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Ising-like dynamics in large-scale functional brain networks
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Brain “rest” is defined—more or less unsuccessfully—as the state in which there is no explicit brain input or
output. This work focuses on the question of whether such state can be comparable to any known dynamical
state. For that purpose, correlation networks from human brain functional magnetic resonance imaging are
contrasted with correlation networks extracted from numerical simulations of the Ising model in two dimen-
sions at different temperatures. For the critical temperature 7., striking similarities appear in the most relevant
statistical properties, making the two networks indistinguishable from each other. These results are interpreted
here as lending support to the conjecture that the dynamics of the functioning brain is near a critical point.
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I. INTRODUCTION

The human cerebral cortex is organized as a very complex
network comprising approximately 10'* interconnected neu-
rons. Thanks to the impressive progress in brain imaging
techniques given by the development of positron emission
tomography and functional magnetic resonance imaging
(FMRI) an increasing amount of spatiotemporal brain data is
now available. The analysis of this large and complex infor-
mation is of such unprecedented magnitude that conceptual
approaches grounded in statistical physics are needed [1].

Recently, and departing from the tradition of using
stimulus-response techniques, the study of brain imaging dy-
namics “at rest” has received ample attention [2-5]. Brain
“rest” is defined—more or less unsuccessfully—as the state
in which there is no explicit brain input or output. The analy-
sis of experiments under such quasistationary state revealed
an active network of brain areas engaged during the resting
state. Typically, these areas are active during rest, and they
deactivate immediately when the subject engages in any
minimal cognitive task, for example, when asked to visually
track a moving object on a screen. This evidence, now ex-
panded by other studies, indicates the existence of a so-
called brain “resting state network™ or ‘“default mode net-
work™ in which several cortical regions are activated on a
complex dynamical interaction [2]. Results from brain imag-
ing experiments as well as graph theory analysis already
agree on some fundamental common features, which can be
summarized as follow:

(1) There are dense local correlations with only few long-
range links, resembling a small world network [6-10].

(2) The distribution of the number of links is scale-free
[7,10] when measured with the appropriate resolution.

(3) Brain networks are assortative, indicating a tendency
for nodes with similar number of links to be directly con-
nected [10-12].

(4) Large positively correlated domains coexist with
equally large anticorrelated nonlocal structures [14].

(5) Large-scale correlated patterns (or their graph counter-
part) have been observed during subject execution of a task,
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as well as under “brain rest” conditions (absence of an overt
stimulus) [10,14,15] and even under general anesthesia [19].

(6) A portion of these observations cannot be explained by
the brain’s underlying “anatomical” connectivity [11].

Although there is at least one colloquial explanation for
each of the points listed above, a single mechanistic expla-
nation that satisfies all these observations at once is still lack-
ing. This is already in itself an important theoretical deficit,
but it is additionally highlighted by the fact that in certain
brain dysfunctions some of these global properties are
known to be affected [15,20,21].

As a starting point we ask here whether the brain resting
state could be comparable to any known dynamical state. We
have proposed that the brain stays near the critical point of a
second-order phase transition, where neuronal groups gener-
ate a diversity of flexible collective behaviors, due to the
known abundance of metastable states at the transition. It is
from this viewpoint that the dynamics of brain resting might
correspond to a critical state. This conjecture is tested here
comparing FMRI brain resting state data from healthy sub-
jects with a paradigmatic critical system, the Ising model
[22]. This model has been the “fruitfly” for the development
of concepts and techniques in statistical thermodynamics. It
is chosen based on the qualitative similarities between some
of its dynamics and the brain’s FMRI spatiotemporal patterns
that contain long-range correlations [10,15-18] and a mix-
ture of ordered and disordered structures. It must be noted
from the outset that we are not suggesting that the brain’s
equations are isomorphic with those of the Ising model. Nev-
ertheless, the results in this paper do suggest that important
lessons can be learned from the striking similarities between
the brain data and the dynamics emerging from the Ising
model at critical temperature. The important point is that the
numerical experiments here are not simulations prepared to
replicate and further study a given experimental finding. To
the contrary, the phenomenology to be discussed is not writ-
ten in any way in the model equations; nevertheless all the
features listed above for the brain appear spontaneously in
the Ising model near the critical temperature.

The paper is organized as follows. Section II is dedicated
to describe the data from the brain and from the numerical
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simulations of the Ising model. Also it contains the steps
used to extract the networks from both brain and model time
series. Section III contains the main finding organized as a
side-by-side comparison of the statistical properties of the
brain and Ising model networks. It is shown that key statis-
tical and topological properties of the brain networks are
intriguingly similar to those of the networks extracted from
the Ising (only) at the critical temperature. Finally Sec. IV
summarizes and discusses the relevance of these similarities
and their biological significance in terms of brain function-
ing.

