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CHAPTER 2

Recent  Advances  in  the  Development  of  Antiviral
Approaches  against  Hemorrhagic-Fever-Causing
Arenaviruses
Viviana Castilla*, Jesús E. Brunetti, María N. Armiento and Luis A. Scolaro
Laboratorio  de  Virología.  Facultad  de  Ciencias  Exactas  y  Naturales,  Universidad  de  Buenos
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Abstract: Arenaviruses, enveloped viruses containing a bisegmented single-stranded
RNA genome with  ambisense  coding strategy,  include important  hemorrhagic-feve-
-causing  viruses  representing  a  public  health  threat  in  endemic  areas  of  Africa  and
South America. In spite of the danger of pathogenic arenaviruses and their increased
emergence  in  recent  years,  no  specific  and  safe  chemotherapy  for  these  viruses  is
currently available. This chapter covers recent advances in the development of antiviral
strategies  to  face  arenavirus  infections.  New  insights  in  molecular  aspects  of  virus
replication  and  virus-host  interactions  have  allowed  the  identification  of  viral  and
cellular factors as potential target for antiviral therapy. We will revise the main features
of  arenavirus  biology  and  the  mechanism  of  antiviral  action  of  different  molecules
derived from natural sources, chemical synthesis and rational structure-based antiviral
drug design. The advantage of targeting viral and cell host factors as complementary
approaches for therapy intervention will be discussed. We will particularly discuss the
use  of  novel  inhibitory  strategies  and  the  main  advances  in  the  development  of
innovative  screening  platforms.
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INTRODUCTION

Viral hemorrhagic fevers (VHFs) are a set of human diseases caused by viruses
belonging  to  four  distinct  families:  Arenaviridae  (Junin,  Machupo,  Guanarito,
Sabia,  Lassa,  Lujo  and  Chapare  viruses),  Bunyaviridae  (Crimean-Congo,  Rift
Valley,  Hantaan,  Puumala,  Seoul,  Dobrava,  Sin  Nombre,  Andes,  Choclo  and
severe fever viruses), Filoviridae (Marburg and Ebola viruses), and Flaviviridae
(yellow fever,  dengue,  Omsk,  Kyasanur  Forest  and  Alkhumbra  viruses).  These
families  include  enveloped  viruses  with  RNA  genomes  that  are  maintained  in
nature by infection of a mammal or insect host, which is usually referred as the
reservoir.  Reservoirs  include  nonhuman  primates,  bats,  rodents,  domestic
ruminants,  humans,  mosquitoes,  and  ticks.  This  characteristic  leads  to  a
geographically  restricted  distribution  of  the  viruses  around  the  world  that  is
coincident  with  that  of  the  corresponding  reservoir  and  matches  the  area  of
incidence of the disease. Up to the present, VHFs cannot be cured or controlled by
any specific antiviral treatment being supportive therapy the main therapy option.
Although hemorrhages are prone to occur in VHFs, especially in cases of patients
with low platelet counts or dysfunction in blood clotting, these hemorrhages use
to  be  mild  and  do  not  represent  a  serious  threat  to  health.  However,  in  severe
cases,  extensive  damage  of  the  vascular  system leads  to  capillary  leakage  and,
eventually, shock, both characteristic features of the terminal phase of VHFs [1].
Despite clinical aspects differ among VHFs, perturbation of vascular endothelium
integrity  and  coagulation  abnormalities  appear  as  two  common  features
underlying  VHFs  pathology.  Both  aspects  are  associated  not  only  to  a  direct
cytopathic effect of virus replication in endothelial cells but to the contribution of
the immune response mediated by proinflammatory cytokines as well.  In many
cases,  an  initial  phase  of  the  disease  characterized  by  virus  suppression  of  the
innate immune response is established, thus allowing systemic infection by virus
replication in monocytes, macrophages and dendritic cells, which in turn induce
an exacerbated cytokine production that triggers severe disease [2]. Most detailed
data on pathogenesis of VHFs come from studies carried on nonhuman primate
(NHP)  models  of  infection  with  Ebola  virus  (EBOV).  EBOV  disease  is
characterized  by  systemic  virus  replication  at  high  titers,  cytokine  storm,  liver
damage  due  to  hepatocyte  infection,  coagulopathy  due  to  endothelial  cells
infection,  perturbation of  blood pressure  due to  adrenal  cortical  cells  infection,
and lymphopenia as reviewed in [3].

Junin  virus  (JUNV)  pathogenesis  is  characterized  by  a  marked  tropism  for
lymphatic tissue, being macrophages,  dendritic cells and lymphocytes the main
cell targets for virus replication. Infection of cells from the immune system may
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underlie  a  mechanism  of  immune  system  evasion  together  with  a  concomitant
reduction  in  the  count  of  these  cells  leading  to  the  leucopenia  observed  in  the
majority of patients. The initial immune evasion induced by the virus may lead to
a later phase of infection when a cytokine storm is produced by the infected cells
that  is,  by  far,  more  harmful  than  the  scarce  cytolitic  potential  of  the  virus.
Eventually, permeability of endothelial cells in response to cytokine production
may  lead  to  hemorrhage  and  shock  [4].  In  line  with  this,  the  presence  of  high
levels  of  interferon  (IFN)  may  affect  thrombopoiesis  via  alteration  of  the
coagulation  capability  of  platelets.  Moreover,  infection  of  megakaryocytes  by
JUNV  leads  to  a  diminished  proplatelet  formation  and  release,  contributing  to
patient bleeding [5].

In the case of OW arenavirus Lassa (LASV), although macrophages and dendritic
cells are also the main target cell types, they are not activated as in the case of
infection  with  JUNV  and  a  generalized  immunosuppression  is  maintained
throughout  the  course  of  infection  [6,  7].

The fact that isolated outbreaks of VHFs occur sporadically all  over the world,
contributes to the lack of detailed information about pathogenesis. On this line,
the conspicuous symptomatology of VHFs favors epidemiological studies towards
the  identification  of  the  factors  involved  in  the  emergence  and  maintenance  of
viruses in nature. One important point to consider is that human infections with
viruses that cause VHFs do not contribute to the evolutionary success and survival
of the agent which is rather linked to the chronic infection of the host, vertebrate
or arthropod, than to the acute and sequelae free infections developed in humans
[8].

Despite almost two thirds of human population reside in areas of VHFs incidence
limited effort is put on the development of vaccines against these diseases. Basic
research  is  constantly  performed  on  this  subject,  in  fact,  many  experimental
vaccine platforms have been evaluated in several animal models but only few of
them  are  being  considered  for  clinical  trials,  such  as  a  recombinant  vesicular
stomatitis  virus-based  vaccine  for  EBOV  expressing  the  Zaire  EBOV
glycoprotein and a live attenuated Rift Valley vaccine [9, 10] and recently a live
attenuated  DENV  vaccine  based  on  a  yellow  fever  17D  vaccine  backbone  has
been approved in some endemic countries [11]. A live attenuated JUNV vaccine,
called Candid#1 is currently available in Argentina but it is not recommended for
children and pregnant women. Although partial cross protection with Candid#1
for the arenavirus Machupo (MACV) has been reported, employment of Candid#1
has not been approved for use in other countries [12].
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THE ARENAVIRIDAE FAMILY

