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Abstract

■ Confidence judgments are often severely distorted: People
may feel underconfident when responding correctly or,
conversely, overconfident in erred responses. Our aim here
was to identify the timing of brain processes that lead to varia-
tions in objective performance and subjective judgments of
confidence. We capitalized on the Partial Report Paradigm
[Sperling, G. The information available in brief visual presen-
tations. Psychological Monographs: General and Applied,
74, 1, 1960], which allowed us to separate experimentally
the moment of encoding of information from that of its
retrieval [Zylberberg, A., Dehaene, S., Mindlin, G. B., & Sigman,
M. Neurophysiological bases of exponential sensory decay and
top–down memory retrieval: A model. Frontiers in Computa-

tional Neuroscience, 3, 2009]. We observed that the level of
subjective confidence is indexed by two very specific evoked
potential at latencies of about 400 and 600 msec during the
retrieval stage and by a stationary measure of intensity of
the alpha band during the encoding period. When factoring
out the effect of confidence, objective performance shows a
weak effect during the encoding and retrieval periods. These
results have relevant implications for theories of decision-
making and confidence, suggesting that confidence is not
constructed online as evidence is accumulated toward a deci-
sion. Instead, confidence attributions are more consistent with
a retrospective mechanism that monitors the entire decision
process. ■

INTRODUCTION

Subjective confidence indicates the degree to which a
decision-maker considers a choice to be correct. Tasks,
which dissociate objective performance and subjectively
perceived confidence, present an ideal tool to identify
neurophysiological markers of confidence judgments
(Maniscalco & Lau, 2012; Graziano & Sigman, 2009; Lau
& Passingham, 2006). Different experimental situations
may lead to distorted confidence judgments, for instance,
when participants respond correctly with low confidence,
as in blindsight or in implicit tasks (Merikle, Smilek, &
Eastwood, 2001), and also in high confidence errors—
for instance, in detection tasks that lead to confounding
of targets and distractors (Graziano & Sigman, 2009;
Baldassi, Megna, & Burr, 2006). This is not just a reflec-
tion of noise in the confidence estimate but instead re-
flects a robust difference in the signals used for the
commitment to a choice and for the construction of
subjective confidence (Zylberberg, Barttfeld, & Sigman,
2012).
Several studies point to the potential importance of

PFC in regulating the accuracy of subjective confidence
estimates (Fleming & Dolan, 2012). Lesion and inactiva-
tion (with TMS) of dorsolateral PFC can impair human

ability to estimate the accuracy of choice without affect-
ing task performance (Rounis, Maniscalco, Rothwell,
Passingham, & Lau, 2010; Del Cul, Dehaene, Reyes,
Bravo, & Slachevsky, 2009). Individuals with frontal lobe
lesions are impaired at making confidence judgments
despite normal objective performance (Kennedy &
Yorkston, 2000; Vilkki, Surma-aho, & Servo, 1999), and
in normal participants, the introspective ability correlates
with gray-matter density in rostrolateral PFC (BA 10;
Fleming, Huijgen, & Dolan, 2012; Fleming, Weil, Nagy,
Dolan, & Rees, 2010; Yokoyama et al., 2010). Studies of
mnemonic metacognition have consistently shown that
high-confidence decisions are associated with greater
activity in the medial temporal lobe, the anterior cingu-
late (AC), and medial prefrontal regions (Chua, Schacter,
& Sperling, 2009; Kim & Cabeza, 2007; Chua, Schacter,
Rand-Giovannetti, & Sperling, 2006). Animal studies have
found a link between firing rate of neurons and the
degree of choice certainty in the parietal cortex (Kiani
& Shadlen, 2009), OFC (Kepecs, Uchida, Zariwala, &
Mainen, 2008), and frontal cortex (specifically, supple-
mentary eye field area; Middlebrooks & Sommer, 2012).

We previously reported that a partial report paradigm
can be used to generate strong dissociations between
objective responses (the capacity to report the correct
item in a multiple-choice task) and subjective responses
(the conscious perception of the participant about its
performance; Graziano & Sigman, 2009). In this work,
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we capitalize on this finding to analyze the dynamics
associated with the construction of subjective confidence
in the brain. We recorded high-density EEG during a par-
tial report task. The main focus of this experiment was to
identify neurophysiological markers that selectively dis-
tinguish trials in which participants feel confident about
their response, from those in which they feel uncertain.
Specifically, in our paradigm, we investigate whether per-
ceived confidence and objective performance modulate
brain activity during the sensory encoding stage of the
stimulus and/or the retrieval stage and whether both pro-
cesses (decision-making and metacognition) have differ-
ent timings in the brain. Prominent psychological
theories have characterized “confidence” as a retrospec-
tive report (Petrusic & Baranski, 2003; Vickers, 1979) and
modeled this as a top–down (or two-stage) process of
conscious access (Insabato, Pannunzi, Rolls, & Deco,
2010; Zylberberg, Dehaene, Mindlin, & Sigman, 2009;
Dehaene, Sergent, & Changeux, 2003; Chun & Potter,
1995). Consistent with this, we hypothesized that global
markers of confidence should be mostly confined to the
retrieval process.

METHODS

Participants

Nineteen native Spanish speakers (nine men) with a mean
age of 24 ± 4 years (mean formal educational level = 17±
4 years) participated in this experiment. All participants
were right-handed and reported normal or corrected-to-
normal vision. All participants gave written consent to
participate in this study.

Visual Stimuli and Procedure

Behavioral experiment was programmed using the
Python programming language. In each trial, participants
fixated on a cross at the center of the screen for 1000–
1500 msec before stimulus presentation (time interval
selected at random). A circular array of eight letters was
presented during 153 msec (corresponding to 13 frames
with a refresh rate of 85 Hz). Stimuli were displayed on a
19″ screen (with a resolution of 800 × 600 pixels) placed
at a distance of 73 cm. Font type was uppercase “Times
New Roman” with a size of 1.2°. Letters were chosen
randomly from the alphabet (26 symbols), without repe-
tition. The eight letters were arranged on a circle, around
the fixation point at an eccentricity of 5.2°. After a fixed
delay of 753 msec (ISI), a red dot (0.1°) on an array of
blue dots (with the same configuration of the letters
but at an eccentricity of 5.5°) indicated the position of
the target letter. The cue was presented for 153 msec.
Participants had to report verbally the target letter after
a waiting period of 1000 msec indicated by the occurrence
of a short beep (880 Hz). The responses were recorded

with the computer. Subsequently, participants had to
report the confidence of their response on a visual analog
scale (a horizontal bar placed at the center of the screen
composed of 13 marks and two labels: “0% Confidence”
and “100% Confidence”; “0% Seguro” and “100% Seguro,”
in Spanish). The participants could move the mouse
freely to select the appropriated response. We opted for
a long ISI value to allow the analysis of late components
elicited at the encoding stage, which could be possibly
modulated by the factors analyzed in this work.
Each participant first completed a practice block of

80 trials. The main experiment was divided in six blocks
of 80 trials each (total = 480 trials). In each block, all
eight positions were randomly and uniformly selected
at target positions. Participants were instructed to fixate
at the center of the screen during the entire experiment
and to report verbally the letter as fast as they could (after
the beep), selecting between the 26 letters of the alpha-
bet (forced choice). They were also instructed to stay still
as best as they can, indicating also that, after the beep,
they could freely move and blink their eyes before start-
ing the next trial. A complete session lasted approxi-
mately 60 min (without considering the preparation
time for the EEG measurement).

EEG Data Collection and Preprocessing

EEG was recorded at 512 Hz with a 128-electrode Active
II Biosemi device. After the experiment, all signals were
filtered with a finite impulse response low-pass filter with
a cutoff frequency of 30 Hz and high-pass filtered with a
high-pass cutoff frequency of 1 Hz. All signals were re-
referenced to a common mean, and the mean baseline
activity during 300 msec before stimulus presentation
was subtracted from each trial and each electrode. We
rejected trials with voltage exceeding ±150 μV and
electro-oculogram activity exceeding ±70 μV.

Data Analysis

Data analysis was performed using Matlab, the EEGLAB
toolbox, and the Brainstorm suite toolbox. Behavioral
data were analyzed given the two main factors used in
this study: subjective confidence (the conscious percep-
tion of the participant about its response, a continuous
measure between 0 and 1, normalized for each partici-
pant) and objective performance (the capacity to accu-
rately report the cued letter—a categorical variable).

EEG Data: Between-subject Factorial Analysis

As the distribution of confidence was bimodal for most
individual participants, it could be easily partitioned into
high-confidence and low-confidence categories by visual
inspection of the distribution (mean threshold = 0.49 ±
0.08). A partition of the distribution based on a median
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split did not change any of the main results reported in
this work. According to this, EEG data of each participant
were divided in four conditions (two factors with two
levels each): incorrect–low confidence (incorrect and
uncertain trials), incorrect–high confidence (incorrect
and certain), correct–low confidence (correct and un-
certain trials), and correct–high confidence (correct and
certain trials). We rejected participants that contained
less than eight trials in each condition (N = 2) to reduce
the error of the estimated mean and the differences
in the variance across conditions (incorrect–low conf.:
220 ± 70; incorrect–high conf.: 40 ± 30; correct–low
conf.: 50 ± 20; correct–high conf.: 130 ± 70). In addi-
tion, to avoid possible effects of nonhomogenous vari-
ance in the data, we performed a nonparametric test
(Friedman test with repeated measures) to analyze the
statistical difference between levels for each factor
(Laganaro, Morand, & Schnider, 2009; Murray, Camen,
Andino, Bovet, & Clarke, 2006; Schmid et al., 2006). This
test computes the χ2 Friedman rank sum value for
group differences of one factor after possibly adjusting
effects of the other factor. To evaluate possible inter-
action effects between factors and levels, post hoc com-
parisons were performed using the pairwise Wilcoxon
rank-sum tests in case of a significant result of the
Friedman test. Multiple comparisons were corrected non-
parametrically using shuffle statistic according to Maris
and Oostenveld (2007) and Nichols and Holmes (2002).
Clusters were defined as two or more spatially contigu-
ous sensors in which the statistic used exceeded a
chosen threshold. We selected a threshold of p = .01
for the Friedman rank-sum tests and a threshold of
p= .05 for the pairwise Wilcoxon tests, given the number
of comparisons computed in each test (electrodes ×
time: 128 × 1278 for the Friedman Test and 128 × 101
for the Wilcoxon rank-sum test). We considered electrodes
with a distance of 4 cm as neighbors (yielding and aver-
age of 9.3 ± 1.7 neighbors per channel), and we assume
that a robust cluster should encompass at least four neigh-
boring channels and 26 samples—corresponding to a time
window of 50 msec, giving a minimum cluster size of N =
104. After that, a cluster-based statistic was calculated com-
puting the sum of each statistic value of the sensors in a
cluster. Subsequently, random shuffles of the labels (cor-
rect/incorrect, high/low confidence) were used to obtain
the null distribution of the maximum cluster-level test sta-
tistic. Hence, the entire analysis (comparison test, thresh-
olding, finding clusters, computing cluster-level statistics)
was repeated for each randomization trial (N = 5,000).
For a given cluster, the corrected p value was estimated
as the proportion of the elements in the shuffle null dis-
tribution exceeding the observed cluster-level test statistic.

Single-trial Level Analysis

Single-trial analysis using linear regression was performed
to seek for regions of significant correlation between ERP

activity and the confidence level of the participant, using
the continuous measure of confidence (instead of the
categorization high/ low). We use a repeated sample
methodology to improve the estimation of the linear
regression, namely, estimating the regression coefficients
with all samples within a time window (instead of the
mean) and combining all trials. This increases the num-
ber of samples available to compute the regression co-
efficients, which is required here as the number of
parameters (128) is large relative to the number of trials
(<480). In addition, to disambiguate the effect of confi-
dence and accuracy on ERP activity, we used only correct
trials for the linear regression analysis (Parra, Spence,
Gerson, & Sajda, 2005). Thus, for each participant, ERP
activity at the 128 electrodes among a time window of
50 msec (N = 26) was regressed with the reported con-
fidence through a leave-one-out algorithm, iterating all
trials but one. The regression coefficients obtained in
the train trials were used to compute an estimated con-
fidence value from the activity of each test trial through a
purely linear model. This was done independently for
each time window. Finally, we computed the Pearson
correlation coefficient between the observed and esti-
mated confidence ratings (obtained through the leave-
one-out procedure) for each time window and participant,
allowing us to estimate the mean correlation coefficient
across participants throughout the task. Figure 2D depicts
the mean Pearson correlation coefficient ± SEM (N = 17).
Statistical significance was estimated through multiple
paired t tests against the null hypothesis of zero correla-
tion, and the obtained p values were corrected with false
discovery rate (FDR) < 0.05. The discriminant components
for each significant time were obtained through forward
modeling as described previously, which can be used to
interpret the anatomical origin of the discriminative ability
(Haufe et al., 2014; Parra et al., 2005).

Frequency Analysis

After preprocessing, data for each trial were divided in
two periods corresponding to encoding and retrieval
(0–900 and 900–1800 msec, respectively). In each period
and for each trial, data were Fourier transformed after
removal of any linear trend in time. Frequency bins cor-
responding to theta (4–8 Hz), alpha (9–11 Hz), and beta
(15–30 Hz) were squared and summed to obtain an esti-
mate of power in each band for each trial and for each
period. For each electrode, we averaged estimated band
power over correct and incorrect trials as well as high-
and low-confidence trials. These averages were then
summed across all participants weighting them by the
number of trials contributed by each participant. Effects
are reported as the ratio of these trial-averaged band
powers in decibels. Because the two factors of confidence
and correctness are correlated, we repeated the analysis
for one factor while controlling for the second. For
instance, to contrast correct versus incorrect trials while
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controlling for confidence, we took the following contrast:
ratio of [average power of correct–high confidence trials +
average power of correct–low confidence trials] divided by
[the average power of incorrect–high confidence trials +
average power of incorrect–low confidence trials]. We
chose this nonparametric method to control for one factor
because the data were non-Gaussian and ANOVA or re-
peated ANOVA analyses were not conclusive. As before,
these averages were weighted and summed across par-
ticipants. To determine statistical significance of the
results, we repeated the identical procedures after ran-
domly shuffling the labels across trials (correct/incorrect
and high/low confidence). For each of the 128 electrodes,
we computed the p value as the fraction of permutations
(among N = 10,000) with power ratios that were more
extreme than what were observed with the original labels.
All electrodes with a significant difference in band power
are marked with a dot in Figure 3 ( p values corrected
with FDR < 0.05, N = 128).

Detection of Response Components

To capture the main components associated with the
temporal signal obtained from the ERPs, we averaged
the data across participants and conditions and used
the absolute mean activity (among electrodes) to decom-
pose the ERP activity in a sequence of response compo-
nents (Sigman & Dehaene, 2008). Response components
were detected through a peak detection analysis, assum-
ing that the points of local maxima at this time series
reflect the peak of each response component. Each local
maximum had to exceed a minimum threshold voltage of
0.3 μV to be considered a peak of a response component.
Consequently, we obtained the latencies for the local
maxima and, with these, the topography of each response
component at the electrode space.

Source Localization Analysis

Source localization was done using Brainstorm package
(Tadel, Baillet, Mosher, Pantazis, & Leahy, 2011). Briefly,
cortical current density mapping was obtained using a
distributed model of 15,000 current dipoles. Dipole loca-
tions and orientations were constrained to the cortical
mantle of a generic brain model built from the standard
brain of the Montreal Neurological Institute (Colin 27
brain with a 1-mm resolution). EEG forward modeling
was computed using a Berg three-shell single sphere ana-
lytical model (Mosher, Leahy, & Lewis, 1999). Cortical
current maps were computed from the EEG time series
using a linear inverse estimator (weighted minimum-
norm current estimate; Baillet, Mosher, & Leahy, 2001).
Paired t tests ( p values corrected with FDR < 0.05) were
used to analyze differences in the mean of the cortical
current density activity at the encoding and the retrieval
stage. In addition, several bilateral ROIs were selected
from the main areas activated by the late ERP response

components of the retrieval phase: AC areas (N = 130),
OFC (superior frontal gyrus and middle frontal gyrus
[BA 10], N = 1,170), superior parietal lobe (precuneus,
N = 969), middle temporal gyrus (N = 1,250), and occip-
ital cortex (N = 1,109). Thus, we computed the averaged
time series of the current density for each participant and
ROI, grouping by subjective condition (high and low
confidence). The statistical assessment was performed
through a multiple paired t test analysis for each time
and ROI, correcting for multiple comparisons through a
nonparametric cluster-based randomization test. For
each ROI, we clustered the data exceeding a threshold
t statistic = 1.73 (two sided, p < .05) and considered a
minimum cluster size of N = 26 (corresponding to a time
window of 50 msec), in consonance with the previous
analyses described above. The significance of each cluster
was assessed computing the null distribution of the cluster-
level test statistic through random shuffles (N = 5,000),
and the corrected p value was estimated as the proportion
of the elements in the randomization null distribution
exceeding the observed cluster-level test statistic.

RESULTS

Experimental Design and Behavioral Analysis

The partial report task separates the phase of sensory
encoding—starting with stimulus presentation—from
the retrieval phase that begins after the subsequent pre-
sentation of a response cue. Because, from our prior
studies, objective performance almost did not vary within
an ISI of 500–900 msec (Graziano & Sigman, 2008, 2009)
and because we hypothesized that late evoked potentials
could be of interest, we selected an ISI of 750 msec to be
sure that the evoked responses to the stimulus and to the
cue would not overlap.
In each trial, participants saw a circular eight-letter array

(STIM), which lasted 153 msec (Figure 1A). At a fixed ISI
delay of 753 msec, a small red circle was presented at one
of the eight locations of the array (selected at random).
This cue indicated the position of the letter to be reported
(CUE). The cue was presented for 153 msec and was
placed at the same angular location but at a greater eccen-
tricity than the array to minimize the possibility that it may
induce masking of the target letter. Fixation had to be
maintained on a cross at the center of the display for
the duration of the trial. Participants reported the letter
aloud after a waiting period of 1000 msec. This pause
assured a sufficiently long temporal interval to record
the EEG signal without contamination of voice artifacts
(Figure 1A). After this initial response, participants re-
ported their level of confidence in their response on a
visual analog scale placed at the center of the screen. They
were informed that the left extreme of the bar indicated
0% confidence, when they thought they were simply
guessing, and the right extreme indicated 100% confi-
dence, when they were completely certain of their
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response. Nineteen participants completed an experi-
mental session with 480 trials each.
The behavioral data obtained confirmed previous re-

sults observed with this paradigm (Figure 1B): low levels
of objective performance at long ISI (0.4 ± 0.1 propor-
tion of correct responses), corresponding to a memory
load of 3.0 ± 0.9 items (Landman, Spekreijse, & Lamme,
2003; Pashler, 1988; false alarm rate was computed as in
Graziano and Sigman (2008) and a strong dissociation of
behavioral measures (objective performance and subjec-
tive report) although mainly correlated (quantified by
measuring the area under the receiver operating charac-
teristic curve: 0.81 ± 0.01; Barttfeld et al., 2013; Graziano
& Sigman, 2008, 2009). Most participants showed bi-
modal distributions of subjective confidence; hence, it
could be easily partitioned into high-confidence and
low-confidence categories by visual inspection of the

distribution. Given that one of the main objective was
obtain decoupled measures of objective and subjective
performance, we excluded two participants who had
insufficient low-confidence correct trials and high-
confidence error trials, allowing a balanced analysis with
confidence and accuracy as factors (Figure 1B; see
Methods for details).

ERPs Are Modulated by Objective Performance and
Subjective Confidence during the Retrieval Stage
but not during the Encoding Stage

We locked the EEG signal to the onset of the stimulus
and averaged across trials. This makes the resulting ERPs
both stimulus-locked as well as cue-locked, because of
the fixed stimulus–cue delay. These ERPs capture thus
the unfolding EEG signal after STIM and CUE, indicating

Figure 1. Experimental design and behavioral analysis of the objective and subjective reports. (A) A circular array of eight letters was presented
during 153 msec after a waiting period of 1000–1500 msec. Participants fixated in a cross at the center of the array. A small red circle (the cue) was
presented for 153 msec after a fixed delay of 750 msec (ISI) in one of the locations of the array indicating the letter that had to be responded.
These two events (the stimulus and the cue) demarcate the encoding and retrieval stages for which ERPs were obtained. Participants had to report
verbally the responded letter after a 1000-msec waiting period (since the offset of the cue) and the occurrence of a short beep and, subsequently,
their confidence level through an ad hoc bar placed at the center of the screen. The response ranged between 0% of confidence (guessing) and
100% (completely certain; for more details, see Methods). (B) Mean frequency of trials across different report conditions. The plot shows the
frequency of trials classified by the subjective response (the conscious perception of the participant about its response, divided in low-confidence
trials and high-confidence ones) and the objective response (the capacity to report the correct letter). It can be shown that there is a reliable
decoupling of the responses in all participants, which was used to infer the subjective confidence from EEG regardless of accuracy.
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the onset of the sensory encoding stage and the retrieval
phase of the task, respectively (Figure 2A, dotted lines).
The EEG data of each participant were divided in four
conditions (two factors with two levels each): incorrect–
low confidence (incorrect and uncertain trials), incorrect–
high confidence (incorrect and certain), correct–low
confidence (correct and uncertain trials), and correct–
high confidence (correct and certain trials).

We first performed a nonparametric test (Friedman
test) to compare the ERP magnitude (regardless of sign)
for every time point and electrode while correcting for
multiple comparisons (see Methods), assessing a group-
level comparison for one factor after possibly adjusting
effects of the other factor. The test revealed a main effect
of confidence in two spatiotemporal clusters during the
retrieval stage (black dots superimposed to the grand-
averaged ERP, corrected cluster p value < .0002; Figure 2A).
We did not observe significant clusters during the sensory
encoding phase (corrected cluster p value > .1). Moreover,
we did not find significant clusters after correcting for
multiple comparisons for the main effect of performance
possibly adjusting effects of subjective confidence (cor-
rected cluster p value > .1). The clusters showing a
significant effect of confidence correspond to a set of cen-
tral and parietal electrodes at a latency of 1200–1250 msec
(300–350 msec after the onset of the cue) and a wider tem-
poral window in a group of frontal electrodes for 1500–
1600 msec (600–700 msec from the cue).

The main effect of confidence is clearly seen in the
time series of the electrical activity of two representative
central and frontal electrodes (Figure 2B). Regions of sig-
nificance are labeled with gray shadows, with higher ERP
amplitude for the high-confidence condition as compared
with the low-confidence condition. The principal effect
observed here is a modulation of the ERP by the subjec-
tive response at the time of the memory retrieval. There
is no obvious correlate of confidence or performance at
the time of sensory encoding or during the brief buffering
of information in iconic memory. In addition, the visual
inspection of the time series of several electrodes showed
a clear interaction term between correct versus incorrect
trials at high confidence levels (see Figure 2B). Motivated
by this finding, we performed post hoc comparisons
through pairwise Wilcoxon tests for correct versus incor-
rect trials (only at significant times of the main effect of
confidence). We found several clusters defined by sensors
with a p < .05 (uncorrected) that survive the correction
for multiple comparisons (corrected cluster p value <
.0002) (Figure 2C). The effect is stronger at 600–700 msec
after the cue (N = 19 electrodes). Trials with hits and
false alarms could be reliably differentiated at the ERP
level of the retrieval phase.

Next, we investigate the possibility of finding neural
markers of the subjective confidence level in a trial-by-
trial basis. To this aim, we perform a linear regression
of the EEG data (Figure 2D) to predict on a single-trial
basis the reported level of confidence (see Methods for

more details). We performed this analysis for each partic-
ipant only for correct trials to disambiguate the results
from the objective response. In concordance with the
factor group analysis, we observed a broad time window
during the retrieval stage (300–600 msec from cue onset)
for which the ERP’s amplitude correlates with the subjec-
tive response at the single-trial level. The topographies of
the forward model computed from the linear regression
model showed a similar profile to the ones previously
found using the factor group analysis. Similar results
were obtained equalizing (subject by subject) the num-
ber of trials for which the cue was presented at the right
or left visual field. This was done to eliminate any percep-
tual or attentional effect that could arise from a bias in
the spatial position of the cue. Overall, these results show
that the ERPs are modulated during the retrieval phase,
but not during the encoding phase, by the level of sub-
jective confidence.

Frequency Analysis at the Encoding and
Retrieval Stages

To determine the covariation of oscillatory stationary
activity with confidence and performance, we performed
a frequency analysis on theta, alpha, and beta bands (4- to
8-, 9- to 11-, and 15- to 30-Hz bands, respectively). We
analyzed independently the encoding and retrieval
phases. When only using information about performance
(ignoring confidence), we observed that correct trials,
compared with incorrect, had higher alpha power mainly
over right central areas during the encoding phase
(Figure 3, 28 of 128 electrodes) and lower power in the
beta band during the retrieval phase mainly in left-central
frontal areas (15 electrodes). Correct trials also had in-
creased power in the theta band at central-frontal elec-
trodes (23 electrodes) during the retrieval period. A
similar pattern was observed for the effect of confidence,
when performance was not included in the variance.
After controlling for the correlation of the main factors,
we observed that most of the variance in the alpha band
is affected by confidence (seven electrodes), without
reaching significance for the beta and theta bands. We
observed a small effect of performance in the alpha band
during the encoding stage through a planned compari-
son over right central areas (six electrodes, p < .05),
but it did not reach significance when controlling for
multiple comparisons.

The Topography of Subjective Confidence

High-density ERP recordings can be combined with
source models to provide a tentative estimate of the cor-
tical origin of EEG activity. We performed a source
modeling analysis of the ERP during the different stages
of the task through a model of distributed cortical
sources (Baillet et al., 2001) using the ERP data from
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Figure 2. ERP modulations by subjective confidence and objective performance during the encoding and retrieval stages of a partial report paradigm.
(A) Raster plot of ERPs averaged across participants and conditions, aligned to the onset of the stimulus (in blue negative potentials, in red positive
potential, scale [−5, +5 μV]) and superimposed to the effect of confidence in the Friedman rank-sum test (black points, cluster-corrected p value <
.0002). Dashed lines indicate the time of stimulus (0 msec) and cue onset (900 msec after stimulus onset). It is also shown the topographies
corresponding to the significant clusters (in black, significant electrodes in the nonparametric analysis). There were no significant differences at
any time or electrode for the effect of objective performance (cluster-corrected p value > .1). (B) Time series of electric potential for two electrodes
across the different conditions of subjective and objective performance. They represent examples of representative electrodes showing a significant
effect of confidence. (C) Post hoc comparisons through pairwise Wilcoxon tests for correct versus incorrect trials at significant times of the main effect
of confidence. Topographies showed the averaged ERP difference across participants for the correct–incorrect comparison at two different time windows
(in blue negative potentials, in red positive potential, scale [−1, +1 μV]). Asterisk (*) denotes several clusters defined by sensors with a p < .05
(uncorrected) that survive the correction for multiple comparisons (corrected cluster p value < .0002). (D) Linear decoding analysis of single-trial
subjective confidence at correct trials. Upper plot shows the averaged correlation coefficient (SD in shaded gray) between the estimated level and
the observed level of subjective confidence for all trials and participants (see Methods for details). Dotted line represents the zero correlation level.
Bottom plot shows the p value of the calculated Pearson correlation coefficient for each sample time. Red dotted line indicates the p value threshold
corrected with FDR < 0.05 ( p value threshold corrected = .002). The topographies correspond to the discriminant components obtained through
this analysis, which nicely resemble the topographies of the ERPs elicited at the significant times for the main effect of confidence.
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the entire STIM and CUE periods. Cortical current maps
showed greater involvement of occipital areas at the
encoding stage than at the retrieval stage and the reverse
for frontal and temporal areas (Supplementary Figure 1).
EEG inverse modeling should be interpreted cautiously
because of its inherent limitations (Michel et al., 2004).
Nevertheless, the results are consistent with the general
notion that visual processing during the sensory stage
should localize in occipital regions, whereas memory re-
trieval may originate in frontotemporal regions (Pasternak
& Greenlee, 2005; Curtis & D’Esposito, 2003; Cohen et al.,
1997; Courtney, Ungerleider, Keil, & Haxby, 1997).

To tentatively localize the dynamic involvement of dif-
ferent cortical regions in the construction of subjective
confidence, we estimated the electrical sources that gen-

erate the different ERP waveforms during the retrieval
stage. We first identified the principal response compo-
nents of the system through local peak analysis (Supple-
mentary Figure 2). As described previously (Sigman &
Dehaene, 2008), response components are data-driven
vectors of 128 coordinates corresponding to specific pat-
tern of activity across all electrodes, obtained after aver-
aging the absolute value of the voltages recorded over all
electrodes from the grand-averaged ERP (see Methods).
We analyzed the cortical current maps for the response
components of the retrieval phase. Late response com-
ponents (C-332ms, C-457ms, C-630ms), which showed
central topography and have latencies that coincide with
the time windows of the clusters showing a modulation
effect of subjective confidence, presented extensive

Figure 3. Global correlates of the objective performance at theta/alpha/beta frequency bands. Theta, alpha, and beta power contrasting correct
versus incorrect trials. False color indicates power ratio (in dB) over 128 electrodes. Theta/alpha/beta power is computed in the range of
4–8/9–11/15–30 Hz and averaged across all trials and participants. Encoding and retrieval phases were analyzed separately. Black dots indicate
a significant difference in power between correct and incorrect trials (FDR < 0.05).
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coactivations in OFC (BA 10, middle and superior frontal
gyri) and parietal (superior parietal lobe), AC, and tempo-
ral (mainly middle temporal gyrus and inferior temporal
gyrus) regions (Figure 4A).

From the previous analysis, we identified four ROIs
with maximal intensity in these cortical maps and ana-
lyzed the temporal dynamics of the current sources, sep-
arately for high-confidence versus low-confidence trials

Figure 4. The sources of subjective confidence. (A) Source estimation of each response component of the retrieval stage. Cortical current maps accounting
for the observed topography represented on a smoothed version of the standarized cortex. Activations are expressed in terms of dipole current amplitude
normalized for each densitymap (max: red,min: blue). There is an extensive network of coactivations inOFC, parietal, AC, and temporal regions in components
modulated by subjective confidence. (B) Neuroanatomical regions selected for time series analysis of current density. We selected four bilateral regions
encompassing the network of activations previously found: orbitofrontal, AC, parietal, and temporal regions. The plots show the time series of the current
density in these ROIs, classified by subjective condition (low confidence, dark trace; high confidence, light trace). There are several time windows where the
current density is higher in thehigh-confidence condition than in the low-confidence condition. (C) Statistical significance of the time series analysis. Top: Raster
plot of p values (−log p) for each ROI, assessed by multiple paired t test. Bottom: Significance plot corrected by multiple comparisons through a cluster
randomization approach. Black lines represent significant samples in each ROI (cluster-corrected p value < .0002). Results showed a differential activation
pattern for AC, orbitofrontal, temporal, and parietal regions at latencies between 1180 and 1380 msec and differences in AC and orbitofrontal activation at
latencies between 1500 and 1600 msec, corresponding with the occurrence of C-332ms and C-630ms response components in the voltage scalp maps.
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(Figure 4B). As a control, we also included an occipital
ROI, which was activated during earlier phases but not
during late phases of the retrieval period. An analysis of
the amplitude difference of cortical generators between
confidence conditions (Figure 4B and C) showed sig-
nificant differences for AC, orbitofrontal, temporal, and
parietal ROIs at latencies between 1180 and 1380 msec
and differences in AC and orbitofrontal activation at
latencies between 1500 and 1600 msec, coinciding with
the occurrence of the C-332ms and C-630ms components
in the voltage scalp maps. In all cases, high-confidence
trials show higher current density estimates than low-
confidence trials.

DISCUSSION

Our main aim here was to use EEG to reveal the dynam-
ics of brain processes indexing objective performance
and subjective judgments of confidence. We implemented
a version of the partial report paradigm (Sperling, 1960),
which separates the time of encoding and retrieval of
information (Zylberberg et al., 2009). Our results, obtained
through several complementary analyses, identified more
prominent effects of confidence during the retrieval stage.
This is in part expected by the design of the task, as only
when the cue is presented, participants know exactly the
letter to which they have to respond. However, during
the encoding period, participants may also have an esti-
mate of the general knowledge that they have (i.e., the
precision of the iconic memory of the array), which may
be expressed in confidence and performance. Indeed, we
observe that the power of the alpha band in the ERPs is
indicative of the confidence expressed retrospectively.
Overall, these results hence suggest that confidence is
partly determined by a broad state (indexed by the power
in oscillatory activity in the EEG) during the encoding
period, which may reflect participant’s perception of the
quality and precision of the iconic memory of the array.
Then, during the retrieval period, when the full specifi-
cation of the task is determined by providing the specific
cue, we observe that confidence is indexed by relatively late
potentials at latencies of approximately 400 and 600 msec.
This indicates that confidences are biased by specific
brain states during early sensory acquisition but that,
subsequently, it is not constructed online as evidence
is accumulated toward a decision. Instead, confidence
attributions are more consistent with a retrospective
mechanism that monitors the entire decision process.

In our study, we measured in each trial confidence and
performance. These two measures are of course correlated
but with sufficient dispersion to perform a decoupled
analysis on both factors. If we only take into account the
objective response (without considering our measure of
confidence), we clearly observe main effects of perfor-
mance in brain activity. These results would have been
interpreted as a pure effect of performance in our study

if we had not also collected estimates of confidence. After
controlling for the covariation between factors, our results
indicate that most of the variance in the EEG signal is
accounted by explicit reports of confidence. Additional
variability in performance, which is not accessible to the
confidence report system, shows a weak overall effect on
the EEG signal.
Previous work on classical visual working memory

(VWM) or visual STM (VSTM) has found several neural
correlates of VWM maintenance (Roux & Uhlhaas, 2014;
Luck & Vogel, 2013; Klimesch, Freunberger, Sauseng, &
Gruber, 2008). Imaging studies (EEG, fMRI) in humans
have found that a neural activity contralateral to the
cue hemisphere exhibits a sustained activity during the
encoding/retention period (Todd & Marois, 2004, 2005;
Vogel,McCollough,&Machizawa, 2005; Vogel&Machizawa,
2004). Recently, studies on a weak intermediate form of
VSTM showed that this high-capacity store is represented
in visual parts of the brain (i.e., V4; Sligte, Scholte, & Lamme,
2009). The fact that we did not observe global precursors at
the ERP level of accuracy (and confidence) during the
encoding period is in agreement with these findings, given
the spatial specificity of the effect. Hence, we cannot con-
clude that fluctuations in brain activity during encoding do
not affect subjective confidence or objective performance.
Oscillatory processes are also important in VSTM and

VWM: Alpha and theta band amplitudes are enhanced
during STM and working memory (WM) retention period
and are suppressed thereafter (Busch & Herrmann, 2003;
Jensen, Gelfand, Kounios, & Lisman, 2002; Jensen &
Tesche, 2002; Raghavachari et al., 2001). In turn, WM load
was predicted by a variety of markers, among contralateral
delay activity, increased theta and alpha band frequencies,
and theta–gamma phase coupling (Roux & Uhlhaas, 2014;
Lisman & Jensen, 2013; Luck & Vogel, 2013; Sauseng,
Griesmayr, Freunberger, & Klimesch, 2010). In our actual
experiment, we can assume that WM load is mainly con-
stant across the entire experiment (there are no changes
in set size, and participants might be holding in WM as
much elements as they could), and these results are in line
with our finding that theta band power is not increased
comparing correct versus incorrect responses during the
encoding period. Conversely, we found a robust alpha-
band amplitude increase during the encoding period for
correct responses and a decrease during the retrieval
period, reflecting the fact that this paradigm relies on
strong attentional processes (selection of information
from iconic memory, active maintenance in WM, re-
allocation of attention by the retrocue; Klimesch, 2012;
Zylberberg et al., 2009; Graziano & Sigman, 2008; Lepsien
& Nobre, 2007). A similar pattern of activation/deactivation
was found in memory encoding and retrieval by other
authors (Sauseng et al., 2005; Busch & Herrmann, 2003;
Jensen et al., 2002). Thus, the increased alpha-band power
can be interpreted as reflecting the suppression of irrele-
vant information (or blocking the arrival of new infor-
mation that overwrites the weak VSTM; Klimesch, 2012;
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Sauseng et al., 2009, 2010; Klimesch, 1999), producing a
positive effect on the perceived level of confidence by
the participant. Besides, increased alpha-band power re-
sembles the well-known effects of meditation on alpha
power (Travis & Shear, 2010; Lagopoulos et al., 2009;
Cahn & Polich, 2006; Takahashi et al., 2005), suggesting
that, for a confident response, participants have to avoid
focusing attention on a specific item—like what actually
happens in open mind meditation—providing a more
efficient allocation of resources (Raffone & Srinivasan,
2010; Travis & Shear, 2010; Lutz et al., 2009; Slagter et al.,
2007; Tang et al., 2007; Cahn & Polich, 2006; Valentine &
Sweet, 1999).
In our study, we also find a modulation of beta power

over frontal and central electrodes predominantly on the
left hemisphere. Modulation of beta power has been ob-
served in many motor tasks, in particular, those involving
inhibition of movement (reviewed in Aron, Robbins, &
Poldrack, 2014). Increased beta activity particularly in
the right inferior frontal cortex has been observed when
inhibiting motor response in a decision task (Wessel,
Conner, Aron, & Tandon, 2013; Swann et al., 2011). It
is interesting to note that, in our study, participants are
asked to inhibit their verbal response during the retrieval
period, which would be consistent with the left laterali-
zation of speech function and the increased beta activity
observed of correct responses. Perhaps, equally relevant
is the observation that beta power is modulated by atten-
tional manipulations in sensory cortex in a similar fashion
as alpha power (with higher power corresponding to
effort-full attention; Jones et al., 2010). Increased beta
power is also observed bilaterally in inferior frontal gyrus
in top–down attentional control (Green & McDonald,
2008). Our results are in line with these findings and sug-
gest that modulation of successful responses by attention
is reflected in a decreased beta power at the retrieval
stage.
Our work can be seen as continuing the path set by

Hulme, Friston, and Zeki (2009) to experimentally factor-
ize processing, decision, and motor response in the con-
struction of conscious experience. Measuring fMRI
responses in a partial report paradigm, they showed a
decoupling between stimulus properties indicated by
early visual cortex activation and a subsequent parieto/
temporal cluster of activation, which is locked to con-
scious experience of decision-making (Hulme et al.,
2009). Our results are in line with these findings, extend-
ing to the domain of confidence and revealing a major
weight of late components during retrieval in the con-
struction of subjective confidence. Another fMRI study
using a postcued report procedure also shows the influ-
ence of top–down modulations over conscious visual
perception and early sensory processing (Sergent, Ruff,
Barbot, Driver, & Rees, 2011).
We identified that, within the retrieval stage, several

late response components are modulated by subjective
confidence (Figure 4). These response components

spread over a space of central topography (N400-like)
and are reminiscent of classical N400 and P3 components
associated to information processing in different contexts
(Kutas & Federmeier, 2011; Polich, 2007; Sergent, Baillet,
& Dehaene, 2005). We showed that the N400 compo-
nent, generally thought to reflect the integration of infor-
mation (semantic or more general; Kutas & Federmeier,
2011), is modulated by subjective confidence. The P3
(subdivided in P3a and P3b) has been found to be in-
volved in a multitude of tasks, mostly related to the
awareness of an event that leads to the activation of
these components (Polich, 2007). The topography of
these components projects to a frontotemporal/parietal
network that involves the differential activation of ACC,
including frontal and prefrontal areas but also parietal
and temporal areas related to higher visual processing
and attention (Lau, Phillips, & Poeppel, 2008; Polich,
2007; Soltani & Knight, 2000). This is reminiscent of
many studies showing a distributed network and long
distance connections mediating conscious access (Del
Cul, Baillet, & