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Abstract

Background: Studies of cell-to-cell variation have in recent years grown in interest, due to improved bioanalytical
techniques which facilitates determination of small changes with high uncertainty. Like much high-quality data,
single-cell data is best analysed using a systems biology approach. The most common systems biology approach to
single-cell data is the standard two-stage (STS) approach. In STS, data from each cell is analysed in a separate
sub-problem, meaning that only data from the same cell is used to calculate the parameter values within that cell.
Because only parts of the data are considered, problems with parameter unidentifiability are exaggerated in STS. In
contrast, a related approach to data analysis has been developed for the studies of patient-to-patient variations. This
approach, called nonlinear mixed-effects modelling (NLME), makes use of all data, when estimating the patient-specific
parameters. NLME would therefore be advantageous compared to STS also for the study of cell-to-cell variation.
However, no such systematic evaluation of the two approaches exists.

Results: Herein, such a systematic comparison between STS and NLME has been performed. Different examples,
both linear and nonlinear, and both simulated and real experimental data, have been examined. With informative
data, there is no significant difference in the results for either parameter or noise estimation. However, when data
becomes uninformative, NLME is significantly superior to STS. These results hold independently of whether the loss of
information is due to a low signal-to-noise ratio, too few data points, or a bad input signal. The improvement is shown
to come from both the consideration of a joint likelihood (JLH) function, describing all parameters and data, and from
an a priori postulated form of the population parameters. Finally, we provide a small tutorial that shows how to use
NLME for single-cell analysis, using the free and user-friendly software Monolix.

Conclusions: When considering uninformative single-cell data, NLME yields more accurate parameter and noise
estimates, compared to more traditional approaches, such as STS and JLH.
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Background
Cell-to-cell variation is one of the most intriguing and
important fields in today’s cell biology research. Histor-
ically, the fact that cells are different from each other
has been neglected, and this neglect has led to erroneous
conclusions and descriptions of the system [1]. Within
the systems biology community, modelling of cells has
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typically been performed based on data from the average
of cells, and the model has thus described an average cell.
In several well-known cases, this average cell has turned
out to be highly non-representative of the true underly-
ing cellular behaviour. For instance, the prevailing view
of the signalling cascade involving Casp-3 was that the
changes were described as gradual, since this was the
average population behaviour; however, this population
behaviour was obtained by a gradual change in the num-
ber of cells that had switched from one state to another,
where the switch in each individual cell was fast [2]. Cell-
to-cell variation is also at the heart of understanding cell
differentiation, which involves the important special cases
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of stem cell research and research on the development of
tumours [3].
One common example of single cell data is fluorescent

recovery after photo-bleaching (FRAP), which examines
the time-dependent response to the bleaching of a part of
a cell (Fig. 1a). This response normally follows an expo-
nential decline/increase. The most straightforward anal-
ysis of such data is therefore to simply fit an exponential
curve to the data, and evaluate the value of the exponent
[4] (Fig. 1b). The limitation of such an approach is that the
exponent does not correspond to the velocity of any spe-
cific mechanism, but to a phenomenological description
lumping many sub-processes together. A more mechanis-
tically interpretable approach is to form a model based on

prior knowledge of the underlying sub-processes. Some-
times such a model is formulated using partial differential
equations (PDEs) [5] (Fig. 1c). The limitation of PDEs
is that a single simulation is very computationally time-
consuming. Therefore, PDE-based models are usually uti-
lized for forward-simulation, i.e. where simulations of
different scenarios are performed, but where the model is
assumed as known. Another important type of modelling
is known as reversed-engineering, in which parameters
with mechanistic interpretation are estimated based on
the data, and where conclusions can be drawn regarding
mechanisms in the biological system [6–9] (Fig. 1d).
Such reverse-engineering approaches to research on

cell-to-cell variation have typically been pursued using

Fig. 1 Different approaches to single-cell analysis based on FRAP data. a The basic principle behind FRAP experiments: a part of a cell is bleached,
and the recovery is followed. b The most common analysis of FRAP data: to fit an exponential function to the data. c PDE simulations, where the
gradients are continuous in the cytosol. d The reversed-engineering approach to FRAP data, to draw conclusions in terms of model rejections and
estimation of parameters and predictions. e The STS approach: fit a model to each data separately, and then combine the estimations to get the
distributions. f The NONMEM approach: to add a postulated distribution for the parameter distributions among the population, and then fit to all
the data at the same time using a joint likelihood function
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ordinary differential equations (ODEs) and a method
known as the standard two-stage approach (STS) (Fig. 1e)
[10]. STS is the typical approach used to study ODEs
in systems biology [7], applied to the problem of single-
cell characterization. In other words, after a non-rejected
model has been chosen, the parameters are determined
in each cell separately (stage 1 in STS). Thereafter, the
distribution of the cell population’s parameters are com-
pared and determined (stage 2). One of the problems with
STS is that the data in one cell alone may be insufficient
to determine the individual parameters for that particu-
lar cell accurately, i.e. that the uncertainty in each of the
individual parameters are unacceptably high [11]. In such
situations, it may be beneficial to make use of the data and
information that exists also for the other cells.
Such approaches, where one problem for one unit is

