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The splice sites (SSs) delimiting an intron are brought together in the earliest
step of spliceosome assembly yet it remains obscure how SS pairing [3_TD$DIFF]occurs,
especially when introns are thousands of nucleotides long. Splicing occurs in
vivo in mammals within minutes regardless of intron length, implying that SS
pairing can instantly follow transcription. Also, factors required for SS pairing,
such as the U1 small nuclear ribonucleoprotein (snRNP) and U2AF65, associate
with RNA polymerase II (RNAPII), while nucleosomes preferentially bind exonic
sequences and associate with U2 snRNP. Based on recent publications, we
assume that the 50 SS-bound U1 snRNP can remain tethered to RNAPII until
complete synthesis of the downstream [4_TD$DIFF] intron and exon. An additional U1 snRNP
then binds the downstream 50 SS, whereas the RNAPII-associated U2AF65
binds the upstream 30 SS to facilitate SS pairing along with exon definition.
Next, the nucleosome-associated U2 snRNP binds the branch site to advance
splicing complex assembly. This may explain how RNAPII and chromatin are
involved in spliceosome assembly and how introns lengthened during evolution
with a relatively minimal compromise in splicing.

Splicing and Spliceosome Assembly
Splicing is the mRNAmaturation reaction in which introns are removed frommRNA precursors
and exons are ligated together [1]. Regulation of the splicing process is essential to ensure
correct gene expression and for cellular responses to environmental changes [2]. The reaction
is governed by four main regulatory consensus sequences: the 50 [5_TD$DIFF]SS, the 30

[6_TD$DIFF]SS, the branch site
sequence, and the polypyrimidine tract [3–5]. It occurs within a multicomponent complex
termed the spliceosome. The spliceosome comprises five snRNP complexes –U1, U2, U4, U5,
and U6 – and many additional proteins [5]. The initial mechanistic analysis of the splicing
reaction was enabled by the establishment of an in vitro splicing system 30 years ago [6–9]
(Box 1). Based on the fact that introns are spliced less efficiently in vitro the larger they are, and
the relatively long time it takes to remove an intron from anmRNA precursor in the in vitro assay,
we can assume that in vitro the splicing factors locate their binding sites on themRNAprecursor
via diffusion by stochastic interactions. How this binding occurs and what affects its kinetics in
vivo is much less clear.

The Influence of Intron Length on Splicing Efficiency and Kinetics
Exon–intron structure plays a role in the recognition of exons by the splicing machinery. In vitro
and in vivo studies in flies and vertebrates demonstrate that intron length negatively affects exon
inclusion levels [10,11] and that alternatively spliced exons are flanked by longer introns
compared with those flanking constitutively spliced exons [11–13]. Nevertheless, a large fraction
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of introns expanded by thousands of nucleotides during vertebrate evolution without profoundly
hindering splicing, with humans having the longest introns among the sequenced vertebrate
genomes [13]. The introns examined in the in vitro splicing reaction are relatively short (up to a
few hundred nucleotides long) while an average intron in vertebrates is often ten times longer
[13]. Thus a puzzling issue is how the spliceosome successfully defines exons, which are on
average about 150 nucleotides long in humans [13], and distinguishes between the pseudo-SSs
found across vast intronic sequences and bona fide ones.

Splicing kinetics seems to be more affected by intron length in lower eukaryotes such as yeast
and flies, while in mice and humans the rate of intron removal from the pre-mRNA is unrelated to
intron length [14–16]. This could plausibly be explained by the evolutionary transition from intron
definition to exon definition (Box 2): the removal of the relatively shorter yeast and fly introns [17–
19] presumably occurs mainly via intron definition while mammalian exons flanked by longer
introns are plausibly mainly identified via exon definition [20]. Since a diffusion-based model for
splicing factor interactions with RNA cannot solely explain how very long introns are spliced at
the same rate as short ones, we can assume that additional strategies must have developed
during evolution to facilitate the identification of exons located between long introns.

