzr2ÞNnðzr1ÞÞ

� ðJ0nðzr1ÞN0
nðzr2Þ � J0nðzr2ÞN0

nðzr1ÞÞ	 (24)

satisfies the above requirements.
In order to choose the contour C we observe that K1ðzÞ is

singular at z ¼ 0 but is analytic for ReðzÞ> 0, where it

goes to zero as z�1=2e�ReðzÞ for large ReðzÞ. Moreover,
since the contour must enclose the real positive axis begin-
ning in �MIN [the minimum of the solutions of Eq. (23) for
all n] we choose the contour to be a pizza slice with its
vertex at z ¼ �MIN=2, angle 0<�<�=2, and centered in
the real axis:

C ¼ lim
L!1

8><
>:
z ¼ �MIN

2 þ �e�i�=2 � 2 ð0; LÞ;
z ¼ �MIN

2 þ Lei� � 2 ð��=2;þ�=2Þ;
z ¼ �MIN

2 þ �eþi�=2 � 2 ðL; 0Þ:
(25)

Once fðzÞ and C have been correctly chosen, we have an
explicit expression for the TEþ TM Casimir energy in
terms of a double sum and a closed path integral:

ETE þ ETM ¼ �i
X1

l¼1;n¼�1

Z
C
z
�K1ð2lzaÞ

l
fnðzÞ; (26)

where fnðzÞ is each term in the sum in fðzÞ [see Eq. (24)].
To compute explicitly Eq. (26) we need to truncate the l

and n sum according to a given precision, and compute
numerically the integral in the upper and lower segments of
C—which are essentially the same—since the contribution
in the arc of radius L goes to zero. The criteria used to
truncate the sum are best analyzed in Eq. (13), where the
sum is exponentially damped by the Bessel function when
its argument grows. In fact, we may divide in Eq. (13) the
sum in � as different sums for each n [see Eq. (23)], then
we define �minðnÞ as the minimum of the �’s for a given n,
and then for each n we keep l’s such that 2l�minðnÞa < D.
HereD is chosen such that all the thrown away terms in the
sum are damped by at least an e�D factor. On the other
hand, to truncate the sum in n, we set l ¼ 1 and we choose
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n such that 2�minðnÞa < D. These criteria should give a
precision of order e�D to the final result in the sum. In our
calculations we have taken D ¼ 8 which is enough for our
purposes.

It is worth noticing at this point that if we would have
performed directly the sum in Eq. (13) over all relevant �’s
instead of using the Cauchy integral approach, then we
would have had to study the roots of Eq. (23) for each n and
keep only those which satisfy 2l�a < D for each l.
Although more difficult, this would have also been a
possible approach.

The TEþ TM Casimir energy has been numerically
computed using Eq. (26) for different cylinders radii (r1
and r2) and distance between the plates (a). We have also
computed the Casimir force deriving Eq. (26) with respect
to a and computing numerically the resulting expression:

FTE þ FTM ¼ �i
X1

l¼1;n¼�1

Z
C
z2�ðK0ð2lzaÞ

þ K2ð2lzaÞÞfnðzÞ: (27)

As a check for the numerical TEþ TM calculation we
have corroborated that its behavior for small and large a
corresponds to the expected proximity [Eq. (14)] and ex-
ponential [Eq. (15)] behaviors, respectively. In both cases
we find, as expected, a convergence to unit in the ratio of
the numerical energy and its expected asymptotic behavior.
In Fig. 2 we show this convergence in the proximity limit,
which is more complex from a numerical point of view,
since it involves the summation of a large number of
modes.

In order to explore the TEþ TM to TEM transition, we
have studied the ranges r2 ¼ 1:1r1 to r2 ¼ 40r1 and fo-
cused on the region of a’s where the TEþ TM energy (or
force) equals the TEM energy (or force). As usual, the
numerical calculation becomes harder when the surfaces

become closer, i.e. when r2 approaches r1. In Fig. 3 we
have plotted the TEþ TM Casimir energy as a function of
a together with the TEM Casimir energy for three different
r2=r1 configurations. As expected, the TEþ TM energy
dominates in the small-a region, but the TEM energy
dominates when the distance between the plates is larger
than the critical distance ac. (Note that given r1 and r2
there are two different critical distances, one for the energy
and another for the force. With no risk of confusion we use
the notation ac for both of them.)
We have plotted in Fig. 4 the Casimir energy and force

critical distance ac for several radii ratios r2=r1. As it can
be seen in the plot, the dependence of ac with r2 becomes

0.5 1.0 1.5 2.0

a

r1

0.8

1.0

1.2

1.4

1.6

1.8

ETE TM numeric

EPFA

FIG. 2 (color online). Ratio of the numerically computed
TEþ TM Casimir energy to the expected proximity behavior
[Eq. (14)] in the small-a region. Our calculations reach a=r1 �
0:1 which is enough for our purposes. The lines correspond, from
lower to upper, to r2=r1 ¼ 2, 1.8, 1.6, 1.55, 1.5, 1.45 and 1.4.