solved in connection to the corresponding problem for all
other units, have been developed in various other disci-
plines, under a variety of names. One such name is multi-
task learning. This name is used in the machine learn-
ing community, and has been successfully applied to e.g.
classification, pattern recognition, etc [12–16]. However,
multi-task learning approaches seem only rarely to have
been applied to the task of estimating parameters in an
ODE [17], and not at all to cell-to-cell variation studies. In
contrast, the same idea has also been developed under the
name mixed-effects modelling, and the sub-class known
as nonlinearmixed-effects modelling (NLME) (Fig. 1f) has
been widely used to estimate parameters in ODEs [10,
11]. The majority of NLME applications appear within
the field of pharmacokinetics, i.e. for models that describe
the uptake, breakdown, and effect of a drug in human or
animal subjects.
Regarding cell-to-cell variation, there are a few recent

examples that make use of NLME, but there is no system-
atic evaluation of when and why NLME is advantageous
compared to STS. One important series of papers regard-
ing NLME and cell-to-cell variation have been published
by Zechner et al. The first such papers were applied to
snapshot data, i.e. data were only a single data point is
available for each cell [18–20]. Recently, this approach has
been generalized to also be able to deal with time-series
data [21]. The Zechner papers focus on issues related
to noise, and for instance seek to differentiate between
extrinsic and intrinsic noise. Presumingly for this rea-
son, they work exclusively with continous-time markov
chains (CTMC), and do not present any results for ODEs,
despite the fact that ODEs is the most widely used model
class in the systems biology community [22]. In other
words, the Zechner papers do not explain how to use
NLME to study cell-to-cell variations using ODEs. Fur-
thermore, the Zechner papers do not demonstrate or
explain why or when NLME are superior to STS. There
is one conference paper on NLME-based ODE-estimation

of single-cell data [23]. This paper presents a comparison
between such ODE-estimation and an early version of the
Zechner snapshot approach [20]. However, also this paper
[23] does not explain when or why NLME should be used
instead of STS. Herein we present such an explanation.
More specifically, we demonstrate the occasional

importance of studying cell-to-cell variation with NLME
rather than using STS. Based on simulated data, where
the true model structure and parameter values are known
(Fig. 2), we show that for the case of uninformative data,
NLME is advantageous over STS regarding parameter
estimation: both kinetic and noise parameters were esti-
mated significantly closer to the true values compared to
estimating the parameters using STS. We show that this
advantage seems independent of the reason for the lack-
of-information in the data, and also unravel where the
advantage comes from. We finally also demonstrate that
NLME can be used for the analysis of real experimental
FRAP data from the yeast Saccharomyces cerevisiae.

Methods
The standard two stage approach
In STS, the following model structure is used

ẋi = f
(
xi,ui, pi

)
(1)

yi = h
(
xi,ui, pi

)
(2)

where xi is the state vector for the i:th individual; ui is
the input signal vector for individual i; pi is the param-
eter vector for the i:th individual; f and g are nonlinear
vector functions; and yi is the vector of observations for
individual i.

Parameter estimation
In Stage 1, the parameters for each individual pi are
estimated. Note that in a modelling framework such as
eqs. (1)-(2), no information is shared between the individ-
uals, which makes the parameter estimation problem for
each individual a separate estimation problem. In Stage 2,
the variability of the parameter estimates are calculated
(Fig. 1e).
In the case of only estimating the parameters, we min-

imize the following cost function, based on the sum of
squares of the residuals

costχ2(p) =
ny∑
j=1

N∑
i=1

(
yij − ŷij(p)

)2
σ 2
ij

(3)

where i and j denotes the i:th observation in the j:th
state; yij is the experimental data; ŷij is the corresponding
simulated output from the model; and σij is the stan-
dard deviation of the experimental measurement. In other
words, the kinetic parameters p are given by

p̂ = argmin
[
costχ2(p)

]
(4)
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Fig. 2 Overview of the analysis in the paper. Both Model 1 and Model 2 are analysed with simulated data. The data comes in four forms: Original,
Sparse, Noisy and Weak Input Signal Data. The question is whether the true parameters can be obtained, and whether the non-informative cases
(orange boxes) show different results from the informative data (green box)

Note that this approach cannot be used to estimate σ ,
since in eq. (3) σ only appears in the denominator, and
the optimum for σ therefore lies at +∞. For estimation of
the noise, we therefore use the more general approach of
maximizing the full log-likelihood function

−l(p, σ) =
ny∑
j=1

N∑
i=1

(
yij − ŷij(p)

)2
σ 2
ij

+
ny∑
j=1

N∑
i=1

log
(
σ 2
ij

)

+ nyNlog(2π)

(5)

where

(p̂, σ̂ ) = arg max
[
l(p, σ)

]
(6)

where σ is the vector of all σij, which now normally have
their optima different from 0 or infinity, since they appear
both in the numerator and in the denominator.

Software
Modelling and parameter estimation with the STS
approach was performed using MATLAB (Mathworks).
The simulation of the model was performed with the
function SPBDsimulate in The Systems Biology Toolbox2
(SBTB2) (sbtoolbox2.org). Optimisation was done both
using the built-in local optimisation algorithm lsqnon-
lin (which uses Gauss-Newton methods), and using
the global simulated annealing and nonlinear simplex
approach available in SBTB2. All simulations and opti-
misations, except the ones made for the noise estimation
and the JLH were done using a PC (Processor: Intel
Core i5-3470 3.20 GHz, Memory: 8.00 GB, manufacturer:
Hewlett-Packard). The simulations and optimisations for
the noise estimation and the JLH were done using a laptop
(Processor: Intel Core i5-560M 2.667 GHz, Memory: 2x
2048 MB, manufacturer: Samsung, DDR3-10600S, 1333
MHz). All MATLAB-files used (including datasets) are
available in Additional file 1.