Intron Removal Is Generally Rapid In Vivo
In vitro splicing products are first detected after roughly 30 min or more of incubation and splicing
rates can be modulated depending on various factors [6,21,22]. Although it can be said that the
splicing reaction is generally slower in vitro, splicing kinetics in vivo are less understood. It has
been reported that human pre-mRNA is synthesized at 2.9–3.3 kilobases per minute and that
the removal of the first intron occurs as RNAPII transcribes the second exon [23]. However,
another study estimated the average human transcription rate to be 3.8 kilobases per minute
and intron removal to occur within 5–10 min of intron synthesis [16]. Other studies indicate that
human intron excision can occur within 20–30 s of their synthesis [24,25]. Further studies of
splicing kinetics in relation to transcription in human cells found that intron removal occurs
4.33 min following synthesis of the 30 SS [26] or 20–30 s after intron transcription [27]. Although
in vivo splicing rate estimates differ between studies, the splicing reaction is probably completed
in vivowithin seconds to a fewminutes, closely following RNA synthesis, whereas in vitro splicing
product formation is more prolonged. So what difference between the in vitro and in vivo splicing
reactions may explain this discrepancy in splicing kinetics?

Box 1. In Vitro Splicing and Spliceosome Assembly

In the in vitro splicing system, an mRNA precursor comprising two exons separated by an intron is incubated in nuclear
extract. After incubation for approximately 30 min or more, the mRNA precursor is spliced and the first nucleotide of the
intron forms a covalent bond with the branch site adenosine to form a lariat intermediate. Later, the two exons are ligated,
the intron is released, and the final products of the mRNA splicing reaction gradually begin to accumulate. In vitro assays
have contributed greatly to our understanding of the different stages of splicing complex assembly and the identification
of splicing factors involved in each stage [6–9].

The first step in the assembly of the spliceosome is the formation of the commitment complex, also known as the E
complex. In this complex, the U1 snRNP binds the 50 SS of the pre-mRNA and is associated via SR proteins with the
U2AF35– U2AF65 heterodimer (also known as U2AF1 and U2AF2, respectively) and SF1, which bind the 30 SS, the
polypyrimidine tract, and the branch site region, respectively [107,108] (Figure I). Formation of the commitment complex
is completed within seconds and in it the 50 and 30 SSs are brought into close proximity. The SSs are thus defined at this
early stage of the reaction. The commitment complex is then advanced into the pre-spliceosome, also known as the A
complex, in which the U2 snRNP replaces SF1 on the branch site and interacts with the U1 snRNP [5,109]. The next step
is the addition of the U4–U5–U6 tri-snRNP complex and formation of the fully assembled spliceosome, the B complex.
Later stages involve activated B complex, catalytically activated B complex, the C complex, and the post-splicing
complex. In these stages the U1 and U4 snRNPs detach from the spliceosome, other proteins attach to it, and structural
rearrangements occur [5,110].
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Numerous studies have demonstrated that in various species splicing can occur co-transcrip-
tionally in vivo, while pre-mRNA is being transcribed and RNAPII is still attached to chromatin
(recently reviewed in [28]). In a recent yeast study, splicing was shown to be 50% complete in a
set of tested genes when RNAPII is only 45 nucleotides downstream of the 30 SS [29]. The extent
of co-transcriptional splicing in the human genome remains unclear, ranging from a conservative
estimate that splicing often occurs after transcription has been completed [30] to an opposite
one that most pre-mRNAs undergo splicing while being transcribed [31]. Nevertheless, we
hypothesize that the kinetic differences observed between splicing in vitro and in vivo could be
related to the fact that the in vitro splicing system is completely transcription independent while in
vivo splicing can occur co-transcriptionally.