0.5 1.0 1.5 2.0

ac

r1

1.0

0.8

0.6

0.4

0.2

EC .r1

FIG. 3 (color online). TEM (dotted line) and TEþ TM (solid
line) contributions to the Casimir energy for different r2=r1
configurations as a function of the distance a (in units of r1)
between the plates. From left to right the solid lines correspond
to r2=r1 ¼ 1:2, 2 and 4, and the corresponding critical distances
are ac ¼ 0:44r1, 0:68r1 and 1:41r1, respectively. Observe that
the TEM contribution is independent of r2=r1.

1.5 2.0 2.5 3.0 3.5 4.0

r2

r1

0.5

1.0

1.5

2.0

ac

r1

FIG. 4 (color online). Critical distance (in r1 units) where the
Casimir energy (lower plot) or force (upper) of the TEþ TM
modes equals that of the TEM modes for different r2=r1 con-
figurations. As it can be seen, the dependence of ac with r2
becomes rapidly linear. The slopes of the asymptotes are 0.36
and 0.61.
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rapidly linear. According to Eq. (18), this means that ac ¼
r2gðr1=r2Þ approaches its limiting value ac � r2gð0Þ for
r2 > 2r1. In this case we find ac � 0:36r2, for the critical
distance associated to the energy.

As mentioned at the end of Sec. II, the linear relation
between ac and r2 corresponds to the physical situation in
which the TEþ TM Casimir energy of the nonsimply
connected cavity approaches that of a simply connected
one of radius r2. Therefore, one should be able to obtain the
coefficient gð0Þ by a comparison of the TEM Casimir
energy with that of a hollow cylindrical cavity of radius
r2, which is given by Eq. (26) with

fnðzÞ ¼ d

dz
lnðJnðzr2ÞJ0nðzr2ÞÞ: (28)

We have checked that this is indeed the case. The Casimir
energy for the hollow cavity, obtained again using
Cauchy’s theorem, is plotted in Fig. 5. As expected, this
energy interpolates between the proximity result at short
distances, and the exponential behavior at long distances.
The number gð0Þ is determined by the value of a=r2 for
which the energy of the hollow cavity equals ��=12a. In
this way we obtain gð0Þ � 0:36, that coincides with the
slope of the linear relation between the critical distance for
the energy and r2 presented in Fig. 4.

IV. CONCLUSIONS

In this paper we have described a geometry in which the
existence of TEM modes induce a long range Casimir
interaction. In particular, we have shown that the electro-
magnetic Casimir force between two parallel plates inside
a nonsimply connected cylinder is essentially given by the
sum of the Casimir forces for 1þ 1 scalar fields with

different masses. For TE and TM modes, the masses are
given by the eigenvalues of the Laplacian on a z ¼ const
section of the cylinder, with the appropriate boundary
conditions, and are nonvanishing. The opposite happens
to TEM modes, whose zero-point energy corresponds to a
massless field, and this is the reason for the different
qualitative behavior of their contribution to the force. On
the one hand, the TEM force scales as 1=a2 at all distances
and does not depend on the area of the plates. On the other
hand, in the short distance limit TE and TM forces repro-
duce the parallel plates result proportional to A=a4, and in
the long distance limit they are exponentially suppressed
due to the finite size of the plates (or, in the equivalent
picture, to the nonvanishing effective masses). As a con-
sequence, TE and TM modes dominate at short distances,
while TEM modes do it at long distances. The critical
distance where both contributions are balanced depends
of course on the form of the section of the cylinder, and
decreases with its area, as we explicitly showed in the
particular example of a coaxial circular cylindrical cavity.
The summation over the effective masses to compute the
TE and TM contributions of the force for this particular
case was performed using Cauchy’s theorem, starting from
the renormalized Casimir energy for a single massive field
in 1þ 1 dimensions.
Throughout the paper we considered the Casimir energy

for perfect conductors at zero temperature. It would be
interesting to generalize these results to take into account
the combined effects of finite conductivity at nonzero
temperature. In this context, it is worth remarking that
the dominance of the TEM modes over the TE and TM
contributions to the Casimir force is also valid at a nonzero
temperature T, at least for perfect conductors. In fact, it has
been shown [7] that at sufficiently long distances
(�MINa � 1 and aT � 1), the Casimir force for TE and
TM modes is proportional to �MINTe

�2�MINa, i.e. is expo-
nentially suppressed. On the other hand, in the same situ-
ation the TEM force is proportional to T=a [17].
While the existence of the long range TEM Casimir

force is of conceptual interest, it would be very difficult
to measure it. Indeed, as discussed at the end of Sec. II, this
contribution to the force does not depend on the area of the
plates, its absolute value is extremely small, and therefore
it would be measurable only at very short distances with
the present technology. However, in this regime the TE and
TM forces would be much larger than the TEM force,
unless the area of the pistons is sufficiently small.
Therefore, the measurement of the TEM Casimir force
should involve thin rings at short distances, a rather diffi-
cult experiment, indeed.
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FIG. 5 (color online). Casimir energy for two plates separated
a distance a in a hollow circular cylinder of radius r2. The
expected PFA and exponential behavior for small and large a=r2,
respectively, is plotted in dotted lines. The dashed lines show
that, as expected, this energy equals ETEM ¼ ��=12a at a=r2 �
0:36 (see text and Fig. 4).
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