The nonlinear mixed-effects approach
NLME is a general modelling approach that can be applied
to analyse any type of system that can be described by
eqs. (7)-(11), i.e. to a system that is made up of individuals
belonging to a joint population, and where the individu-
als’ parameter values belong to the parameter distribution
of the population. This link between the parameter val-
ues among the individuals allows information to be shared
between the individuals. The idea is that this information
sharing may result in better estimates for both the indi-
vidual parameters and for the covariance matrices. More
specifically, in NLMEmodels, the following general model
structure is used

ẋi = f
(
xi,ui,φi) (7)

yi = h
(
xi,ui,φi, εi

)
(8)

φi = g
(
�, ηi,Zi) (9)

ηi ∈ N(0,	) (10)
εi ∈ N(0,
) (11)

where xi, ui, and yi are, just as for STS, the state, input,
and measurement vectors for individual i; where φi is the
parameter vector for the i:th individual, which now no
longer is a free variable, but instead depends on �, the
population parameter vector describing the typical indi-
vidual in the population, Zi the covariates (not used in this
paper), and ηi, the random effects; and where 	 and 


describes the covariance matrices of the random effects,
ηi, and the measurement noise, εi, respectively.

Parameter estimation
In NLME there are two types of parameters to estimate:
the fixed effects, �, and the variances of the random
effects, 	 and 
.
The fixed effects describe the main trend, i.e. the typi-

cal value of the model parameters. For a single-cell model,
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such fixed effects could be the typical population value of
a kinetic parameter.
There are two types of random effects; between-cell, η,

and between-sample, ε, variability. The between-sample
variabilities are related to the residuals, in that they
describe the differences between the predicted, ŷ, and the
observed, y, measurement values. In practice, the soft-
ware packages used herein, NONMEM and Monolix, can
handle e.g. additive

y = ŷ + ε (12)

proportional, and a combination of additive and propor-
tional between-sample variability

y = ŷ · (1 + ε1) + ε2 (13)

The effect of the between-cell random effects, η, on the
cell-specific parameters, φi, can in principle be described
by any function, g, and the used software packages support
both normal, log-normal, and user-specified distributions
(specific examples are provided in the two test cases
below).
The marginal likelihood (L) of the model parameters

for the data is the product of the individual marginal
likelihoods of the cells, j according to

P(y j|�,
,	) = Lj
(
�,
,	|y j) =

∫
P(y j, η j|�,
,	)dη j

=
∫

P
(
y j|η j,�,


) · P (
η j|	)

dη j

(14)

Lj(�) =
∫ +∞

−∞

(
1√
2π


)m
e−

η j∑
j=1

(yj−ŷ j)
2



1√
2π	

e−
η j
2

	 dηj

=
∫ +∞

−∞
h j(η, θ)dη j

(15)

Where m is the number of observations per cell, i.e.,
m = N · ny. The parameters are estimated through min-
imizing -2 log of the likelihood (-2LL). Since there is
no closed form solution to the marginal likelihood var-
ious approximations are available. The most commonly
used approximation is the first-order conditional estima-
tion method where L is linearised with a first order Taylor
expansion around the estimates of the random effects,
i.e. around η. In the NONMEM example (Model 1),
the numerical search for the minimum of the -2LL is
implemented according to a modified algorithm by [24]
which is a derivate-free quasi-Newton type minimization
algorithm. The objective function value (OFV) reported
by the software is proportional to -2LL. In the Mono-
lix example (Model 2), the numerical search is done by a
stochastic approximation of the expectationmaximisation
algorithm [25].

Software
The NLME approach has been implemented in several
software packages [26]. In this paper, the two software
packages NONMEM and Monolix are both used. This is
done to show consistency in terms of results across dif-
ferent software packages, but also as a way of presenting
several choices to the reader.
For the analysis with NONMEM version 7.2.0 [27] was

used. The interaction with NONMEM is made through
NM-TRAN, a language translating user-defined code and
datasets into FORTRAN77. ODEs can be defined by the
user and for this particular project a differential equation
solver, for non-stiff systems, was used (ADVAN6) together
with the first-order conditional estimation (FOCE)
method. Perl-speaks-NONMEM (PsN)3.5.3 [28, 29] was
used for execution of models. NONMEM and PsN were
installed on a PC and a laptop, which systems details were
the same as described in the section The standard two
stage approach, with the fortran compiler GNU gfortran.
For the analysis withMonolix, version 4.3.2 was used, as

implemented in MATLAB version 8.1 [30]. Importantly,
for users who do not have access to MATLAB, a stand
alone version also exists. The models are written in a
language called mlxtran, which apart from having a rich
library of PKPD-models also allows the users to define
their own ODEs [31]. SBTB2 also contains functions for
translating SBTB2-models into mlxtran, using the addon-
package SBPOP. Compared to NONMEM,Monolix offers
a more user friendly environment, including a graphi-
cal user interface. For the beginner, we therefore rec-
ommend to use Monolix, and we have also developed
a small tutorial, which explains how to us it for single-
cell models. This tutorial, together with all scripts used
to perform the analysis in this paper, is available in the
Additional file 1. All the analysis regarding Monolix was
performed on the same PC as described in the section The
standard two stage approach. All NONMEM-files and
Monolix-files used (including datasets) are available in
Additional file 1.