The Connections of Splicing with RNAPII and Chromatin Structure In Vivo
Various studies demonstrate that RNAPII and chromatin structure are associated with splicing.
RNAPII accumulates over intron–exon junctions and exons [32–34] and transcription elongation
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is thought to slow or pause at the 30 end of introns [35,36]. High RNAPII elongation rates are
positively correlated with certain epigenetic and gene features in human cell lines, among which
is low density of exons in the genes [35]. Two similar methods of native elongating-transcript
sequencing have been developed. The results of one study suggest that cleaved upstream-exon
intermediate transcripts are associated with RNAPII that is accumulated over downstream
exons when the RNAPII C-terminal domain (CTD) is specifically phosphorylated at the serine 5
position [37]; another study showed RNAPII accumulation at both ends of constitutive exons
[38]. These findings are in accordance with evidence demonstrating that phosphorylation of the
RNAPII CTD stimulates RNA splicing both in vivo and in vitro [39,40]. Finally, changes in RNAPII
elongation rate influence the splicing of certain alternative exons, leading to either their increased
inclusion or exclusion [41–45].

Less studied are the connections between splicing and chromatin structure. However, nucleo-
some occupancy, specific histone modifications, and CpG methylation levels differ between
exons and introns [46–51]. Additionally, variations in chromatin organization and epigenetic
marks are linked with and can directly or indirectly lead to alterations in splicing patterns
[52–[7_TD$DIFF]59,123]. In light of these findings, it is of interest to understand how RNAPII transcription
elongation and chromatin structure affect the assembly of spliceosome complexes. Here we
attempt to explain how long-intron removal from the pre-mRNA occurs co-transcriptionally in
vivo via exon definition. Below, we describe a model in which splicing factor interactions with the
RNAP CTD and chromatin during synthesis of the pre-mRNA can define exons as the splicing
unit and promote the formation of the commitment complex. First, we examine and consolidate
relevant findings pertaining to co-transcriptional spliceosome assembly.

Splicing Factor Recruitment to the RNAPII CTD In Vivo
The mammalian RNAPII CTD is necessary for efficient pre-mRNA processing in vivo [60–63]. In
the absence of the CTD or when it cannot be phosphorylated, splicing is impaired [64,65],
suggesting that the CTD is important for the recruitment of splicing factors to SSs. In accordance
with this, the U1 snRNP associates with the CTD of RNAPII [66–72] (Figure 1[1_TD$DIFF]A). The association
can occur in the absence of transcription [66,69] but U1 snRNP is mainly localized to the
chromatin of actively expressed genes in mammalian cells [73] regardless of whether these
transcripts undergo splicing [69,70]. The association between the U1 snRNP and RNAPII may
facilitate the uploading of the U1 snRNP not only onto authentic 50 SSs but also onto cryptic
signals to prevent premature cleavage and polyadenylation of the pre-mRNA and ensure
transcript integrity [74]. It is currently unclear whether the U1 snRNP directly binds the RNAPII
CTD or associates with it via mediating proteins. In fused-in-sarcoma protein (FUS)-knockdown
nuclear extracts of human cells, the U1 snRNP can no longer interact with RNAPII, suggesting
that FUS acts as a mediating protein in this interaction [71]. In accordance with U1 snRNP

Box 2. Exon Definition and Intron Definition

Twomodels for the recognition of splicing units have been suggested: exon definition and intron definition [20,95,111]. In
the intron definition model, the splicing machinery recognizes the intronic unit and places the basal splicing machinery
across introns, thereby constraining intron length. This mechanism is proposed to be widespread in lower eukaryotes
and is also thought to be the ancestral splicing mechanism [95,112,113].

Exon definition is thought to be widespread in vertebrate species, which have a large fraction of long introns [113,114].
Exon definition occurs when the basal machinery is placed across exons, thus constraining their length and allowing their
recognition in the context of substantially longer intronic sequences [11,95,111]. During exon definition, splicing-
enhancing cis sequences within the exon recruit SR proteins that concurrently interact with the U2AF proteins and
U1 snRNP located at the two ends of the exon [115,116]. The exon definition model is supported by the finding that
mutating the 50 SS of an exon affects U2 snRNP binding at the branch site upstream of that exon [99]. It is hypothesized
that cross-exon interactions are later converted to a cross-intron complex connecting the U2 snRNP with the U1 snRNP
bound to an upstream 50 SS [107]. Such a conversion can presumably occur when an exon-boundU4–U5–U6 tri-snRNP
interacts with an upstream 50 SS without prior formation of a cross-intron A complex [117].
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binding of the 50 SS, FUSCLIP-seq read density is highest near the 50 end of long intronic regions
[75].

Additionally, it was shown that U2AF65 binds to the phosphorylated RNAPII CTD in humans and
proposed that this association is maintained throughout transcription elongation [76] (Figure 1A).
The CTD is recognized by U2AF65 while it is associated with the PRP19 complex, which is
important for activation of the spliceosome [76]. This is in accordance with previous affinity
chromatography and co-immunoprecipitation studies showing that U2AF65 co-purifies with
RNAPII in HeLa extract [77,78]. The association between U2AF65 and the RNAPII CTD may
explain a report that on calcium treatment and formation of euchromatin structure, the RNAPII
elongation rate increases and U2AF65 is depleted from 30 SSs in human cells [79]. Moreover, the
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transcription elongation regulator TCERG1 can interact with U2AF65 [80] and SF1 [81] as well as
with the RNAPII CTD simultaneously phosphorylated on the serine 2, 5, and 7 positions [82].
TCERG1 was found to bind independently to elongation and splicing complexes, suggesting
that it could couple transcription elongation and splicing by transient interactions [83].

Splicing Factor Recruitment to Chromatin In Vivo
Direct and mediated associations between splicing factors and chromatin in vivo may also
contribute to the spliceosomal identification of short exons located between long introns. An in
vivo study in HeLa cells has revealed that U2 snRNP associates with chromatin via the chromatin
remodeler CHD1, which binds H3K4me3 [84] (Figure 1B). CHD1 and GCN5 are both compo-
nents of the human histone acetyltransferase STAGA complex [85], which associates with
SF3B3, a U2 snRNP component [86]. The STAGA complex promotes the formation of euchro-
matin structure and both euchromatin and H3K4me3 are active transcription marks. Thus, it
could be hypothesized that these interactions play a part in U2 snRNP functional recruitment to
transcribed areas. In support of this hypothesis, siRNA-mediated reduction of either CHD1 or
H3K4me3 in HeLa cells hinders the association of U2 snRNP with chromatin and decreases
splicing efficiency in vivo [84].

Nucleosomes associate with exonic sequences more than they do with introns [47,48] and even
more so when these exons are flanked by long introns [87]. It is currently unknown whether U2
snRNP, in its entirety, preferentially binds exonic nucleosomes. However, SF3B1, a U2 snRNP
component, does preferentially associate with exonic nucleosomes and is highly enriched at
exons adjacent to long introns [88] (Figure 1B). The binding of SF3B1 to nucleosomes is also
functionally important for the splicing of some alternatively spliced exons [88]. Interestingly, SF3B1
phosphorylation influences pre-mRNA processing [89,90] and is associated with active tran-
scription [90,91]. U2 snRNP components are also associated with heterochromatin protein 1
(HP1) [57] (Figure 1B). HP1 variants are important formaintaining chromatin structure and integrity
and enrichment of HP1 at methylated DNA regions has a regulatory effect on splicing [57].

Other splicing factors also associate with chromatin or chromatin remodelers. For example, the
nucleosome remodeling complex SWI/SNF interacts with U5 snRNP in human cells [92].
Additionally, BS69, a U5 component, selectively recognizes the H3K36me3 modification
(enriched at exonic nucleosomes) and promotes intron retention [93]. Interestingly, mass
spectrometry analysis for mononucleosomes also detected an association with U5 snRNP
[88]. Finally, U2AF65, which binds the RNAPII CTD [76], also associates with the histone H1
linker [94] as well as with H3K4me3 in HeLa nuclear extracts [84]. Below we hypothesize how
chromatin organization and transcription elongation may contribute to exonic recognition by the
splicing machinery, especially when exons are located between vastly larger introns.

Model for Co-transcriptional SS Pairing Over Long Introns In Vivo
Introns recognized through an intron definition mechanism are under selection to remain short
[14,95], presumably as splicing factors find their targets on the mRNA precursor via diffusion.
The exon definition model theoretically allows intron lengthening. However, intron lengthening is
likely to introduce cryptic SSs that compete with functional ones and longer introns can have
RNA secondary structures that may hinder spliceosome assembly [96]. Long introns also
reduce the likelihood of stochastic bridging between U1 snRNP bound to the 50 SS and
U2AF35 and U2AF65 bound to the 30 SS and the polypyrimidine tract, respectively. Finally,
several minutes may pass between the synthesis of the 50 and 30 SSs of long introns. It is
therefore puzzling that the splicing reaction can occur within seconds to minutes after RNA
synthesis in vivo and that the splicing rate of mammalian introns does not generally decrease the
longer the introns are. A mediating mechanism is therefore needed to bring the SSs delimiting a
long intron closer for the splicing reaction to occur.

6 Trends in Genetics, Month Year, Vol. xx, No. yy
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The following description of such a mechanism incorporates two previously proposedmodels. It
has been hypothesized that RNAPII-associated U1 and SR proteins recognize a transcribed
exon, resulting in its tethering to RNAPII, and that later the RNAPII-bound U2AF65 interacts with
the 30 SS [76]. Additionally, it has been suggested that the cleaved 50 SS intermediate RNA of an
upstream exon remains tethered to RNAPII that is accumulated over the downstream exon [37].
Combining these models with additional information relating to the associations between
chromatin and splicing factors, we propose that the following could be important for the removal
of long mammalian introns from the pre-mRNA via an exon definition mechanism (Figure 2). We
can assume that elongating RNAPII remains associated with the 50 SS during the synthesis of a
long intron through its interaction with the U1 snRNP, probably until synthesis of the downstream
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Model for SS pairing of long introns in vivo. U1 snRNP binds the 50 SS of the pre-mRNA and remains attached to elongating RNAPII until synthesis of the downstream 50

SS. RNAPII slows as it nears an exonic nucleosome. An additional U1 snRNP binds the newly transcribed downstream 50 SS and the RNAPII C-terminal domain (CTD).
Concurrently, RNAPII-bound U2AF65 attaches to the 30 end of the intron, thus bringing the 50 and 30 SSs into proximity and allowing the formation of the commitment
complex. Next, U2 snRNP detaches from the exonic nucleosome and binds the pre-mRNA branch site to advance the formation of the pre-spliceosome. Other
components of the commitment complex and the pre-spliceosome besides the U1 and U2 snRNPs, U2AF65, and U2AF35 are not depicted in the panel.
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exon to allow exon definition. Transcription elongation is reduced or rather RNAPII accumulates
at the 30 SS and into the start of the downstream exon while the RNAPII CTD serine 5 is
phosphorylated. Next, on synthesis of the downstream 50 SS an additional U1 snRNP can attach
to it. The downstream U1 snRNP could already be bound to the RNAPII CTD or perhaps
disassociation of the upstreamU1 snRNP fromRNAPII at this stage leads to the downstreamU1
snRNP taking the upstream U1 snRNP's place on the CTD. Concurrently or immediately after
that, RNAPII CTD-bound U2AF65 attaches to the upstream polypyrimidine tract, essentially
defining the downstream exon as the splicing unit, bringing the two intron ends closer together,
and facilitating the formation of the commitment complex over the intron ends. SR proteins
further define the downstream exon by concurrently binding to U1 snRNP and U2AF at both
exon ends [97,98]. Subsequently, U2 snRNP, bound to the exonic nucleosome via SF3B1,
detaches and binds the pre-mRNA branch site (formation of the pre-spliceosome/A complex).
At this stage U2 and U1 snRNPs are located at both exon ends. Thus, RNAPII and nucleosomes
plausibly assist in defining exons located between much larger introns. Finally, binding of U5
snRNP components to chromatin may facilitate recruitment of U4 and U6. Binding of the U4–
U5–U6 tri-snRNP to the pre-spliceosome complex results in the formation of the B complex.

Concluding Remarks
The aforementioned model can clarify how introns could have expanded by thousands of
nucleotides during vertebrate evolution without profoundly hindering splicing [13]. The distance
between the 50 and 30 SSs would presumably be of lesser importance when splicing factors are
uploaded onto nucleosomes that mark exons and when factors bound to RNAPII bring the 50

and 30 SSs into close proximity during RNA synthesis. Additionally, such a model may explain
how an elongation rate increase during transcription of a gene can have a negative effect on the
inclusion level of some of the gene's alternative exons, as high elongation may lead to the
synthesis of a downstream exon before the relevant splicing complexes assemble around an
upstream exon. Moreover, alternative exons with suboptimal 50 SSs could potentially be
skipped, with the U1 snRNP detaching from RNAPII only once an additional U1 snRNP attaches
to the stronger 50 SS of the downstream constitutive exon. The model could thus provide an
explanation for the manner by which 50 SS mutations at an exon's end may lead to suboptimal
binding of the U2 snRNP upstream of the exon [99] and to exon skipping [100] via exon
definition. Finally, U1 snRNP attachment to RNAPII throughout transcription elongation could
facilitate U1 uploading onto cryptic polyadenylation signals [74] and also explain the observation
that U1 snRNP is detected on the transcripts of intronless genes and on transcripts of geneswith
mutated SSs [69,70].

It should be noted that alternative mechanisms could also facilitate the splicing of exons adjacent
to long introns. An undetermined fraction of fly and human splicing events occur via recursive
splicing, in which long introns are removed in a stepwise fashion via the use of intermediate
intronic sites [101–103]. Recursive splicing has been hypothesized to occur co-transcriptionally
for some introns [104]. Furthermore, the alternative splicing factor hnRNP C was found to
compact pre-mRNA in a manner that can affect alternative splicing and bring SSs closer [105].
Its extensive binding across introns also competes with U2AF65 and blocks U2AF65 binding to
cryptic 30 SSs [106]. How these mechanisms occur either in opposition to or in accordance with
the influence of transcription elongation and chromatin structure on splicing remains to be
determined.

In summary, a body of evidence suggests that RNAPII and chromatin organization can consti-
tute scaffolds that facilitate splicing complex assembly over long introns both spatially and
temporally. Since the rate of intron removal from the pre-mRNA is unrelated to intron length in
mice and humans, we speculate that the proposed mechanism could exist in mammals. In
addition, besides being flanked by long introns, we hypothesize that exons identified through this

Outstanding Questions
What specific characteristics do exons
identified through the mechanism
described here exhibit other than being
flanked by long introns, if any?

Generally, we hypothesize that long
introns are removed through the afore-
mentioned mechanism, but how many
introns are actually spliced in this
manner?

Since splicing unit recognition probably
occurs via variousmechanisms, includ-
ing the one we propose here, what
could lead to one being employed by
the cellular machinery and not the
other?

When did this splicing mechanism spe-
cifically develop during evolution?

What promotes U1 snRNP association
with the RNAPII CTD and what would
lead to its disassociation?

How is binding of the upstream
U2AF65 to the RNA connected with
attachment of the downstream U1
snRNP to the 50 SS, if at all?

Does RNAPII CTD serine 5 phosphor-
ylation play a part in splicing regulation
or spliceosome assembly in higher
eukaryotes? Are levels of the modifica-
tion affected by the splicing reaction?
Or, perhaps, do co-transcriptional
splicing and RNAPII CTD serine 5
phosphorylation simply co-occur?

HowdoRNAPII interactionswith splicing
factors affect, if at all, associations
betweenchromatinandsplicing factors?
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mechanism also display high levels of co-transcriptional splicing [31] and are highly associated
with nucleosomes. As an association between exon definition and a specific exon–intron GC
content architecture that is enriched for nucleosome occupancy has been detected [87], we
hypothesize that exons exhibiting these properties could also be identified via this mechanism. It
is important to note that this mechanismmay explain the splicing of a subset of exons, whereas a
diffusion-based model better fits the splicing of introns of short or intermediate length. Further
studies are needed to better characterize the splicing units that are specifically identified through
the co-transcriptional exon definition mechanism proposed here, a diffusion-based mechanism,
or other mechanisms, what could lead to each mechanism being employed, and the various
interactions each mechanism entails (see Outstanding Questions).
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