The  Arenaviridae  family  comprises  two  genera  Mammarenavirus  and
Reptarenavirus,  isolated  from  mammals  and  snakes,  respectively.
Mammarenavirus comprises at least 25 members classified into two groups: Old
World  (OW)  and  New  World  (NW)  arenaviruses,  based  on  serological  cross-
reactivity  and  sequence-based  phylogenetic  studies.  Reservoirs  for  OW
arenaviruses are rodents from Muridae family, Murinae subfamily whereas NW
arenaviruses  reservoirs  belong  to  Muridae  family,  Sigmodontinae  subfamily.
Furthermore, while OW viruses form a single lineage, NW arenaviruses can be
differentiated into clades A, B, A/B, and C [13, 14]. The OW arenavirus LASV is
endemic of West Africa and infects several hundred thousand individuals yearly
causing an elevated number of Lassa fever (LF) cases, a VHF of high morbidity
and mortality [15]. The recent isolation of Lujo arenavirus (LUJV), identified as
the  causative  agent  of  an  outbreak  of  VHF  in  Southern  Africa,  settles  a  new
territory  for  VHFs  caused  by  OW  arenaviruses  outside  the  existing  endemic
region [16]. The NW JUNV, endemic to the central region of Argentina, a highly
populated  farmland  area,  causes  Argentine  Hemorrhagic  Fever  (AHF)  with  a
fatality rate ranging 15% to 30% [17]. Other NW arenaviruses causative of VHFs
are: MACV and Chapare (CHPV) viruses in Bolivia [18], Sabia virus (SABV) in
Brazil [19] and Guanarito virus (GTOV) in Venezuela [20].

Arenavirus virions are enveloped pleomorphic particles,  40-80 nm in diameter,
containing  single  stranded  RNA  bisegmented  genomes  harboring  four  ORFs
arranged  in  an  ambisense  coding  strategy.

The small RNA segment of 3.4 kb approx. codes for the glycoprotein precursor
(GPC)  and  the  nucleoprotein  (NP).  GPC  and  NP  genes  are  separated  by  an
intergenic non-coding intergenic region (IGR) that is rich in secondary structure
[21].  Processing  of  GPC by  a  signal  peptidase  and  the  cellular  Site  1  Protease
(SKI-1/S1P)  yields  three  polypeptides:  the  signal  peptide  (SSP)  and  the  two
mature glycoproteins: the surface glycoprotein (GP1), which elicits neutralizing
antibody response and is responsible for the interaction with the cellular receptor,
and  the  fusion  glycoprotein  (GP2)  that  mediates  fusion  of  viral  and  cellular
membranes during viral  internalization into cells.  Processing of GPC induces a
series  of  conformational  changes  that  triggers  the  formation  of  a  tripartite
structure, the envelope glycoprotein complex (GP), which is constituted by SSP,
GP2 and GP1. GP in turn associates as homotrimers conforming the arenavirus
spikes [22]. The spike is plausible of undergoing a re-arrangement that facilitates
membrane fusion when exposed to low pH during viral entry. Although GP2 may
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be  classified  within  class  I  viral  fusion  proteins,  arenavirus  are  unique  among
viruses  because  glycoprotein  spikes  keep  the  cleaved  SSP  as  part  of  each  GP
complex [23].

NP protein encapsidates with RNA molecules to form viral genomes and is able to
associate  with  the  viral  RNA  dependent  RNA  polymerase  (L)  and  the  matrix
protein  (Z)  to  carry  on  transcription  and  replication  of  the  RNA  genome.  In
addition, NP is involved in cell innate immune response suppression, associates
with Z protein driving budding of virus and exhibits 3´exonuclease and ligation of
nucleotides activities [24 - 31].

The large RNA segment of 7.2 kb approx. codes for the zinc binding protein (Z)
which  acts  as  a  matrix  protein  and  interacts  with  NP  and  L  modulating
transcription  and  replication,  drives  budding  of  virions  through  plasmatic  cell
membrane, interferes with the interferon (IFN) response and promotes apoptosis
of infected cells [25, 30, 32 - 34]. The large segment also codes for the L protein,
the  viral  RNA  dependent  RNA  polymerase  that  together  with  NP  protein
constitute the minimal factors necessary for transcription and replication of viral
RNA. L and Z genes are also separated by an IGR as described for NP and GPC
genes [24, 35, 36].

Arenavirus Replication Cycle

Entrance of Arenavirus into Cells

Cell susceptibility of infection for arenaviruses is established through successful
interaction of the GP complex with a protein located in the cell surface that acts as
a receptor for attachment. This interaction not only mediates adsorption of virions
to cell surface but sets the beginning of a series of coordinated steps leading to
endocytosis, membrane fusion in response to acidic pH of endosome and, finally,
release of viral nucleocapsids into cell cytoplasm (reviewed in [37]).

Binding of GP1 to a protein receptor located in the cell surface of susceptible cells
initiates the process of infection of arenaviruses. Entry by the OW and NW clade
C  species  of  arenaviruses  depends  on  the  binding  of  GP1  to  α-dystroglycan
(αDG),  a  ubiquitous  and highly  conserved  glycoprotein  of  the  cell  surface  that
mediates adhesion to the extracellular matrix [38, 39].

NW clade B species that include pathogenic NW arenaviruses attach to cells by
interacting with the human transferrin receptor-1 (TfR1) [40]. Characterization of
this interaction has been described from the point of view of the host specificity
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observed  for  these  viruses  and  TfR1  residues  involved  in  this  interaction  have
been already identified [41]. Genetic studies performed with MACV GP1 pointed
out  several  residues  of  this  glycoprotein  as  critical  for  the  interaction  with  the
receptor.  Many  of  these  residues  are  conserved  among  other  NW  viruses’
glycoproteins  suggesting  a  common  basis  of  receptor  interaction  and  opening
avenues for the rational development of viral entry inhibitors [42].

Even though all NW clade B viruses are able to interact with their specific rodent-
host TfR1, only those causative of VHFs can also recognize human TfR1. Also, it
has been reported that a single amino-acid change in human TfR1 is enough to
permit entry by Tacaribe virus (TCRV), a non-pathogenic clade B species [41].
This  finding  suggests  that  through  subtle  changes  in  GP1  nonpathogenic
arenaviruses  could  use  human  TfR1,  emerging  thus  as  human  pathogens.  The
reciprocal  has been also addressed in early studies with a host  range mutant of
JUNV attenuated for mice. This mutant, derived from XJCl3 strain of JUNV by
induced  mutagenesis  with  5-fluoruracil,  showed  an  altered  GP1  protein  that
conferred the mutant the inability to adsorb to murine cells while keeping intact
its capacity to replicate in monkey/human cells [43].

Adsorbed  viral  particles  are  internalized  via  an  endocytic  mechanism  and
subsequently transport to late endosomes where fusion of the viral and endosomal
membranes  takes  place  at  low  pH  (Fig.  1).  In  the  case  of  the  NW  arenavirus
JUNV,  a  clathrin-dependent  endocytosis  that  requires  low pH in  endosomes  to
achieve  viral  and  endosomal  membrane  fusion  has  been  reported  [44,  45].  By
contrast, experimental evidence supports a clathrin-independent internalization for
the prototypic OW lymphocytic choriomeningitis virus (LCMV) [46]. Recent data
revealed that LASV binding to αDG links the virus to an uncommon pathway of
macropinocytosis  with  minimal  perturbation  to  the  host  cell.  The  hepatocyte
growth  factor  receptor  (HGFR),  a  tyrosine  kinase  receptor  (TKR),  has  been
pointed  out  as  a  probable  candidate  to  mediate  this  process  [47].

As  mentioned  above,  low  pH  within  the  endocytic  vesicles  involved  in  virus
uptake triggers fusion between vesicle and viral membranes. Acidic pH promotes
the  transition  from  a  metastable  perfusion  GP  complex  to  an  activated  fusion
competent GP form, characterized by the reorganization of GP2 ectodomain that
finally drives membrane fusion. Interestingly, amino acid changes in SSP affect
GP  mediated  membrane  fusion  indicating  that  SSP  and  GP2  interaction  is
required  for  the  formation  of  the  fusion  active  GP  complex  [48]  (Fig.  2).
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Fig. (1).  Scheme of arenavirus replication steps. The sequence of the main events of arenavirus replication
are shown. Arenavirus cellular receptors αDG: α-dystroglycan and TfR1: human transferrin receptor-1. OW:
Old  world  arenaviruses;  NW:  New world  arenaviruses;  LASV:  Lassa  virus;  NP:  nucleoprotein;  L:  RNA
polymerase; Z: matrix protein; GP: glycoprotein complex; GPC: glycoprotein precursor; GP1, GP2 and SSP:
mature products of GPC processing; vRNA: viral RNA and vcRNA: viral complementary RNA.

Synthesis of Macromolecules

Once nucleocapsids are released in the cytoplasm, transcription of genes proceeds
commanded by the promoters located in the 3´untranslated regions (UTRs) of the
viral  RNA  (vRNA).  Hence,  NP  and  L  proteins  are  the  first  proteins  to  be
synthesized upon infection taking into account that NP and L genes are coded in
the  3´ends  of  the  small  and  large  genome  segment,  respectively  (Fig.  1).
Transcription of NP and L mRNAs is terminated by the secondary structure of the
IGR  in  the  form  of  a  stem  loop.  Anti-termination  activity  of  NP  allows  the
replication  complex  formed  by  NP,  L  and  Z  to  make  a  full  copy  of  a  viral
complementary RNA (vcRNA) from which the mRNAs corresponding to Z and
GPC genes are transcribed. At the same time, vcRNA serves as template for the
synthesis of vRNA of progeny virus [13].
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Fig.  (2).   Arenavirus  replication  cycle.  The  main  targets  of  antiviral  strategies  against  arenaviruses  are
indicated. GPC: precursor of viral glycoproteins.

Eukaryotic  initiation  factor  of  translation  4E  (eIF4e)  is  dispensable  for  the
synthesis  of  JUNV  proteins  suggesting  a  non-canonical  initiation  process  of
translation  [49].  In  the  case  of  LCMV  and  LASV,  it  has  been  reported  that  Z
protein is able to bind eIF4E and suppress translation of cellular proteins [33, 50].
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Assembly and Budding

Newly synthesized vRNA is encapsidated by NP and, at a lesser extent, by L and
Z, to form the nucleocapsids, which in turn interact with the Z protein underlying
the plasma membrane where glycoprotein spikes are inserted [51]. Subsequent to
this interaction, progeny viruses bud at the plasma membrane in a process mainly
directed by Z protein (Fig. 1 and 2) [52]. This process involves a PTAP late (L)
domain motif of Z that mediates virus budding by binding cellular protein Tsg101
and  other  proteins  of  the  endosomal  sorting  complexes  required  for  transport
(ESCRT)  to  induce  the  release  of  virions  from  the  cell  membrane  [53].  This
mechanism of egress is counteracted by the cellular protein named tetherin (also
known as  BST-2,  CD317  or  HM1.24),  which  is  upregulated  by  treatment  with
IFN  of  different  cell  types.  Tetherin  locates  as  a  homodimer  in  the  plasma
membrane of cells and its antiviral mechanism seems to be related to its ability to
bind  progeny  viruses  blocking  viral  release  [54].  Up-regulation  of  Tsg101  has
been also described as an antiviral  factor  in BHK-21 cells  persistently infected
with JUNV [55].

INNATE  IMMUNITY  MEDIATED  ANTIVIRAL  STATE  IN
ARENAVIRUS INFECTIONS

Interferon Response

IFNs are a family of cytokines that modulate diverse signaling pathways in order
to  allow  the  host  to  mount  the  most  appropriate  response  against  microbial
infections, particularly, viral infections. There are three types of IFNs. The type I
IFNs  (IFN-I)  comprise  multiple  subtypes  of  IFNα  (13  in  humans),  IFNβ  (1  in
humans)  and  other  less  described  IFNs  such  as  IFNω,  IFNε,  IFNκ,  IFNδ  and
IFNτ.  The  type  II  IFNs  (IFN-II)  include  only  one  member,  IFNγ,  which  has
antiviral  activity  but  is  mainly  considered  as  a  strong  immunomodulatory
cytokine.  The  type  III  IFNs  (IFN-III)  or  IFN-λs  comprise  three  members:
interleukin  (IL)-29,  IL-28A,  and  IL-28B  [56].  To  note,  IFN-I  and  IFN-III  are
produced  by  many  different  cell  types,  while  IFN-II  is  mainly  produced  by
activated  natural  killer  (NK)  cells  and  T  lymphocytes.  Plasmacytoid  dendritic
cells  (pDCs)  produce  the  highest  levels  of  IFN-I  and  other  proinflammatory
cytokines  in  response  to  viral  infections  [57].  When  different  cell  types  are
infected,  the  interaction  of  viral  components  with  cellular  pattern  recognition
receptors (PRRs) activates signaling pathways leading to IFN-I production [58].
The IFN-I secreted by infected cells interacts with its own receptor allowing an
additional increased of IFN-I production and promotes control of virus replication
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in  the  IFN-producing  cell  (autocrine  manner).  IFN-I  also  acts  in  a  paracrine
manner to facilitate the establishment of an antiviral state in neighboring cells and
to  activate  other  cells  types  involved  in  the  innate  and  adaptive  response.  The
induction  of  IFN-I  is  controlled  by  three  different  classes  of  PRRs:  Toll-like
receptors  (TLRs),  retinoic  acid  inducible  gene-I  like  receptors  (RLRs)  and
nucleotide  oligomerization  domain-like  receptors  (NOD)  [59].  RLRs  are
comprised  of  retinoic  acid  inducible  gene-I  (RIG-I),  melanoma  differentiation-
associated gene 5 (MDA5) and laboratory of genetics and physiology 2 (LGP2),
and together form the RLH family [59, 60]. RIG-I was identified as a detector of
cytoplasmic  viral  RNA  responsible  for  the  production  of  IFN-I  [61].  RIG-I
recognizes  5´-triphosphate  from  ssRNAs  as  well  as  short  (<2  kbp)  dsRNAs  in
most cell types, and MDA5 detects 5´-triphosphate from long (>2 kbp) dsRNAs
as well  as  a  synthetic  dsRNA as poly (I:C).  This  causes an exposure of  the N-
terminal domain of RIG-1, which is involved in protein-protein interactions and
activates downstream signaling pathways that ultimately lead to the activation of
IRF3  and  IRF7  kinases  [62].  Once  IFN-I  is  produced,  it  binds  to  specific  cell
receptors  and  induces  the  expression  of  different  interferon  stimulated  genes
(ISGs) via the activation the Janus kinases (JAKs) signaling cascade, a family of
tyrosine  kinases  comprised  of  Janus  kinase  1  (JAK1)  and  tyrosine  kinase  2
(Tyk2),  which  in  turn  activate  signal  transducer  and  activator  of  transcription
(STAT) factors STAT1 and STAT2 by phosphorylation [59].

Inhibition of Interferon Response by Arenavirus Proteins

It  has  been  shown  that  viral  proteins  of  both  OW  and  NW  arenaviruses  are
capable  of  inhibiting  the  IFN-I  response  (Fig.  3).  For  example,  it  has  been
reported that the NP proteins of OW LASV and LCMV as well  as NW JUNV,
PICV,  MACV,  White  Water  Arroyo  virus  (WWAV),  TCRV  and  Latino  virus
(LATV) have the ability to inhibit the translocation to the nucleus of IRF3, and in
consequence,  they inhibit  the induction of  IFN-I  [26,  28,  63,  64].  On the other
hand,  the  Z  protein  is  another  arenavirus  protein  that  contributes  to  the  virus
suppression  of  the  IFN-I  response.  It  has  been  reported  that  Z  proteins  of  NW
JUNV,  GTOV,  MACV  and  SABV  are  able  to  bind  RIG-I,  causing
downregulation of the IFN-I response. Z seems to impede the binding of IPS-1 to
RIG-I, which inhibits the trigger of signaling cascades that result in induction of
IFN-I [65].  Interestingly, Z proteins of OW LASV and LCMV do not have the
ability to bind RIG-I. However, it has been demonstrated that LCMV NP directly
interact  with  RIG-I  and  MDA-5  [64].  Additionally,  the  short  double-stranded
RNAs with the overhanging 5´ppp-G residue present at the 5´-end of arenavirus
genomic and antigenomic RNA species are bad substrates for RIG-I binding. This
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probably  contribute  to  arenavirus  evasion  from  RIG-I  recognition  [66,  67].
Despite  the  initial  IFN  suppression  mediated  by  NP  and  Z  proteins  a  strong
induction of IFN and proinflammatory cytokines is observed in AHF patients at a
later state of infection.

Fig. (3).  Inhibition of interferon production by viral proteins. Green arrows indicate the sequence of events
along the interferon (IFN) induction pathway whereas red connectors indicate inhibition mediated by viral
proteins. NP: arenavirus nucleoprotein; Z: arenavirus matrix protein;ssRNA: single stranded RNA; ds: double
stranded RNA; NW: New world; RIG-1: retinoic acid inducible gene-I; MDA-5: melanoma differentiation-
associated gene 5; IPS-1: interferon-beta promoter stimulator 1; TRAF-3: tumor necrosis factor receptor-
associated factor 3; NF-κB: nuclear factor κB; IKKε: inhibitor-κB kinase epsilon ; TBK-1: TANK-binding
kinase 1; IRF-3: interferon regulatory factor 3; IRF-7: interferon regulatory factor 7; P: phosphate; IFN-I:
type I interferon.

It is known that during the IFN-I response, protein kinase R (PKR) expression is
augmented.  PKR  phosphorylates  the  alpha  subunit  of  eukaryotic  translation
initiation  factor  2  (eIF2α),  blocking  cap  dependent  translation.  Thus,  cellular
protein  synthesis  is  impaired  in  the  context  of  viral  infection  [68].
Phosphorylation  of  eIF2α  also  leads  to  the  formation  of  stress  granules,
cytoplasmic aggregates that contain pre-initiation complexes that accumulate as a
consequence  of  translation  blockage.  It  has  been  demonstrated  that  in  JUNV-
infected  cells  stressed  with  sodium arsenite,  which  induces  phosphorylation  of
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eIF2α,  the virus is  able to inhibit  stress granules formation by impairing eIF2α
phosphorylation.  Both  viral  NP  as  GPC  are  able  to  maintain  eIF2α
phosphorylation  levels  similar  to  those  observed  in  uninfected  cells,  thus
neutralizing the suppression of protein synthesis exerted by the infected cell [69].

Innate Immunity to Old World Hemorrhagic Arenaviruses

Patients with LASV infection suffer an immunosuppression, and this is evidenced
both  in  vitro  and in  vivo  through the  lack of  IFN-I  induction,  proinflammatory
response  or  T-cell  activation  [70,  71].  It  has  been  reported  that  in  human
macrophages and DCs infected with LASV in vitro there are low levels of IFN-I
and other proinflammatory cytokines such as tumor necrosis factor (TNF- α) and
IL-1β.  Also,  in  LASV-infected  DCs  a  lack  of  induction  of  co-stimulatory
molecules such as CD86 and a failure in the activation of virus-specific CD4+ T
cells and CD8+ T cells was demonstrated [70 - 72]. It is likely that the insufficient
immune response both in macrophages and DCs promotes disease progression of
LF, especially in lethal cases. An effective T-cell-mediated response is probably
critical  for  recovery  from  infection.  Furthermore,  NHPs  infected  with  LASV
present  uncontrolled  viral  replication  and  poor  innate  and  cellular  immune
responses, similar to those observed in infected patients when a fatal outcome of
disease is considered. On the other hand, the antibody response seems to be not
effective in controlling virus replication because high IgG and IgM titers are not
associated with a mild outcome of the disease [73, 74].

It is known that antigen-presenting cells (APCs), like DCs and macrophages, are
early targets of arenavirus infection. But in the case of LASV, DCs seem to be a
more  important  target,  as  this  cell  type  produces  much  more  virus  than
macrophages [6].  Infected DCs fail  to mature,  as they do not  present  increased
levels  of  phagocytic  activity  and  this  is  consistent  with  the  generalized
immunosuppression  that  causes  LASV.  Interestingly,  it  has  been  demonstrated
that  LASV subverts  classical  routes  of  endosomal  trafficking  and  bypasses  the
early endosome, which contains the TLRs able to recognize RNA viruses. Thus,
LASV may escape detection by TLRs. This can partly explain the failure of the
innate immune system to detect LASV infection, causing an uncontrolled virus
infection [15].

Innate Immunity to New World Hemorrhagic Arenaviruses

While the hallmark of LASV infection is a generalized immunosuppression, in the
case  of  JUNV-infected  patients  the  cytokine  levels  are  correlated  with  disease
severity.  In  the  acute  stage  of  disease  high  levels  of  IFNα and  other  cytokines
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such as IL-6, IL-8, IL-10 and TNF-α in serum are detected [75]. Animal models
of  AHF  also  present  induction  of  IFN  [76].  The  induction  of  IFN  probably
contributes to the AHF pathology as IFNα levels are connected to the severity of
symptoms like fever, chills and backache, and to low platelet count and platelet
abnormality  [77].  As  previously  mentioned,  hematopoietic  progenitor  CD34+
cells and megakaryocyte cells infected with JUNV show impairment of platelet
formation and function, an effect that involves IFN-I signaling pathway [61]. On
the  other  hand,  JUNV  and  TCRV-infected  mice  lacking  IFNα/β/γ  receptor
develop a disease with some histopathological changes similar to those observed
in AHF patients, suggesting an important role of IFN pathway to combat JUNV
and TCRV infection [78, 79]. In contrast, LASV did not generate fatal infection in
IFNα/β/γR  -/-  mice  [80].  In  addition,  STAT-1  knockout  mice  infected  with
MACV presented high levels of proinflammatory cytokines like TNF-α, IFNγ, IL-
6  and  granulocyte  colony-stimulating  factor  (G-CSF)  in  serum  [81].  These
findings suggest  that  IFNs play a critical  role in controlling infections of  some
NW arenaviruses and that proinflammatory cytokines promote pathogenesis in the
murine  model.  Moreover,  human  lung  epithelial  A549  cells  infected  with  both
pathogenic  and  vaccine  strains  of  JUNV  presented  RIG-I  mediated  IFN
generation and ISG expression [82], which suggests that parenchymal cells could
be a cellular source of IFN in vivo. Although the antibody response seems to be
not  effective  in  controlling  LASV  infection,  in  JUNV-infected  patients  the
mortality can be reduced when immune plasma from previously infected patients
is  administered  early  within  the  first  week  of  illness.  The  effectiveness  of  this
treatment  seems  to  be  due  the  neutralizing  activity  of  the  antibodies,  since  the
levels of virus in serum are reduced after transfusion with immune plasma [83].

ANTIVIRAL STRATEGIES AGAINST ARENAVIRUS INFECTION

Despite  their  importance  as  pathogens  ribavirin  is  the  only  licensed  antiviral
compound  available  for  treatment  of  arenavirus  infections,  but  because  of  its
limited  efficacy  in  advanced  cases  and  its  undesirable  side  effects  the
development  of  more  effective  and  safer  antiviral  options  is  required.

Recent  advances  in  the  design  of  novel  animal  models,  viral  pseudotypes  and
reverse  genetic  systems  have  been  very  important,  not  only  to  progress  in  the
knowledge  of  molecular  aspects  of  viral  pathogenesis,  but  also  to  improve  the
methods for evaluation of new molecules with antiviral properties. Furthermore,
the identification of potential viral and host proteins that might be targeted for the
treatment  of  arenavirus  infections  constitutes  a  key  factor  in  the  design  of
therapeutic  strategies.
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In this section we focus on recent developments of diverse molecules that have
been found to be active against arenaviruses, in available cell and animal model
systems, within the last years. Fig. (2) shows steps of viral replication targeted by
antiviral agents and Table 1 summarizes the main antiviral strategies.

Viral Entry as Antiviral Target

Targeting early events of virus replication cycle merits significant attention as a
powerful means of preventing arenavirus infection. An efficient viral adsorption
and  internalization  are  critical  for  rapid  virus  dissemination;  therefore  the
blockade of viral  entry steps gives the host immune system the opportunity for
establishing  an  effective  antiviral  immune  response.  Furthermore,  the  more
detailed knowledge now available about the tripartite structure of GP complex and
the requirement of SSP-GP2 interaction for pH-dependent membrane fusion have
provided novel targets for antiviral intervention.

Synthetic Compounds

Since biosafety level 4 (BSL-4) or 3 (BSL-3) is required to handle hemorrhagic
arenaviruses,  lentiviral  pseudotypes  expressing  arenavirus  GP  constitute  a  safe
option  to  be  used  as  a  high-throughput  screening  (HTS)  platform  to  identify
inhibitors  of  GP  mediated  entry.  The  screening  of  a  random  library  of  small
molecules,  using  lentiviral-based  pseudotypes,  and  further  structural
modifications of the active compounds, led to the synthesis of a benzimidazole
derivative, compound ST-193, with submicromolar anti-LASV activity in vitro.
ST-193  was  also  effective  against  South  American  hemorrhagic  fever  viruses
JUNV, MACV, GTOV and SABV [84]. Determinants of ST-193 sensitivity were
mapped  within  GP2 [84]  and  the  inhibitory  effect  of  ST-193  on  pH-dependent
cell-cell  fusion mediated by LASV and JUNV GPs [48] suggested that  ST-193
stabilizes  the  perfusion  GP  complex  against  acidic  pH,  impairing  membrane
fusion during virus entry. The ability of compound ST-193 to deal with in vivo
LASV infection was tested in guinea pigs, a useful small animal model for LF.
Guinea pigs infected with LASV developed a severe disease resulting in 100%
mortality  between  days  14  and  17  post-inoculation.  Treatment  with  ST-193
reduced signs of disease, caused a significant reduction in viremia and resulted in
enhanced animal  survival  in  comparison to  ribavirin  or  vehicle  treated animals
[85]. Given the antiviral activity exhibited against other hemorrhagic arenaviruses
this compound is a good candidate for further development.

Another  HTS  study  allowed  the  identification  of  different  small  molecule
inhibitors of GP mediated membrane fusion, compounds 16G8, 17C8, and 17C9,
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which exhibited broad activity against the major human pathogenic arenaviruses
[86].  On  the  other  hand,  photoaffinity  derivatives  of  the  4-acyl-1,6-dialkyl-
piperazin-2-one,  which  were  designed  against  LASV  GP,  also  displayed  anti-
fusion property [87].

TCRV is a non-pathogen clade B arenavirus, closely related to JUNV, which is
useful in early stage of drug discovery research since it can be handled in BSL-2
laboratories. A HTS campaign that analyzed the effect of approximately 400,000
small molecules on TCRV cytopathic effect was performed and compounds with
inhibitory action were identified.  One of  the active compounds,  called ST-294,
also  exhibited  protective  efficacy  in  a  TCRV-mouse  challenge  model  and  the
isolation  of  viral  resistant  mutants  indicated  that  ST-294  targeted  GP2  protein
[88].

Minigenome  (MG)  systems  are  powerful  tools  not  only  to  study  biology  and
pathogenesis of many hazardous viruses but also to find new antiviral agents as
part of HTS platforms. A JUNV based reverse-genetic system comprising a MG,
which contains a reporter genome from the S RNA segment that recapitulates all
steps  of  the  virus  replicative  cycle,  was  adapted  for  HTS.  After  T7  RNA
polymerase mediated transcription, the generated MG is recognized by NP and L
proteins provided in trans, allowing MG replication and transcription. Packaging
of newly generated MGs by the action of Z protein and the expression of GPC
leads to the formation and release of virus like particles (VLPs). Moreover, these
VLPs can infect new NP and L expressing cells resulting in the amplification of
the  MG  reporter  signal  [89].  The  HTS  resulted  in  the  identification  of  four
compounds that exhibited anti-JUNV antiviral activity and prevented arenavirus
GP  mediated  cell-cell  fusion.  Furthermore,  mutations  in  GP2  transmembrane
domain or in SSP conferred resistance to these active compounds indicating that
viral entry would be the antiviral target [89].

A novel recombinant LCMV, which expresses GFP and viral NP proteins from
the  same  bicistronic  mRNA,  was  recently  used  in  the  screening  of  30,000
compounds in the context of a cell-based HTS study. In this analysis, compound
F3406,  another  inhibitor  of  LCMV  GP  mediated  membrane  fusion,  was
uncovered  [90].

A  fusion  inhibitor,  compound  ZCL278,  which  targets  a  host  factor,  has  been
recently described [91]. This molecule, which is an inhibitor of a small GTPase
(Cdc42) known to regulate actin polymerization, was proved to inhibit JUNV and
LCMV replication. ZCL278 prevented  pH-dependent  JUNV GP mediated fusion
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and  perturbed  intracellular  trafficking  leading  to  the  redistribution  of  viral
particles  from  endosomal  to  lysosomal  compartments  [91].

GP Derived Peptides

Another  approach  to  develop  a  fusion  inhibitor  consists  in  the  design  of  GP
derived  peptides  that  impair  glycoprotein  conformational  changes  required  to
trigger membrane fusion. A PICV GP2 derived peptide, named AVP-p, exhibited
antiviral  activity  against  pseudoviruses  bearing  OW  and  NW  arenavirus  GP
showing  no  acute  cytotoxicity.  The  interaction  of  this  peptide  with  viral  spike
would  induce  a  premature  fusogenic  rearrangement  of  viral  glycoproteins
reducing virus binding to cellular receptor and also impeding endosomal fusion
[92].

DNA Polymers

Amphipathic DNA polymers were found to inhibit LCMV in vitro replication, in
the low nanomolar range, affecting the interaction between LCMV GP and cell
receptor.  Structure-function  studies  using  retroviral  pseudotypes  of  LCMV
demonstrated  that  the  antiviral  effect  of  the  DNA  polymers  was  sequence-
independent  whereas  size  and  hydrophobicity  were  critical  for  their  inhibitory
action  [93].  Unfortunately,  evaluation  of  this  antiviral  strategy  against
hemorrhagic  arenaviruses  has  not  been  reported.

Antibodies

As  mentioned  above,  current  treatment  of  AHF  patients  consists  in  the
administration  of  immune  plasma  from  recovered  patients.  This  treatment
provides 100% protection to guinea pigs, the most commonly used JUNV animal
model, when delivered as late as 6 days after infection. Passive immunotherapy
based on polyclonal immune sera has several drawbacks such as the presence of
virus specific non-neutralizing antibodies, batch to batch variation, difficulties in
obtaining immune donors and risks associated with the use of blood products. A
mouse-human  chimeric  JUNV  neutralizing  monoclonal  antibody  (MAb)  was
proved to provide 100% protection against lethal challenge when administered at
6 days after JUNV infection in the guinea pig model of AHF. In addition, viral
antigen  was  undetectable  by  immunohistochemistry  in  the  brains  of  MAb
inoculated  animals  suggesting  that  this  treatment  could  be  an  efficacious
replacement for immune plasma in AHF therapy [94]. Although the neutralizing
activity  of  different  tested  MAbs  correlates  with  protection  in  guinea  pigs,
neutralization  of  free  virus  would  not  be  the  only  mechanism by  which  MAbs
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function in vivo,  since other studies indicate that optimal protection would also
require  Fc-mediated  immune  functions  [95].  The  demonstration  of  MAb
effectiveness  against  clinical  viral  isolates  and  the  analysis  of  escape  mutant
selection  are  further  required  to  assess  the  potential  of  this  antiviral  strategy
against  JUNV.

In an another attempt to block virus-cell receptor interaction it was demonstrated
that  a  MAb  directed  to  the  apical  region  of  human  TfR1  was  able  to  inhibit
binding and subsequent  GP mediated entry of  NW pathogen arenaviruses  [96].
Since  the  capacity  of  NW arenaviruses  to  cause  human disease  correlates  with
their  ability  to  bind  human TfR1 the  therapeutic  use  of  this  MAb appears  as  a
promissory antiviral approach.

Exposure of  GP2 fusion peptide provides a  target  for  fusion inhibition by GP2
directed antibodies and early studies had described the ability of sera from AHF
patients  to  prevent  JUNV GP-mediated  cell-cell  fusion  [97].  In  line  with  these
findings, a MAb directed toward GP2, F100G5, which recognizes a pH-induced
intermediate of JUNV GP, was proved to impair GP mediated membrane fusion
[98]. Even though this MAb is unable to inhibit viral replication in cell cultures,
York et al. [98] proposed that linking of F100G5 to neutralizing MAbs, by using
bifunctional reagents, would be an interesting antiviral research line to explore.

The  administration  of  ribavirin  or  convalescent  sera  in  LF  patients  has  shown
limited success depending on the time of treatment and the donor source in the
case  of  immune  sera.  LASV GP specific  human mABs,  which  display  in  vitro
neutralizing  activity,  also  prevented,  individually  or  in  combination,  the
development  of  disease  in  a  guinea  pig  model.  This  experimental  evidence
supports the in vivo potential of these mABs in future studies using non-human
primates, the gold standard animal model for LF [99].

Inhibition of RNA Replication

The purine nucleoside analogue ribavirin, which exhibits antiviral activity against
diverse RNA viruses, is the only licensed antiviral compound currently available
for arenavirus infections, however, even though the effectiveness of ribavirin has
been  proved  in  cell  cultures  and  in  several  animal  models  [81,  100]  this
compound  is  not  equally  effective  against  all  human  arenaviruses.  Ribavirin
treatment  early  after  the  onset  of  LF  reduces  mortality  but  is  ineffective  in
preventing neurological sequelae [101], whereas convalescent immune globulin
administration is still the recommended treatment for AHF [17].
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Even  though  ribavirin,  as  well  as  mycophenolic  acid  (MPA),  another  inosine
monophosphate dehydrogenase (IMPDH) inhibitor, adversely affected LASV and
JUNV  infection  in  cell  cultures,  addition  of  guanosine  reversed  the  inhibitory
effects of MPA but did not affect the antiviral action of ribavirin. These results
indicate  that  depletion  of  the  intracellular  GTP  pool  via  inhibition  of  IMPDH
would not account for ribavirin inhibitory effect [102, 103]. Although it has been
proposed that ribavirin inhibits viral RNA synthesis by targeting the L polymerase
[104]  other  studies  suggest  that  ribavirin-induced  lethal  mutagenesis  might
contribute  to  its  antiviral  activity  against  LCMV  [105].

Despite its usefulness in treating some arenavirus infections it is also known that
ribavirin  causes  several  adverse  effects  such as  teratogenic  and/or  embryocidal
effects and haemolytic anaemia [106]. In the search of other RNA inhibitors with
antiviral activity several in vitro and in vivo assays revealed that the compound
favipiravir (T-705), a nucleoside analog recently approved in Japan and in Phase 3
clinical trials in US for treatment of influenzavirus infections, displays a broad-
spectrum antiviral  activity  against  RNA viruses  [107].  Favipiravir  exhibited  in
vitro inhibitory action against JUNV, PICV, TCRV, GTOV and MACV rendering
higher  selectivity  indexes  than  ribavirin  [108,  109].  Favipiravir  inhibition  was
reversed  by  the  addition  of  purine  bases  and  nucleosides  [109].  In  addition,
favipiravir administration prevented the death of PICV- infected hamsters [108]
and oral therapy with this drug was also effective against a PICV strain adapted to
produce lethal infections in guinea pigs, protecting even those animals that were
treated  after  the  onset  of  signs  of  illness  [110].  Intraperitoneal  favipiravir
administration in JUNV-infected guinea pigs resulted in a high level of protection
(78%  survival)  and  undetectable  levels  of  viral  titers  in  tissues  and  serum,
whereas protection in ribavirin injected animals was in the range of 33-40% [111].
Potent anti-LASV activity was also demonstrated for favipiravir in the guinea pig
model  [112].  Interestingly,  the addition of  low dose of  ribavirin synergistically
potentiates  the  protective  efficacy  of  favipiravir  in  JUNV-infected  guinea  pigs
[106].

Like  favipiravir,  compound  A3,  an  inhibitor  of  pyrimidine  biosynthesis,  was
found  to  exhibit  a  broad  antiviral  activity  against  RNA  viruses.  A  significant
antiviral  effect  of  A3  against  LCMV  and  JUNV  in  different  cell  lines  was
demonstrated  and  A3  inhibitory  effect  would  be  in  part  due  to  its  ability  to
interfere with viral RNA replication and transcription as was shown by Northern
blot assays [113]. In addition, A3 would affect the dihydroorotate dehydrogenase
(DHODH) enzyme activity since treatment with orotic acid, an intermediate in the
de novo pyrimidine pathway produced by DHODH, restored normal production of
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infectious progeny. Consistent with the fact that ribavirin and A3 target different
metabolic pathways within the cell, an additive anti-arenavirus effect of A3 and
ribavirin was demonstrated [113].

Other studies revealed that N-substituted acridones selectively inhibited JUNV,
TCRV  and  LCMV  replication  in  cell  cultures  [114]  and  the  most  active
compound,  designated  3f,  inhibited  viral  RNA  synthesis.  The  addition  of
exogenous  guanosine  partially  rescued  JUNV  infectivity  and  RNA  synthesis
indicating that  reduction of  GTP pool  is  not  the  main 3f  inhibitory mechanism
[103].

Gene Silencing

Post-transcriptional gene silencing by RNA interference has been explored as a
strategy  to  block  arenavirus  replication.  Small  interfering  RNAs  (siRNAs)
targeting  the  conserved  RNA  termini  of  NP  and  L  genes  inhibited  LASV  and
LCMV  replication  in  cell  cultures  [115].  On  the  other  hand,  siRNAs  directed
against  Z  gene  also  reduced  in  vitro  JUNV  replication  but  were  non-effective
against  the  related  NW arenavirus  TCRV [116].  Neuman et  al.  [117]  designed
antisense  phosphorodiamidate  morpholino  oligomers  (PMOs)  to  interfere  with
viral  mRNA  translation.  Unlike  siRNAs,  PMOs  are  uncharged  and  nuclease-
resistant, and conjugation of PMOs with an arginine-rich peptide (PPMOs) greatly
enhanced cellular uptake of the antisense molecules. PPMOs complementary to
sequences highly conserved at the 5' termini of both arenavirus genomic segments
were  effective  against  New  and  Old  World  viruses  in  cell  cultures  and  during
acute LCMV infection in mice [117].

Targeting Glycoprotein Maturation

GPC  proteolytic  processing  by  the  cellular  subtilisin  kexin  isozyme  1  (SKI-
1)/site1 protease (S1P) is required for the incorporation of GP1 and GP2 mature
glycoproteins into viral particles, thus being a potential effective antiviral target.
Engineered  antitrypsins,  which  are  derived  from a1-antitrypsin,  can  be  used  as
inhibitors of  proprotein convertases and consistent  with this  fact,  expression of
S1P-adapted  a1-antitrypsins  blocked  the  proteolytic  maturation  of  LASV  GPC
and  hindered  viral  replication  and  spread  [118].  On  the  other  hand,  a  peptide-
based S1P inhibitor, decanoyl (dec)-RRLL-chloromethylketone (CMK), blocked
LCMV GPC cleavage impairing infectious virus production [119].

In  vitro  anti-arenavirus  effect  against  LCMV,  LASV,  JUNV,  MACV,  GTOV,
AMPV  and  TCRV  was  also  demonstrated  for  the  amino-pyrrolidine  amide
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compound  PF-429242,  a  small-molecule  inhibitor  of  S1P  [120,  121].  In
combination  therapy,  synergism  between  PF-429242  and  ribavirin  action  was
demonstrated. In addition, PF-429242 efficiently cleared persistent LCMV from
infected cells and the toxicity profile and pharmacokinetic properties make PF-
429242 a promising novel anti-arenavirus agent [121].

Table 1. Antiviral strategies against arenavirus infections.

Antiviral target Antiviral strategy References

Virus-receptor interaction GP derived peptides [92]

DNA polymers [93]

Anti-cell receptor antibodies [96]

Anti-virus antibodies [94, 99]

Membrane fusion Synthetic compounds [48, 84-87, 89-91]

GP derived peptides [92]

Anti-virus antibodies [98]

RNA synthesis Nucleoside analogues [81, 100-112, 114]

Purine and pyrimidine biosynthesis inhibitors [103, 109, 113, 114]

RNA expression Viral mRNA specific siRNAs [115, 116]

Genome 5‘ termini specific antisense PPMOs [117]

GPC cleavage Modified antitrypsins [118]

Peptides [119]

Small molecules [120, 121]

Virus assembly/ budding Fatty acids [122]

Inhibitors of Tsg-101-Z PTAP interaction [123]
GP:  glycoprotein  complex;  siRNAs:  small  interfering  RNAs;  PPMOS:  peptide  conjugated
phosphorodiamidate morpholino oligomers; Tsg-101: tumor susceptibility gene 101; Z PTAP: late assembly
domain in Z protein.

Blocking Viral Assembly and Budding

Valproic  acid (VPA),  a  short  chain fatty  acid,  exhibited anti-LCMV activity in
cell  cultures  and  the  analysis  of  its  mechanism  of  action  showed  that  VPA
affected  the  release  of  viral  particles  from  infected  cells  and  the  specific
infectivity  of  released  virions  [122].  Alteration  of  cellular  lipid  metabolism
induced  by  VPA might  induce  changes  in  the  lipid  composition  of  the  plasma
membrane from which LCMV acquires its envelope leading to the reduction of
the  infectivity  of  released  particles.  VPA  is  currently  being  used  for  epilepsy
treatment and it displays a high in vitro selectivity index against LCMV, which is
a good predictor of its potential as antiviral agent.
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As mentioned above,  arenavirus Z protein promotes virus egress and is  able to
induce  budding  from  mammalian  cells  in  the  form  of  VLPs.  Separation  of
arenavirus  Z VLPs from the plasma membrane is  promoted by a  PTAP type L
domain within Z protein which interacts with host Tsg101, a component of the
ESCRT machinery. Based on the knowledge of the structure of the Tsg101-PTAP
interaction  site,  an  in  silico  screen  for  competitive  binding  inhibitors  was
performed  and  several  compounds  that  blocked  Z  VLPs  formation  were
identified.  One  of  these  compounds,  called  0013,  not  only  reduced  Z  VLP
production  but  also  inhibited  in  vitro  JUNV  replication  at  nanomolar
concentrations  [123].  Bearing  in  mind  that  PTAP  L  domain  mediated  Tsg101
recruitment  is  utilized  by  other  RNA  virus  pathogens,  PTAP  inhibitors  would
represent a potent broad-spectrum host-oriented antiviral drug.

An interesting cell-based budding assay for the identification of small inhibitors
of Z-mediated budding and adaptable to HTS studies has been developed [124]. In
this assay, a chimera of LASV Z fused at its C-terminus to Gaussia luciferase (Z-
Gluc) was used, thus the amount of released VLPs can be directly measured by
detecting luciferase activity in the supernatant of Z-Gluc-transfected cells.

Other Anti-arenavirus Compounds

The  in  vivo  efficacy  of  a  phenolic  dibenzylsulfide  called  D746,  which  showed
inhibitory action against TCRV and JUNV in cell cultures, was studied in type I
and II IFN receptor knockout mice infected with TCRV. It was proved that D746
is active as a pre-exposure prophylaxis but not as a post-exposure intervention.
However, pre-treatment did not reduce viral titers and induced the accumulation
of  ascites  fluid  suggesting  that  stimulation  of  host  immune  response  would
account  for  D746  protective  effect  [125].

Several  other  natural  and  synthetic  compounds  were  proved  to  impair  in  vitro
arenavirus replication [126 - 130]. For instance, the zinc finger- reactive disulfide
compound NSC20625, which induced unfolding and oligomerization of Z protein,
blocking  the  interaction  of  this  protein  and  cellular  promyelocytic  leukemia
protein, exhibited anti-arenavirus activity [128]. On the other hand, natural and
synthetic steroids also displayed anti- JUNV activity in cell cultures [126]. The
efficacy of these agents in animal models should be further analyzed to estimate
their potential in the anti-arenavirus therapy.

Kinase Signaling Cascades as Antiviral Targets

Cell signaling networks control different cellular processes such as differentiation,
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proliferation, cell cycle, apoptosis and the assembly of immune response against
pathogens. They consist of a series of proteins that activate or inhibit each other
changing  their  3D  structure  through  post-translational  modifications,  such  as
phosphorylations,  and  these  changes  can  determine  the  features  as  well  as  the
success  of  viral  infections.  Several  reports  describe  that  the  mitogen-activated
protein  kinase  (MAPK)  pathways  and  the  phosphatidylinositol-3-kinase
(PI3K/Akt)  pathway are important  modulators  of  virus replication.  Since it  has
been  demonstrated  that  numerous  viruses  hijack  cell  signaling  pathways  to
achieve a productive infection, the modulation of these processes appears to be an
interesting strategy for the development of new antiviral drugs [131 - 135].

MAPK Pathways

In  mammalians  there  are  three  main  MAPK  cascades:  extracellular-regulated
kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK) and p38 pathways. Several
DNA and RNA viruses  take advantage of  ERK pathway [131,  134,  136 -  139]
probably  by  affecting  the  activation  of  certain  genes.  Non-hemorrhagic
arenaviruses LCMV, PICV and TCRV as well as JUNV are able to activate ERK
pathway  and  inhibition  of  this  cell  cascade  reduced  JUNV,  TCRV  and  PICV
replication  (Fig.  4)  [140,  141].  JUNV  induces  a  biphasic  activation  of  ERK
signaling in Vero cells: an early activation occurs at 15-30 min post-infection and
a second phase of activation takes place after 7-9 h post-infection. Although it is
still  not  clear  which  is  the  role  of  ERK  activation  in  virus  infection,  early
activation  might  contribute  to  suppress  the  antiviral  IFN-dependent  immune
response  [142].

By contrast,  there  is  evidence  that  binding  of  the  OW arenavirus  LASV to  the
cellular receptor αDG prevents ERK activation [143], however, future studies will
be needed to determine the role of this inhibition in LASV replication cycle.

Numerous inhibitors for the ERK pathway have been described and drugs directed
towards different components of this cell signaling cascade have been approved
for  cancer  treatment  while  other  compounds  are  in  different  stages  of  clinical
trials or approval (Fig. 4) (recently revised in [144]).

On the other hand, it has been described that PICV promotes p38 activation in cell
cultures [145], however the involvement of p38 and JNK pathway in hemorrhagic
arenaviruses has not been studied yet.

A novel approach for the inhibition of kinases is the use of peptides as signaling
inhibitors. The design and synthesis of cell permeable peptides that block MAPK
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signaling  would  result  in  the  development  of  highly  specific  MAPK inhibitors
with antiviral action [144, 146].

Fig. (4).   Arenavirus modulation of cell  signaling pathways. The main components of p38, ERK 1/2 and
PI3K/AKT pathways are represented. Black arrows indicate virus activation whereas red connectors indicate
virus inhibition of the indicated pathway. Chemical inhibitors acting at different levels of the corresponding
pathway are displayed and the asterisk indicates that the inhibitor is approved for treatment of other human
diseases. PICV: Pichinde virus; LCMV: lymphocytic choriomeningitis virus; AMPV: Amapari virus; LASV:
Lassa virus; TCRV: Tacaribe virus; JUNV: Junin virus; MLK3: mixed-lineage kinase 3; TAK:transforming
growth factor β activated kinase; DLK: dual leucine bearing zipper kinase; MKK: mitogen activated protein
kinase  kinase;  ERK:  extracellular  signal-regulated  kinase;  Raf:  rapidly  accelerated  fibrosarcoma,  MEK:
mitogen activated protein kinase kinase; PI3K: phosphoinositide 3-kinase; PDK1: pyruvate dehydrogenase
lipoamide kinase isozyme 1; AKT: protein kinase B.

PI3K/Akt Pathway

Several  DNA  and  RNA  viruses  modulate  the  PI3K/Akt  pathway  in  order  to
regulate apoptosis and immune response and benefit their replication [132, 147].
Early PI3K/Akt signaling activation was observed in different cell lines infected
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with JUNV and it was demonstrated that clathrin mediated endocytosis of viral
particles is necessary to induce AKT phosphorylation (Fig. 4) [148]. Moreover,
treatment  with  the  PI3K  inhibitor  Ly294002  caused  the  decrease  of  virus
production,  which is  consistent  with a  reduction in  the synthesis  of  NP protein
suggesting that the early activation of the PI3K/Akt pathway is necessary for the
outcome of a productive infection. Nevertheless, treatment of cell cultures with
Ly294002  did  not  prevent  establishment  or  maintenance  of  JUNV  persistent
infection  in  cell  cultures  [149].

It  has  been  described  that  PI3K  is  essential  for  LCMV  and  LASV  entry  in
macrophages  [150].  By  contrast,  another  report  showed  that  treatment  with
Ly294002 or BEZ-235, a PI3K inhibitor which is currently being tested in cancer
clinical trials, inhibited LCMV and LASV infection by hindering virus budding
without affecting viral uptake [151]. Despite the discrepancies between these two
reports, which might be due to the employment of PI3K inhibitors with different
mechanisms  of  action,  PI3K  signaling  also  seems  to  be  an  attractive  antiviral
target.

CONCLUDING REMARKS

No highly  effective  anti-arenavirus  therapeutic  is  approved  for  use  in  humans,
hence treatment of these viral infections is limited to the use of ribavirin, which
has  limited  prophylactic  efficacy,  or  immune  convalescent  plasma,  with  the
drawbacks  associated  to  the  use  of  blood  derivatives.

Recent advances in the understanding of arenavirus biology and improvements in
animal and cell culture models have greatly contributed towards the discovery of
different  antiviral  targets  and  a  great  variety  of  novel  molecules  with  anti-
arenavirus  activity.  Furthermore,  reverse  genetic  approaches  allowed  the
development  of  surrogate  systems  that  facilitate  the  evaluation  of  potential
antiviral  agents  in  the  context  of  HTS  platforms  under  low  stringent  BSL-2
conditions.  Different  small  molecules  screens  have  identified  promising
compounds  with  antiviral  properties  using  these  surrogate  systems.

Antiviral strategies targeting different aspects of arenavirus replication have been
described. Most of the highly effective antiviral agents correspond to viral entry
inhibitors,  being  GP  interaction  with  the  cellular  receptor  and  GP  mediated
membrane  fusion  the  main  targets  of  the  inhibitory  action.  Antibody  based
interventions  have  proved  to  provide  protective  efficacious  even  when
administered  late  in  animal  models  for  arenavirus  disease.  In  addition,  novel
manufacturing systems turn mAB therapy technically and economically feasible



Recent Antiviral Approaches Against Frontiers in Clinical Drug Research - Anti-Infectives, Vol. 4   27

and  mixtures  of  different  mABs  would  offer  both  high  specificity  and  broad
spectrum activity. Small molecules identified through HTS platforms and DNA
polymers were also effective viral entry inhibitors.

Antiviral  strategies  based  on  both  viral  and  cellular  targets  have  proved  to  be
effective against arenavirus infections. Antiviral agents directed to block a virus
encoded function are usually more selective and specific than antiviral strategies
towards cellular factors. However, targeting cellular components may represent an
alternative with low risk of appearance of viral  resistance and effective against
different  viruses,  even  unrelated  ones,  which  require  the  same  cellular  factors.
Moreover,  cellular  targets  offer  the  possibility  of  the  employment  of  licensed
compounds, approved for other human diseases, with known safety-data profile
and,  although  toxic  effects  can  be  an  important  disadvantage  of  this  type  of
therapy, adverse side effects might be kept to a minimum in short term treatments
of acute arenavirus infections. Furthermore, combined administration of cellular
and viral  targeted inhibitors would enhance the effectiveness of anti-arenavirus
treatment.

Arenaviruses exhibit the ability of controlling cell signaling pathways regulating
cellular fate and their own replication. We propose that the inhibition of cellular
signaling represents an attractive therapeutic approach considering the availability
of  approved  inhibitors  or  compounds  that  are  currently  being  tested  in  clinical
trials, which are promising candidates as anti-arenavirus agents.

New  advances  in  siRNA  screens  as  well  as  in  the  analysis  of  proteomic,
transcriptomic and kinomic profiles of arenavirus infected cells will provide key
information  about  virus-cell  interactions  that  will  further  support  the  rationale
design of novel cell-factor based antiviral strategies.
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