An in-between approach: the joint likelihood function
There are two main differences between STS and NLME
which both potentially could lead to improvements in the
parameter estimation: i) in NLME one forms a likelihood
function for the parameter estimation to the combined
data set for all cells, and ii) in NLME one postulates a dis-
tribution for the variation of the parameter values across
the cell population.
To analyse where the improvement in the parameter

estimation originates from, we also did some analysis
with an in-between approach: the joint likelihood func-
tion (JLH) approach. In JLH, we only use improvement
aspect i), the single likelihood function for the com-
bined data set, but do not postulate a joint parameter
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distribution. In other words, instead of eqs. (5)-(6), we use
the following two equations:

− lJLH(p1, p2 . . . , σ 1, σ 2, . . .) =
Nc∑
k=1

ny∑
j=1

N∑
i=1

(
ykij − ŷkij(p)

)2
(
σ k
ij

)2

+
Nc∑
k=1

ny∑
j=1

N∑
i=1

log
((

σ k
ij

)2) + NcnyNlog(2π)

(16)

where
(
p̂1, p̂2, . . . σ̂ 1, σ̂ 2, . . .

) = argmax
[
lJLH

(
p1, p2 . . . , σ 1, σ 2) , . . .]

(17)

where Nc denotes the number of cells.

Software
The software and optimization and model formulation
tools used for the JLH analysis is the same as for STS.

Experimental data
The experimental procedures are further discussed in
[32]. FRAP experiments were performed using YFP.
We used yeast cells of the BY4741 genetic background
expressing YFP under the control of the constitutively
expressed ACT1 promoter (PACT1-YFP). In addition, this
strain expressed two extra fluorescent protein reporters:
a CFP-Ace2 fusion and a Myo1-mCherry fusion, both
driven by their own promoters. We used Ace2 to locate
the nucleus and determine the cells position in the cell
cycle (Ace2 is nuclear only at the end of mitosis and early
G1), and we usedMyo1 to confirmmother-daughter sepa-
ration (Myo1 forms a ring at the bud-neck during mitosis,
which disappears when cytokinesis is complete). In this
way, we minimized cell-to-cell variation in our measure-
ments related to cell cycle position, without disturbing the
system with synchronization procedures.
We used exponentially growing cells cultured in syn-

thetic medium (BSM-TRP,LEU,URA 2 % glucose). For
the experiments, we attached cells to the bottom of
384-well glass bottom plates (MGB101-1-1-LG, Matri-
cal Biosciences, Spokane, Washington, USA). To prevent
cells from moving during the experiment, we pre-treated
the wells with concanavalin A (type V; Sigma-Aldrich,
St. Louis, MO, USA), as previously described (Colman-
Lerner 2005).
Photobleaching of individual nuclei was performed

using an Olympus IX-81 inverted microscope with a
FV1000 confocal module with an oil immersion Olympus
UplanSapo 63X objective (numerical aperture, NA 1.35).
We used an automatic z-axis control, a motorized x-y
stage, a 458-488-515 argon laser, a 543 He-Ne laser and
photomultiplier (PMT) Hamamatsu R6353.

For train-of-FRAP experiments, we imaged YFP with
the 515 nm laser. In each cell, we repeated four times
the following procedure: we first took 5 images, then per-
formed a partial photobleaching (roughly reducing the
signal by 50 %), then measured the recovery for 7 sec (30
images, time resolution 0.22 sec). From the photobleach-
ing step, we used a 100 % laser power on a small sub-area
of the nucleus (radius 0.25 m) during 0.16 sec. Subse-
quently, we imaged using 1 % laser power and 4 sec/pixel
scanning speed. We set the confocal microscope pinhole
to wide open (500 m).
Quantification of total fluorescence in each compart-

ment was performed in ImageJ, by manually drawing
regions of interest (ROIs) in the nucleus and the cytosol,
and quantifying it using the ImageJ plugin “Time Series
Analyzer V2”. A typical ROI was a circle of 200 nm in
radius. We applied photobleaching and autofluorescence
corrections to all images as described in [32].

Two case studies: a linear and a nonlinear model
Let us now introduce the two examples considered in this
paper. The first, Model 1, is a linear model, describing
transport of YFP, and the second, Model 2, is a nonlinear
model describing the osmo-regulation of yeast cells.

Linearmodel
The state-space description of Model 1 is given by the
following four equations

dn
dt

= −k1 · n + k2 · c (18)

dc
dt

= k1 · n − k2 · c (19)

yn = n + ε (20)
yc = c + ε (21)

where n and c are the amounts of YFP in the nucleus and
in the cytosol, respectively; where k1 and k2 are the trans-
ports from and to the nucleus, respectively; and where yn
and yc are the two measurement signals (Fig. 3b and c). A
sketch of the model is given in Fig. 3a.
In STS estimation, data from each cell were analysed

separately, potentially yielding as many k1 values as there
were cells in the experiment. For simulation of the data
using eqs. (18)-(21), the following equations were used to
obtain the initial conditions

n(tFRAP,j) = pn,j · yn(tFRAP,j) (22)

c(tFRAP,j) = pc,j · yc(tFRAP,j) (23)

where tFRAP,j is the first time point after FRAP j. There
were four FRAPs, two states, and two kinetic parameters,
and thus 10 unknown parameters in the parameter vector p

p = (k1, k2, pn,1, pn,2, pn,3, pn,4, pc,1, pc,2, pc,3, pc,4) (24)



Karlsson et al. BMC Systems Biology  (2015) 9:52 Page 7 of 15

Fig. 3Model 1 and the data. a Sketch of Model 1. b Example of simulated data of the nucleus under different conditions. c Example of simulated
data of the cytosol under different conditions

In the NLME estimation, the individual rate constants
kj1 and kj2 were described by the following equations

k j
1 = θk1 · eη

j
k1 (25)

k j
2 = θk2 · eη

j
k2 (26)

where θk1 and θk1 are the typical values of k1 and k2 in the
cell population, respectively, and η

j
k1 and η

j
k2 are random

effects describing the difference between the typical and
individual values. ηk1 and ηk2 belongs to normal distribu-
tions with mean 0 and estimated variances, ω2

k1 and ω2
k2 ,

respectively. The estimated variances ω2
k1 and ω2

k2 can be
correlated. Both the variances ω2

ki and their correlations
are collected in the variance-covariance matrix 	. Thus,
five parameters are needed to describe the individual k j

1
and k j

2 for the entire population: θk1 , θk2 , ω
2
k1 , ω

2
k2 , and the

off-diagonal element in 	. Unlike in STS, this number is
always five, independent of the number of analysed cells.
The initial conditions were modelled as

n(tFRAP,j) = e(ηj·�3) · yn(tFRAP,j) (27)

c(tFRAP,j) = e(ηj·�3) · yc(tFRAP,j) (28)
where ηj ∈ Nj(0, 1) and �3 is the standard error of the
residual error.
Finally, the noise is for both STS and NLME assumed

to be additive, which also is how the simulated data was
generated. In other words, simulations were done for dif-
ferent values of the parameters, additive non-correlated
noise was added, and the ability of STS and NONMEM to
retrieve the parameter values and the standard deviation
of the noise was evaluated.

The nonlinearmodel
Model 2 is a model published by Gennemark et al. [33]
(equations for the model can be found in Additional

file 2). The model describes how the yeast cell reacts
to an osmolarity shock by producing glycerol via activa-
tion of the protein Hog1 (Fig. 4a). A description of all
the equations can be found in the Supplementary mate-
rial. The model consists of 4 ODEs, 10 parameters, and
3 algebraic equations, including several nonlinearities,
both products of states, and events switching between
two expressions depending on the value of a state. 4
parameters (Ve, kp2, kHOG, td) were optimized from
the simulated data, and the remaining 6 parameters were
kept at their literature values. The initial conditions were
assumed to be known, as was the noise level. The input
of the model is the addition of salt to the cells (Fig. 4b)
and the measured output signal of the model is intracellu-
lar (Fig. 4c) and total (intracellular + extracellular) glycerol
concentrations (Fig. 4d).
In the NLME estimation, the model parameters are

described by the following equations.

Ve j = θVe · eη j
Ve (29)

kp2 j = θkp2 · eη
j
kp2 (30)

kHOG j = θkHOG · eη j
kHOG (31)

tdj = θtd · eη j
td (32)

where θx is the typical value of x in the cell popula-
tion, and η

j
x is the random effect describing the difference

between the typical and individual values for parameter
x for cell j. These random effects (ηVe, ηkp2, ηkHOG, and
ηtd) belongs to normal distributions with mean 0 and esti-
mated variances (ω2

Ve, ω2
kp2, ω2

kHOG, and ωtd). There are
no covariances, i.e. the matrix 	 is set to be diagonal.
Both measurements of the model, intracellular and total
glycerol concentrations, have additive noise

yic = ŷic + εic (33)
ytot = ŷtot + εtot (34)
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Fig. 4Model 2 and the different inputs and data. a Sketch of Model 2. b The two different input signals used in the analysis. c Artificial data of
intracellular glycerol concentration under different conditions d Artificial data of total glycerol concentration under different condition

where index ic means intracellular, tot means total, and
where εic and εtot are normally distributed, with mean 0
and estimated variances.

Comparison of performance
The performance of STS and NLME are analyzed by com-
paring the relative deviation from the true parameter
value (estimated parameter/true parameter) (Figs. 5, 7).
Apart from figures showing the relative deviation for each
parameter for each artificial cell, the differences between
STS and NLME is also accompanied by a Student’s t-test.
The t-test is pairwise, and tests whether the relative devia-
tion (the distance from 1) is significantly different between
STS and NLME.

Ethics
The experiments and data collection were carried out on
Saccharomyces Cerevisiae, which has no associated ethical
issues.

Results
Linear model: NLME is advantageous in cases of
low-quality data
We generated FRAP data structured like the real exper-
imental data (Methods) but with known true kinetic
parameters, in order to determine whether there is a

difference between STS’s and NLME’s ability to estimate
the true parameters in a system (Fig. 2). For Model 1,
NLME was implemented using the software NONMEM.
Both STS and NLME estimated the parameters using the
true structural model, which for the case of NLME also
included the true additive error model eqs. (20)-(21). In
addition, NLME were given the true form of the kinetic
parameter distributions among the cell population (that
η had a log-normal distribution with an unknown mean
and standard deviation). The standard deviation of the
measurement noise was in the first part of the analysis
assumed to be known.
The generated FRAP data were divided into four dif-

ferent cases: Original Data, Sparse Data, Noisy Data, and
Weak Input Signal Data (Fig. 3b and c). The Original Data
(Fig. 3b and c, green) had 48 observations per state, giv-
ing a total of 96 observations per artificial cell. The Sparse
Data (Fig. 3b and c, black) had 24 observations per artifi-
cial cell (1/4 of the number of observations in the Original
Data). The noise of the Noisy Data (Fig. 3b and c, purple)
had a standard deviation of 50, compared with 10 for the
Original Data. The Weak Input Signal Data had FRAPs
that were half of the strength of the FRAPs used to gener-
ate the Original Data. The initial conditions were the same
for all time-series in the Original, Noisy, and Sparse Data,
since they correspond to the same perturbation from the
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Fig. 5 Parameter estimation for Model 1. Analysis in the case of simulated data and parameter estimation for the parameter k1 in the case of known
noise for Model 1 using data that is: a under good condition, b sparse sampling, c noisy, and d with a weak input signal respectively. The results are
normalized by dividing with the known true value. The x-axes corresponds to the 200 simulated datasets. In comparison, the results from the
parameter estimation are similar between STS and NONMEM in the case of the Original Data, but there is a clear advantage of using NONMEM when
the quality of the data decreases

steady state. For the same reason, the Weak Input Signal
Data had an initial condition closer to the steady state.
All initial conditions were estimated from the simulated
datasets eqs. (27)-(28)
In Fig. 5, the results from the estimation of the kinetic

parameter k1 from both STS (red) and NLME (blue) can
be seen. From this figure, it is clear that for the case of the
Original Data (Fig. 5a), there is no significant difference
between STS and NLME in terms of their ability to esti-
mate the true parameters: the relative deviation from the
true values were 0.991±0.09 for NLME and 0.993±0.09
for STS (mean±SD). However, for the cases when the
quality of the data is reduced in either of three differ-
ent ways (sparseness in Fig. 5b, a larger noise level in
Fig. 5c, and a weaker input signal in Fig. 5d), there is a
larger difference: STS often fails, while NLME still pro-
duces roughly the same results. These differences are also
supported by a paired Student’s t-test (p < 0.05). Similar
results can be seen for the other kinetic parameter, k2, in
Figure S1 in Additional file 3.

Linear model: the same improvement holds for noise
estimation
Next we considered the case of also estimating the mea-
surement noise. All results gave the same type of improve-
ment as for the analysis above. We considered the case
where the same noise distribution was used for all cells.
In other words, for NLME there was only one addi-
tional parameter to estimate: the variance of the noise. For
NLME, this means that a single value is obtained for all the
cells. Conversely, for STS, which considers the estimation

in each individual cell as an independent problem, there
were 200 estimated values for this new noise parameter.
The results are shown in Fig. 6. As can be seen, NLME per-
formed significantly better in the case of Sparse Data (40
observations per artificial cell), but equally well in the case
of Rich Data (240 observations per artificial cell). Again
these conclusions are supported by a Student’s t-test
(p < 0.05).

The results hold for a nonlinear model
We also generated simulated data from the second, non-
linear, model. This generation used a four step input signal
(Fig. 4b), simulating the addition of equal amounts of
salt four times at equal time intervals. The generated
data were divided into four different cases: Original Data,
Sparse Data, Noisy Data, andWeak Input Signal Data. The
Sparse Data (Fig. 4c and d, black) had 20 observations per
output signal, giving a total of 40 observations per artifi-
cial cell. The 40 observations can be compared with the
500 observations used in the Original Data (Fig. 4c and d,
green). The noise of the Noisy Data (Fig. 4c and d, pur-
ple) had a standard deviation of 2.2 compared with 0.5 for
the Original Data. The amplitude of the input signal in
the data with a weak input signal (Fig. 4c and d, blue) was
one tenth of the amplitude of the input signal in the Orig-
inal Data (Fig. 4b).The parameter estimation with NLME
included the true error model and the true, lognormal,
form of the parameter distributions.
For Model 2, NLME is implemented using Monolix.

Figure 7 shows the results of Model 2 for the parame-
ter td. In Fig. 7a, the red and blue curves largely overlap,
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Fig. 6 Noise estimation for Model 1. Analysis in the case of unknown variance of the measurement noise. The noise is assumed to be additive and
the same in all cells. For STS, one estimate of σ is obtained from each cell (blue bars). a For Rich Data, STS can estimate noise through the average of
the values (red line) equally good as NONMEM (black line), even though some individual cells display worse estimates. b For the case of Sparse Data,
however, the mean from STS is significantly worse than for NONMEM

Fig. 7 Parameter estimation for Model 2. Analysis in the case of simulated data and parameter estimation for the parameter td in the case of known
noise for Model 2 using data that is: a under good condition, b sparse sampling, c noisy, and d with a weak input signal respectively. The results are
normalized by dividing with the known true value. The x-axes corresponds to the 200 simulated datasets. In comparison, the results from the
parameter estimation are similar between STS and Monolix in the case of the Original Data, but there is a clear advantage of using Monolix when
the quality of the data decreases
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meaning that in this case, using the Original Data, there is
no difference between STS and NLME. In contrast, when
the quality of the data is reduced in either of three dif-
ferent ways (sparseness in Fig. 7b, a larger noise level in
Fig. 7c, and a weak input signal in Fig. 7d), STS is sig-
nificantly worse than NLME. These observed differences
are confirmed by a paired Student’s t-test (p < 0.05).
Similar results can be seen for the other three parame-
ters, Ve (Figure S2), kp2 (Figure S3), kHOG (Figure S4), in
Additional file 3.

Where does the improvement come from?
The above analysis demonstrates that NLME gives an
improvement in the cases of having insufficient informa-
tion in the data due to either sparsity in sample points,
noise or bad input signal leading to bad excitation of the
system. This leads to the natural follow-up question of
where the improvement comes from. This analysis is done
using the JLH approach, and this is done in two ways.
For the first JLH analysis, all parameters are kinetic or

initial condition parameters, and are individual to each
cell. That means that the joint likelihood function ltot ,
breaks down into its individual components

lJLH(p1, p2, . . .) = l1(p1) + l2(p2) + . . . (35)

where li is the likelihood function considering the data
available for the i:th cell only. In other words, in the first
JLH analysis, JLH provides no improvement compared to
STS, and all the observed improvement comes from the
postulation of a joint parameter distribution across the
cell population.
For the second JLH analysis, the noise distribution is

shared among all cells, meaning that the total likelihood
breaks down in the following way

lJLH(p1, p2, . . . , λ) = l1(p1, λ) + l2(p2, λ) + . . . (36)

where λ is the standard deviation of the noise. In other
words, using the total likelihood function lJLH in eq. (36)
for the estimation of all the parameters at the same time,
could therefore in principle be an approach that is supe-
rior to STS.
The result of applying this second approach, in eq. (36),

to Model 1 is shown in Fig. 8. As can be seen, a JLH
function (blue) does converge faster to the truth for both

Fig. 8 Analysis of STS, NONMEM, and JLH dependency of number of data sets using Model 1. The figure shows STS (red line), NONMEM (black line)
and the JLH approach (blue line) precision in the combined parameter and noise estimation problem, with respect to number of datasets. In the JLH
approach, a joint likelihood without postulated parameter distributions has been used. a the results from the parameter estimation as the
normalised sum of the absolute values of the deviation from the true parameter. b the results from the noise estimation of true noise level (green
line). Estimates of both parameters and the noise from both NONMEM and JLH are closer to the true values than estimates from STS. Also, it is clear
that NONMEM converge faster towards the true parameters and noise with respect to the number of data sets, when compared to JLH
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parameter (Fig. 8a) and noise estimation (Fig. 8b) com-
pared to STS (red). However, JLH is still not as good as
NLME (black).
All in all, this means that the improvement of NLME

comes purely from the assumption of a shared param-
eter distribution in cases of only estimating parameters
that are unique to each cell; in contrast, the advantage of
the shared distribution is combined with the additional
advantage of a joint likelihood function, in cases of shared
parameters across the cell population (such as the noise in
eq. (36)).

Application to real experimental data
To demonstrate that NLME is applicable to real data of
cell-to-cell variations, we also performed a correspond-
ing analysis for the experimental data analysed using STS
and NLME (Methods). Here the true parameters are not
known. Using all available experimental data, the esti-
mated parameters from STS and NLME are roughly the
same and they both describe the data well as can be seen
in Fig. 9a, c, d. However, when removing data from the full
time-series, to make the data sparse, new corresponding

STS parameter estimates become much more changed
than the corresponding NLME estimates, Fig. 9b. This is
consistent with the results from the simulated data above.

Discussion
In this paper, we have answered the questions when, why,
and how NLME should be applied to the problem of
parameter and noise estimation based on ODE analysis of
single-cell data. This analysis brings clear evidence that
there are important and common cases when NLME is
advantageous compared to the traditional STS approach:
in cases of non-informative data, NLME converges faster
to the true values.
When considering the case for NLME in single-cell

analysis, there are a few strengths that should be fur-
ther clarified. Firstly, although NLME has only recently
been discovered in the analysis of single-cell data, it has
a long tradition in other fields, in particular pharmaco-
metrics. Thus, there is already a rich literature of theo-
retical and methodological results supporting the NLME
approach. In other words, the theoretical properties of the
method are already well-established, and there are many