II. EXPERIMENTAL AND NUMERICAL METHODS

In this work, two types of complex networks are analyzed
in detail. The first network is derived from time series of
brain FMRI images collected from healthy human volun-
teers. The second network is extracted from numerical simu-
lations of the Ising model [22] in two dimensions. In both
systems networks are defined in the same manner by linking
sites with strongest correlations, often called “correlation
networks,” as it will be explained in detail below.

A. Brain FMRI data

Functional magnetic resonance data were acquired using a
3T Siemens Trio whole-body scanner with echo-planar im-
aging capability using the standard radio-frequency head coil
(scanning parameters were similar as those in [15]). Data
used here correspond to a subset of the control group pub-
lished in [15] and composed of five healthy females with
ages ranging between 28 and 48 years old. They were all
right handed and all gave informed consent to procedures
approved by Northwestern University IRB committee. Par-
ticipants were scanned following a typical brain resting state
protocol [2], in which the subject is lying in the scanner and
asked to keep their mind blank, eyes closed, and avoid fall-
ing asleep. A total of 300 images are obtained spaced by 2.5
s, in which the brain oxygen level dependent (BOLD) signal
is recorded for each one of the 64 X 64 X 49 sites (so-called
voxels of dimension 3.4375X3.4375X 3 mm?). Typically,
only 10% of those voxels correspond to brain activity, the
type of time series used here. Preprocessing of BOLD signal
was performed using the functional magnetic resonance im-
aging of the brain (FMRIB) expert analysis tool (FEAT
[23,46]), involving motion correction using motion correc-
tions using FMRIB’s linear image registration tool (MCF-
LIRT), slice-timing correction was performed using Fourier-
space time-series phase shifting, non-brain removal was
performed using brain extraction tool (BET), and spatial
smoothing was performed using a Gaussian kernel of full
width half maximum of 5 mm.

B. Ising model

The Ising model considers a lattice containing N sites and
assumes that each lattice site i has an associated variable s;,
where s;=+1 stands for an “up” spin and s;=—1 for a “down”
spin. A particular configuration of the lattice is specified by
the set of variables sy,s,,...,sy for all lattice sites. The en-
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ergy in absence of external magnetic field is given by

N
E=-J X s, (1)

i,j=nn(i)

where N=L X L, L is the size of the lattice, J is the coupling
constant, and the sum over j runs over the nearest neighbors
of a given site i [nn(i)]. As in almost all statistical mechanics
models there exists a competition between thermal fluctua-
tions (given by the interaction with the environment) that
give the system a tendency to be disordered and the interac-
tion between particles (sites of the lattice) that tends to orga-
nize the system in some particular way that depends on the
interaction or coupling between particles.

We implement the Metropolis Monte Carlo algorithm
[24,25] for the evolution of the Ising model in two dimen-
sions with periodic boundary conditions. This algorithm
takes into account that the system is in contact with a heat
bath at temperature 7. In this work, instead of working with
asymptotic configurations and equilibrium averages, we deal
with temporal series of single spin dynamics observed at a
certain time scale. All simulations are implemented on a lat-
tice of L=200 and every time step corresponds to Ar=L
X L Monte Carlo steps (which corresponds, on average, to
running once over the entire lattice, giving each spin the
possibility to flip). We take the Boltzmann constant equal 1,
J=1, and after thermalization, we take 2000 lattice configu-
rations (each separated by A¢), obtaining the dynamics of
each spin [{s,(¢),5,(7),...,s5(r)} time series].

As mentioned in Sec. I some of the key properties exhib-
ited by the brain resemble the dynamics of the Ising model at
the critical temperature 7,, where a transition between the
ordered and disordered states takes place. At lower tempera-
tures almost all the spins are aligned, while at temperatures
above critical, spins are randomly distributed and the total
magnetization is approximately zero. At the critical tempera-
ture 7., however, the system displays a fractal structure, with
clusters of aligned spins of different sizes as well as long-
range temporal correlations. For the simulations discussed in
Sec. III a critical temperature 7,.=2.3 was used, a subcritical
one of 7=2.0 and a supercritical temperature of T=3. A final
note concerns the choice of a lattice with nearest-neighbor
ferromagnetic interactions, considering that the brain is not a
lattice and includes inhibitory (i.e., antiferromagnetic) inter-
actions. This is chosen deliberately as the worst case scenario
in order to demonstrate the higher significance of the critical
dynamics over the structural connectivity of the model. We
restricted ourselves to the discussion of the present Ising
configuration since the main results are connected with the
critical state itself however they are expected to be observed
after changes in the connectivity and type of interactions,
provided that the system is tuned near the critical state
[26,27].

C. Correlation networks

In general terms, networks are collections of nodes joined
by links. For certain systems, the nodes as well as the links
are self-evident and easily identifiable. This is not the case at
hand because in the brain both are part of the problem, where
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both the nodes and their interactions need to be uncovered
from the data. Although there are “anatomical” templates
that can be used to identify nodes, we choose here to ap-
proach the problem from the limit of maximum ignorance
and use instead a data-driven strategy. The assumption is that
the brain time series contain enough information to define
the networks in a self-consistent manner. Since the correla-
tions are computed from the time series collected from FMRI
voxels, this approach is often called voxel-based brain func-
tional networks. The current approach is in contrast with
most recent related work [8,9,13,28], where the network’s
nodes are predefined based on a priori knowledge, and only
the possible links between these predefined nodes are deter-
mined. It will be seen that these differences per se can be
responsible for conflicting results.

Here networks are defined by the correlations among the
activity at each location (i.e., either a voxel in the case of the
brain or a lattice site in the Ising model). Thus the correlation
coefficient, r, is used to measure the degree of linear depen-
dence between all pairs of sites, as was done in [10]. The
correlation coefficient between sites i and j is

(xi(B)x,(1)) = Cei(0))x(0)
alx;(t)]olx;(1)] ’

where o?[x,(t)]=(x7 (1)) {x/(1))?, where x,(7) is the BOLD

signal of voxel [ if we are studying the brain data or the spin

time series (of site /) from the Ising model. (-) represent
averages taken over the length of the time series (300 and

r(i,j) = (2)
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FIG. 1. (Color online) Panel (a): brain’s FMRI correlation den-
sity distribution for each of the five control subjects recorded under
resting conditions. Panel (b): Ising model correlation density distri-
bution for T=2 (green, dashed line), T=2.3 (red, continuous line),
and T=3 (black, dot dashed line). Insets in both panels show the
logarithmic-linear plot of the same density distributions.
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2000 points for the brain and the Ising model, respectively).

Links between sites i and j are defined here whenever the
correlation r(i,j) is greater or equal to a given threshold, p.
The network’s nodes are those sites with a nonzero number
of links. That completes the definition of a network. Depend-
ing on the sign of p, two types of networks can be extracted.
Those using a positive threshold p* will be called positively
correlated networks and those using a negative threshold p~
negatively correlated networks. It is relevant to make this
differentiation because anticorrelated dynamics are ubiqui-
tous in the brain, as will be discussed latter.

Section III contains a side-by-side analysis of the posi-
tively and negatively correlated networks extracted from the
brain and the Ising model.

III. RESULTS

Networks are extracted from the data using the site-to-site
temporal correlations. Figure 1 shows the density distribu-
tion for the N(N-1)/2 correlations [i.e., Eq. (2)] computed
between all pairs of time series of the brain (in panel a) and
the Ising model (in panel b). In the case of the brain, the
results from the five participants are plotted and for the Ising
model, the densities correspond to correlations computed at
three different temperatures: subcritical, critical, and super-
critical.

A visual inspection shows that besides the differences in
variance, which cannot be expected to be equal, the densities
for both brain and Ising model are distributed approximately
equally. Both have a small skewness toward positive values,
which it is more clearly seen in the insets using logarithmic
scale. An important point to appreciate panel B of Fig. 1 is
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FIG. 2. (Color online) Average degree, (k), as a function of
threshold p for (a) positive and (c) negative correlation networks.
Variance of degree, oi, as a function of (K) for (b) positively and
(d) negatively correlated networks. The dashed black line [in panels
(b) and (d)] corresponds to the expected behavior of a Poisson
distribution. In all graphs the Ising model data at three tempera-
tures, T=2, T=2.3, and T=3, are presented, as well as the data from
the five subject’s FMRI brain networks.

061922-3



FRAIMAN et al.

PHYSICAL REVIEW E 79, 061922 (2009)

TABLE 1. Average statistical properties of the positively correlated brain and Ising networks.

T P+ N <k> Cc L D Cran Lran Dran
Ising network
2.0 0.1 40000 133 0.065 2.72 4 0.0054 2.61
2.3 0.3 40000 127 0.516 6.83 31 0.048 2.71 5
3.0 0.09 40000 128 0.064 2.73 4 0.0034 2.65
Brain network
0.623 26985 128 0.4536 4.4 13 0.061 2.62 5

the well known increase in the variance of the correlations at
the critical temperature. It is only near 7. that equally ori-
ented spins coalesce in large domains, thus generating the
two sides of the distribution we observe here. In the brain, at
any moment in time, in order to produce a given motor or
cognitive behavior, of even during rest, similar dynamics oc-
cur: large regions of the brain activate in bulk at the same
time that other regions deactivate. A remark here is that it is
inconceivable to think about the brain’s ongoing dynamics in
any other way. Given the brain extensive connectivity, this
balance in which a region is shutting down while another is
excited is clearly the only possibility to avoid both total qui-
escence, in which the brain is shutdown, and massive exci-
tation, in which the entire cortex is fired up. Thus, while the
reason for the distribution shown in Fig. 1(a) is trivial, it is
not trivial how the brain does it or, in other words, which is
the mechanism in place to maintain such balanced correla-
tions [29].

A. Networks average statistical properties

Given the differences in correlation variance discussed
above, a criterion needs to be established to compare brain
and Ising networks. One proven to be useful is to scan a
range of p thresholds while computing the average degree of
the resulting networks. After that, a comparison can be made
between networks of similar average degree. This is plotted
in Fig. 2 as a function of p for positively correlated networks
in panel (a) and for negatively correlated networks in panel
(c). This is done for the brain data of the five subjects and for
the Ising data at three temperatures. Given the distributions
in Fig. 1, it is clear that, as p grows, there are fewer connec-
tions and consequently a smaller average degree, (k). Despite

the expected difference in the value of p it can be seen that
the parametric dependence of p and (k) in both brain and
Ising networks allows us to confidently study and compare
networks of a given (k).

Next we looked at the degree variance, o7=(k?)—(k)?,
plot as a function of the average degree in Figs. 2(b) and
2(d). Note that the brain and the Ising data at the critical
temperature share a similar o;-(k) functional dependence, a
fact that suggests potential similarities between the degree
distributions of the brain and Ising model at 7,, an aspect
that will be explored in Sec. III B. The dashed line corre-
sponds to a Poisson distribution (of:(k)), indicating that
none of the networks seems to obey a Poisson degree distri-
bution.

Next we computed and compared some of the network’s
most basic properties. These include the network’s clustering
coefficient C, estimating the number of mutual connections,
and the average path length L, defining the average number
of steps along the shortest paths for all possible pairs of
network nodes. Another property is the diameter D, which is
defined as the maximal distance between any two nodes in
the network. Also similar properties C,,,,, L 4> D,q, are com-
puted for an equivalent random network rewired as described
in [31]. Table I contains the results of these calculations for
networks defined with a positive p and Table II contains the
results for negatively correlated networks. The Ising data
correspond to the already described generated networks at
different temperatures, and the brain network corresponds to
the subject whose correlation is plotted with dashed line in
Fig. 1 (Internal Code SubjectO1). In all cases, we impose
similar (k) by choosing the appropriate p value given by the
results in Figs. 2(a) and 2(c).

The most remarkable result in Table I is the fact that the
Ising model network becomes small world only at 7. As

TABLE II. Average statistical properties of the negatively correlated brain and Ising networks.

T P N <k> C L D Cmn Lran D ran
Ising network
2.0 -0.0575 29370 26 0.0105 3.24 5 0.013 3.38 8
2.3 -0.38 4784 26 0 4.17 13 0.095 2.95
3.0 -0.105 40000 23 0.00003 3.72 6 0.0007 3.7 6
Brain network
-0.71 1684 27 0 3.54 11 0.14 2.69 5
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FIG. 3. (Color online) Normalized network clustering [panel
(a)] and path length [panel (b)] as a function of average degree.
Solid lines denote results for the Ising model at 7, and dashed lines
denote the results for the brain.

expected by the divergence of correlations at criticality, the
diameter of the network is seen here to grow from a few
nodes to a length toward the Ilattice maximum [i.e.,
~\(L/2)?>+(L/2)?]. At the same time, the average minimum
path L only doubles. Also, it is only at criticality that the
clustering coefficient, which is descriptive of the “local” con-
nectivity, grows several orders of magnitude compared with
either subcritical or supercritical networks. It is interesting to
realize that the network became small world at 7., not by
adding short cuts to a previously ordered lattice, as in the
Watts-Strogatz [32] scenario. Instead, here it seems as if the
disordered small blobs coalesce (or group) at 7., producing
an increase in C while increasing the D and maintaining the
same L. The other important point to remark on here is the
fact that a purely dynamical property (i.e., criticality) is able
to dramatically change the network properties. This has deep
relevance to brain function since these emergent properties
are directly related to the efficiency of information transport
in the network [33,34]. Turning to the brain data in Table 1, it
can be seen that it compares well with the Ising data at 7,
and also that it is a small world network, something reported
earlier for subjects performing minimal tasks [10]. The data
also agree extremely well with a very recent report for rest-
ing state networks [7]. Compare, for instance, Figs. 3(c) and
3(d) in [7] with Fig. 3 here.

The properties of negatively correlated networks neces-
sarily mirror the networks already discussed, with one im-
portant exception. Considering the Ising model for descrip-
tion sake, in the negatively correlated network edges connect
spins of opposite signs. Thus the clustering coefficient C is
by definition zero since two spins mutually opposite are nec-
essarily similar. For the case of the brain, of course, although
the details are different the mechanics are the same.

Of course the above mentioned results depend on the val-
ues of chosen (k). Nevertheless, we have verified that at least
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in the range of (k)<<130 the correspondence between the
Ising model at 7, and the brain data continues. As the mean
degree (k) increases the clustering increases and the average
path length diminishes, mainly because we are adding con-
nections to the network. A similar dependence of these aver-
age statistical quantities on (k) was recently reported in [7]
for positively correlated brain FMRI networks. To summa-
rize the dependence of these quantities on (k), Fig. 3 shows
the normalized clustering, y=C/C,,, [panel (a)], and aver-
age path length, A\=L/L,,, [panel (b)], as a function of mean
degree ((k)). For the positively correlated networks, the rela-
tive large values of 7y together with relatively small N indi-
cate that both networks display small world properties. For
the negatively correlated network, the clustering is zero (y
=0) and \ is near one and notoriously almost insensitive to
(k).

The results described so far show that the dynamics of the
Ising model at T, as captured by the correlation networks
exhibit average statistical properties resembling those ob-
served in the brain networks at resting conditions. In Sec.
III B, the extent of these similarities is further expanded to
other network topological features.

B. Degree distribution and degree correlations

In this section we analyze the distribution of the network
edges and their mutual correlation. First we analyze and
compare the degree distribution P(k), shown in Fig. 4. The
plots in the top three graphs correspond to the degree distri-
bution for the Ising model at the three temperatures. Each of
the three curves in each graph corresponds to networks with
average degrees of (k)=26, 127, and 713, imposed by
choosing appropriate values of p* as was done before. The
bottom graph in Fig. 4 shows the degree distribution for the
brain network. As anticipated, the networks extracted from
the Ising model show a dramatic change at T,. At criticality
the degree distribution exhibits a long tail that persists for all
(k) explored. The power law exponent of the degree distri-
bution and the (k) are connected, which is not surprising. The
bottom panel shows the same analysis for the brain network,
which exhibits all the relevant features seen for the Ising
model at T.. Besides the agreement on the gross features of
the distribution, it is even possible to identify a noticeable
maximum at k=4 (or k=6 in the brain), which is trivially
related to the number of the nearest neighbors (this is espe-
cially notorious at relatively large p*; see, for instance, Fig. 2
in [10]). The power law behavior in the tail of the degree
distribution for positive correlation networks was already re-
ported in brain FMRI of human subjects performing minimal
attention task [10] and recently in an extensive study in sub-
jects during resting state [7].

Turning the attention to the negatively correlated net-
works, in Fig. 5 the degree distribution is shown for three
temperatures and three values of (k) =49, 127, and 277. As
seen before with other network features, there is also a quali-
tative change at T, in the tail of the degree distribution,
which follows a power law. The bottom panel of Fig. 5
shows the degree distribution for the brain negative correla-
tion network that presents similar features as those seen in
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FIG. 4. (Color) Degree distribution for positively correlated net-
works. Top three panels depict the degree distribution for the Ising
networks at 7=2, T=2.3, and T=3 for three representative values of
(ky=26, 127, and 713. Bottom panel: degree distribution for posi-
tively correlated brain network for the same three values of (k).

the Ising at T,.. The average for five subjects is shown in Fig.
6.

In some complex networks, a node’s degree and its neigh-
bors’ degree can be related. The correlation between node
degree and neighbor degrees, as well as the dependence of
other measures on a node’s degree, is investigated in Fig. 7.
The bottom panels of Fig. 7 illustrate the relation between
the clustering, C(k), and the degree for positively correlated
networks. In can be seen that for the most part C(k) is inde-
pendent of k in both the brain and the Ising model networks
at T,.

The top four panels of Fig. 7 compare the nearest-
neighbor degree, (k;), as a function of own degree k for the
two types of networks extracted from the brain and from the
Ising model at 7. In both positively correlated networks one
can see the so-called assortative property, by which highly
connected nodes tend to be connected with highly connected
neighbors. The presence of this feature, first described in
[10], can now be understood considering that it is linked with
the dense domains of equally oriented spins (or voxels). Sites
located deep into the bulk of the domain then will have a
larger degree, and by the same reasoning sites located in the
domain’s periphery will result in nodes with smaller degree.
Then the assortative property is, in this context, trivially re-
lated to the geographical location of each node. This is not
the case in the negatively correlated networks since nodes
are located distant from each other (see Fig. 8), resulting in
the degree independence shown in Fig. 7.

The same reasoning can reconcile apparently conflicting
results (reviewed in [35]) in which brain network degree dis-
tributions were found not to be scale-free. In this work the
FMRI time series inside relatively large predefined cortical
areas were first averaged. Then the correlation values be-
tween these averages (a few dozen for the entire brain) were
used to define the networks. From the discussion above it is
clear that the averages remove the main source of the long
tails we observe here. The local averaging precludes the pos-

PHYSICAL REVIEW E 79, 061922 (2009)

10 grrrm

T=23

T=3

E

T=2

Frequency
-
o
‘ YHHWW TJrTT
ERRRLL R

10°E
1007 JTTIT IR RTTIT T |
100 10 10° 10" 10°  10° 10" 100 10°
Degree (k) Degree (k) Degree (k)
4
10" g
E Brain
>103§
[$)
< S
=3 E — <k>~277
I — <k>~127
10 F — <k>~49
10
10" 10°  10°
Degree (k)

FIG. 5. (Color) Degree distribution for negatively correlated
networks. Top three panels depict the degree distribution for the
Ising networks at 7T=2, T=2.3, and T=3, respectively, for three
representative values of (k)=49, 127, and 277. Bottom panel: de-
gree distribution for negatively correlated brain network for the
same three values of (k).

sibility of observing these details. A gross comparison would
be the effect of recalculating the degree distribution of the
United States’ airline traffic, which is known to be scale-free,
by no longer considering airports as its nodes, but rather
averaging traffic between entire states. Of course, this aver-
aging obscures the hubs and prevents the observation of such
scales.

In passing it should be mentioned that a discussion of the
relevance of this spatial aspect over spurious clustering co-
efficients was reported recently [36] for networks con-
structed from pressure levels, representative of the general
circulation (wind flow) of the atmosphere.

C. Back to plain correlations

Previous sections demonstrate striking similarities be-
tween the correlation properties of the brain and the Ising
model at 7. This was done comparing the correlation net-
works, a technique that as commented in Sec. I allows for a
compact description. However, to be consistent those simi-
larities should be evident by looking at plain correlations as
discussed next.

—_
o

URLRALLLL B LU N R L B AL

-
on

o

—_
o,
w

Sl vl il 4

— Pos. Correlated (Average) g

---- Neg. Correlated (Average)

Lol

10' 10° 10°
Degree (k)

Normalized Frequency
)

10°

FIG. 6. (Color online) Brain network’s average degree distribu-
tion computed from five volunteers for (k)= 127.
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FIG. 7. (Color online) Top four panels: neighbor degrees corre-
lation. Plot of the nearest-neighbor degree, (k;), as a function of
own degree k for the two type of networks extracted from the brain
(left) and from the Ising model at 7, (right). Bottom panels: clus-
tering, C, as a function of the degree k for positively correlated
networks extracted from the brain (left) and from the Ising model at
T,: in all plots dots represent individual nodes and empty circles
joined by lines represent averages. Positively correlated networks
correspond to (k)=26 and negatively correlated networks corre-
spond to (k) =49.

In previous work we reported already that on the average
correlations in the brain decay very slowly with distance
[10]. We revisit this aspect here both for the brain and the
Ising model. This is shown in Fig. 8. The first observation is

1

r (i,j,d)

0 05 1
Distance (a.u)

FIG. 8. (Color online) Typical brain (top) and Ising (bottom)
correlation profiles. Correlations [i.e., Eq. (2)] are computed be-
tween the site with the largest degree and the rest of the time series
and plotted at its respective normalized distance.
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that significant correlations extend to the length of the sys-
tem. Near the origin, there is a notorious bias toward positive
correlations, followed by a somewhat rough landscape of
both positive and negative correlations. In the case of the
brain, the peaks of this landscape reveal areas with common
anatomical and (probably) functional properties.

It is important to recognize that the valleys of negative
correlation may or may not be related to negative interac-
tions. Since there are no negative interactions in Eq. (1), it is
clear that in the Ising model the emergence of significant
negative correlations is a collective effect arising only at the
critical point. In the brain the situation is not that clear. Nev-
ertheless there is a pervasive preference to link anticorrelated
dynamics with negative interactions. For instance, it is com-
monly heard that “in the human brain, neural activation pat-
terns are shaped by the underlying structural connections that
form a dense network of fiber pathways linking all regions of
the cerebral cortex” [11]. This mind set, which equates dy-
namics with structure, is so entrenched in brain science that
it always seems reasonable to search for the connections re-
sponsible for any given dynamical pattern. The results dis-
cussed here suggest that as a change in the temperature can
lead to the emergence of correlations in a substrate that lacks
such ability, the brain cortex can be operating in the same
way. In fact, the puzzle of how the brain can be highly co-
herent over long lengths has prompted some authors to pos-
tulate even nonclassical explanations, while the results here
seems to suggest that if the brain is at criticality such coher-
ence can be achieved naturally.

The second observation is that the fraction of sites that
have positive correlations is about the same as the fraction of
sites with negative correlations. Again, this feature can be
easily understood for the Ising model at criticality, but it is
hard to reconcile for the brain unless a critical scenario is
invoked. This finding might have deep implications. For in-
stance, we have recently reported [15] that although such a
balance is maintained in healthy individuals, it is disrupted in
some pathologies. Specifically, the disruption found is a re-
duction in the number of anticorrelated sites, compared with
normal conditions, somewhat analogous to subcritical tem-
peratures in the Ising model, a situation dominated by
equally oriented domains.

D. Brain functional connectivity vs collectivity

Probably it is worth placing the present results in the con-
text of current brain imaging approaches. The literature spe-
cialized on the analysis of brain neuroimaging time series
includes a very productive chapter of functional connectivity,
dedicated to formalize findings on a cohesive picture. Three
basic concepts in this area are brain functional connectivity,
effective connectivity, and structural connectivity [37-39].
The first one “is defined as the correlations between spatially
remote neurophysiological events” [37]. Per se, the defini-
tion is a statistical one and “is simply a statement about the
observed correlations; it does not comment on how these
correlations are mediated” [37]. The second concept, effec-
tive connectivity, is closer to the notion of a neuronal con-
nection and “is defined as the influence one neuronal system
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exerts over another.” Finally, the concept of structural or ana-
tomical connectivity refers to the identifiable physical or
structural (synaptic) connections linking neuronal elements.

These three concepts, intentionally or not, emphasize the
connection between brain elements. And it is despite of cau-
tionary comments emphasizing explicitly that “depending on
sensory input, global brain state, or learning, the same struc-
tural network can support a wide range of dynamic and cog-
nitive states” [39]. In this regard, the present results are spe-
cific examples of the emergence of nontrivial collective
states over an otherwise trivial regular lattice (i.e., the Ising’s
structural connectivity). It is clear that if the Ising’s collec-
tive states have a counterpart in the brain they cannot be
adequately described in the framework of connectivity, rather
it would be more appropriate to define another framework in
terms of brain functional collectivity, already discussed in
related terms elsewhere [40-42]. A pedestrian starting point
would be to review instances in which the data from the
brain structural connectivity and the functional correlations
disagree, as indications of collective phenomena.

IV. SUMMARY AND DISCUSSION

In this work statistical properties of brain correlation net-
works have been compared with those of networks derived
from the two-dimensional Ising model. The main finding
here is that at the proper temperature Ising networks and
brain networks are undistinguishable from each other. Their
main topological properties and even more refined features
of network structure including degree distribution, neighbor
degree, and clustering correlations with own degree all be-
have in the same manner.

The biologically most relevant lesson is related to the
well-known central result in critical phenomena. Namely,
that the dynamics of a system near a critical point include
spatiotemporal patterns correlated and anticorrelated over
long distances, despite having only nearest-neighbor positive
interactions. The similarities exposed by the comparison
made in this paper suggest that collective dynamics with
similar mechanics are present in the brain.

Nevertheless, the main point is not that a simple model
completely orphan of neural details is able to replicate the
experimental observations. The main point is that the model
gets the correct phenomenology without explicitly plugging
components for such phenomenology into its equations.
Whatever ends up replicating the observations, it is a collec-
tive effect that only happens at a certain temperature. Natu-
rally, this runs against common sense in brain science be-
cause, as discussed in previous sections, the prevailing mind
set implies that if two brain regions act in some coherent
way, there must be a direct connection between them. Thus,
this commonly held view seems to see the brain as a low
temperature Ising system and as such often explains long
distance correlations with an underlying physical connection
or deactivation by inhibitory connections. This is in analogy
with the correlations among spins at low 7, which are ruled
only by the underlying Ising connectivity; meanwhile at the
critical temperature, the system displays long distance corre-
lations and anticorrelations (i.e., “functional connections”)
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even when the connectivity is only ferromagnetic and to
nearest neighbors.

The above discussion suggests that it might be worth
studying the consequences of relatively broad and com-
pletely unspecific factors over brain dynamics. The sugges-
tion is that some types of global changes (e.g., mood,
arousal, attention, etc.) might be brought about in the same
way that fluctuations in the coherent domains arise at the
critical temperature in critical systems. Despite the relative
abundance of approaches, including sophisticated ones, as
far as we know, no neural model relies solely on this kind of
dynamical transition as a mechanism to produce different
behaviors. While there are several neural models that exhibit
criticality, yet there is no model whose “output” can be re-
lated with something even remotely connected with animal
mood, actions, or behavior. Thus, despite its attractiveness, it
needs to be recognized that criticality has not yet been shown
to increase the animal behavioral repertoire by virtue of its
abundance of metastable states.

In summary we have compared networks derived from the
FMRI signal of human brains with similar networks ex-
tracted from the Ising model. We found that near the critical
temperature the two networks are indistinguishable from
each other for most relevant statistical properties. These re-
sults are interpreted here as lending support to the conjecture
that the dynamics of the functioning brain is near a critical
point.

Note added in proof: We recently became aware of work
suggesting that criticality in the brain could be deduced from
the scale-invariance exhibited by the statistics of some pair-
wise phase synchronization measures [43]. While in prin-
ciple, these results agree with the ones contained in this
manuscript, the frequency independence (i.e., the “broad-
band” character) is quite intriguing.
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APPENDIX
1. Ising model

In the Ising model we consider a lattice containing N sites
and assume that each lattice site i has associated with a num-
ber s;, where s;=+1 for an up spin and s;=—1 for a down
spin. A particular configuration of the lattice is specified by
the set of variables s,,s,,...,sy for all lattice sites. The en-
ergy in the absence of external magnetic field is given by

N
E=-J E SiSj,

i,j=nn(i)

(A1)

where N=L X L is the size of the lattice, J is the coupling
constant, and the sum over j runs over the nearest neighbors
of a given site i [nn(i)]. Here we implemented the Metropo-
lis Monte Carlo algorithm [24,25] to solve the Ising model,
which takes into account that the system is in contact with a
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heat bath at temperature 7. The algorithm can be summa-
rized as follow:

(1) Establish an initial configuration (i.e., all spins ran-
dom).

(2) Choose a spin at random and flip it.

(3) Compute the change in energy AE=E,,;,;—E,;; due to
the flip.

(4) If AE=0 accept the change and keep the new con-
figuration of the lattice.

(5) If AE>0 compute the transition probability w
— o~ AEIT

(6) Generate a random number r in the unit interval.

(7) If r=w accept the change and keep the new configu-
ration of the lattice. Otherwise, keep the previous configura-
tion.

(8) Goto 1.

With this method we generate asymptotically configura-
tions with the desired Boltzmann probability. In the present
simulations, a lattice of L=200 (N=200X 200 nodes) was
used and every time step corresponds to a single flip spins.
We take k=1 (Boltzmann constant) and J=1. We termalized
the system (letting the system go to conﬁgurations according
to the temperature T) over N, ;= 10® time steps. After that,
we chose Ny,,,=2000 configurations every Ng,,=LXL
=10* steps (which corresponds, on average, to run over the
entire lattice given the possibility to each spin either flip or
not). The observables used to analyze the system are the
temporal series of each one of the spins of the lattice (s;
==1).

2. Networks definitions

As was specified in Sec. II C, i.e., networks are con-
structed as previously [10] by computing linear correlations
between temporal series of all pairs of voxels (sites) and
connecting them with a link if correlations were greater of a
given threshold p* (positive correlation networks) or lower
than a given negative threshold (p~). Following this proce-
dure, a list of connected pairs is obtained in both cases,
which define the functional complex networks that will be
analyzed further. An undirected graph [34] (as is the case we
use in this work), G(N,L) consist of two sets N and L such
that N# and L is a set of unordered pairs of elements of N.
The elements of N=n,,n,, ...,ny are the nodes (vertices or
points) of the graph G, while the elements of L
=(l,1,,...,lg) are its links (edges or lines). It is often useful
to consider a matricial representation of a graph. A graph
G=(N,L) can be completely described by giving the adja-
cency (or connectivity) matrix A, a NXN square matrix
whose entry a;;=(i,j=1,...,N) is equal to 1 when the link /;;
exists and zero otherwise.

What follows are the usual definitions for the network
properties:

(i) Degree. The degree k; of a node i is the numbers of
direct connections or links that emerge of a given node, and
it is can be defined in terms of the adjacency matrix as

k= 2 aij.
J

(A2)

A basic representation of a graph G can be obtained in terms
of the degree distribution P(k), which is defined as the prob-
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ability of a node chosen uniformly at random to have degree
k or as the fraction of nodes of the network having degree k.
The n moment of the distribution is defined as

K= k'P(k). (A3)
k

The first moment of the distribution is the mean degree of the
network. The second moment measures the fluctuations in
the network connectivity.

(ii) Average path length and diameter. The ability of a
network to propagate information will depend on separation
among nodes. If the shortest path between nodes i and j is
represented by the quantity d,;, a measure of the typical sepa-
ration between two nodes in the graph is given by the aver-
age shortest path length, also known as characteristic path
length, defined as the mean of geodesic lengths over all
couples of nodes [32],

> dy.

INRES

=N (N D (A4)

The maximum value of d;; is called the diameter of the net-
work. In this work, we use the breadth-firth method [44] to
numerically estimate d;;.

(iii) Clustering coefficient. The clustering coefficient is a
measure of how well connected are the neighbors of a given
node and is an indication of local connectivity of the net-
work. It can be defined as in [32], denoting the clustering
coefficient of node i, ¢; as the number of connections be-
tween all neighbors of node i, e; divided as the total number
of possible links, k;(k;—1)/2,

Eau Ajmmi

_ 26,- (AS)
Th-1 T k-1
Then, the clustering coefficient C is the average of c;,
1
C=(e)=y2 ¢ (A6)

(iv) Nearest-neighbor degree. The degree distribution
completely determines the statistical properties of uncorre-
lated networks. However, a large number of real networks
are correlated in the sense that the probability that a node of
degree k is connected to another node of degree, say k; de-
pends on k. In these cases, it is necessary to introduce the
conditional probability P(k/k,), being defined as the prob-
ability that a link from node of degree k points to a node of
degree k;. Although the degree correlations are formally
characterized by P(k/k;), the direct evaluation of the condi-
tional probability gives extremely noisy results for most of
real networks because of their finite size N [34]. This prob-
lem can be overcome by defining the average nearest-
neighbor degree of a node i as

nnz Ek— Ea” s

1]1

(A7)
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where the sum runs on the set of first neighbors of i.
Correlated networks are classified as assortative if k,,(k)
is an increasing function of k, whereas they are referred to as
disassortative when k,,,(k) is a decreasing function of k [45].
In other words, in assortative networks the nodes with simi-
lar degree tend to connect each other, while in disassortative

PHYSICAL REVIEW E 79, 061922 (2009)

networks nodes with low degree are more likely connected
with highly connected ones.

(v) Randomization. The randomization consisted in per-
forming a random sort of all links, keeping fix the number of
nodes, N, the number of links, /, and the degree of each node,
k.
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