Fig. 9 Analysis of STS and NONMEM using real FRAP-data with Model 1. a and b are histograms of parameter k1 estimated with NONMEM (green
bars) and STS (blue bars) using all experimental data in each cell (a), and only 17 % of the data in each cell (b). a the parameter distribution from STS
and NONMEM coincide in a lognormal distribution. b, while NONMEM roughly stays in the same interval as in (a), the interval from STS vastly
increases. c and d is a representative example of the model fit to the experimental data from one of the cells using STS and NONMEM, respectively.
Results for parameter k2 shows similar results as for k1
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associated analysis tools that can be used in future anal-
ysis of cell-to-cell variation. Secondly, a specific example
of such a well-established approach is covariate analysis,
which has a high potential also for the study of cell-to-
cell variation. Covariate analysis was part of the initial
incentive behind the development of NLME: to find cor-
relations between subject-specific characteristics, such as
age and weight, with the properties in the model, includ-
ing subject-specific responses to drug treatments [34].
In the case of cell-to-cell variation, this covariate analy-
sis translates to the identification of correlations between
cell-specific characteristics such as cell-line, cell-volume,
cell-type, etc, with e.g. the cell-specific kinetic parameters
estimated by the model. Thirdly, the rich theory behind
NLME also includes estimation of the noise. Such noise
estimations are still quite rare in systems biology stud-
ies, but are standard in NLME estimations performed
in NONMEM. Fourthly, the development of NLME in
software packages such as NONMEM and Monolix was
driven by challenges commonly seen with patient-specific
studies, challenges that also are present in many cell-to-
cell variation studies; these packages are thus well adapted
for cell-to-cell variation studies. For instance, patient-
specific studies often have the limitation that only a few
data-points can be collected for each patient; this is a
common problem also for cells. Similarly, patient-specific
studies are often associated with high noise-levels; high
noise-level is also a problem that often becomes pro-
nounced when considering data from individual cells. A
final important advantage of NLME is the computational
effort. This advantage is primarily seen when comparing
NONMEM and JLH of eq. (36). The high computational
load of JLH comes from the fact that all parameters have
to be estimated in one problem; the computational time
in NONMEM andMonolix is reduced via various approx-
imations, which have been developed over the years.
NONMEM is also fast because it is implemented in FOR-
TRAN. As an example, the computational time using 100
data sets was roughly 2 hours, andmore than 15 hours, for
NONMEM and JLH, respectively.
There are naturally also limitations with NLME, and

with its current implementations, when considering them
in a systems biology single-cell context. For instance, phar-
macometrics models are typically small, with around 3–10
states. Today’s single-cell models are usually equally small,
but other systems biology models may be substantially
bigger, sometimes including hundreds of states. As single-
cell omics data becomes increasingly available, this will
mean that larger models probably will appear in a single-
cell context as well. This will put new challenges to NLME
implementations. This challenge is also put forth by the
parallel developments of systems pharmacology, which
links pharmacometrics models with intracellular mod-
els. One other limitation and challenge when adopting

NLME to single-cell analysis is the difference in concepts
and notions, and also this challenge is also put forth by
systems pharmacology. For this limitation, we argue that
Monolix is an important alternative to the more widely
used NONMEM package, since Monolix is based on Mat-
lab and has a user-friendly interface. Finally, the method-
ologies considered herein have limitations in terms of
their handling of noise, since they do not account for pro-
cess noise. Therefore, it is important to also follow the
implementation of the other sub-communities of NLME,
and their implementations into single-cell analysis. The
perhaps most important such paper to date is the recent
one by Zechner et al. [21].
While the method presented in the Zechner paper is

similar to the one we propose in the sense that both meth-
ods adapt a mixed-effects approach, there are still funda-
mental differences. Firstly, the Zechner paper only deals
with models based on Continuous-Time Markov Chains.
This is a class of models that is fundamentally different
from the models based on ODEs that we use. In other
words, one cannot simply put a process noise parameter
to zero in their formalism and obtain the same equations
and methods proposed herein. Secondly, the Zechner
paper estimates their parameters using a Bayesian Infer-
ence Network, which is an alternative framework, differ-
ent from the frequentist approaches in NONMEM and
Monolix. Finally, we do a thorough analysis of when, why,
and how NLME should be applied to single-cell problems.
The Zechner paper does not have the kind of convergence
and comparison plots that we have (Figs. 5, 6, 7, 8, 9),
clearly demonstrating the advantage of NLME compared
to STS. Also, the Zechner paper does not unravel the
reason why this advantage is there, i.e. they do not differ-
entiate between the different contributions of JLH and the
assumption of a joint distribution across the population.

Conclusions
NLME is a widely used approach in other areas, but it has
only recently and in a few papers been applied to single-
cell data. No systematic comparison has clearly answered
the questions when, why, and how to use it in this new sit-
uation. In this paper, we have shown that NLME should be
used when the available data for each cell are not informa-
tive enough to obtain reliable parameter estimates using
each cell. If the data are informative enough, NLME pro-
vides no advantage in terms of accuracy, but if the data is
either too sparse, too noisy, or obtained with a too weak
stimulation, NLME has a faster convergence to the true
parameter values. This holds for both linear and nonlinear
systems, for both simulated and experimental data, and
for both parameter and noise estimation. The reason why
NLME is advantageous is i) that a joint likelihood function
is formed, and ii) that one assumes a shared distribution of
the parameter values across the cell population. The first
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factor, i), only contributes if there are shared parameters,
such as e.g. the noise level, across the cell population.
NLME is implemented in a wide variety of software pack-
ages previously not mentioned in the single-cell literature,
and we provide a small tutorial for how to use Monolix -
a user-friendly and stable alternative - for the analysis of
single cell data. This answers the final question of how to
get started.

Availability of supporting data
The data sets supporting the results of this article are
included within the article and its Additional files.
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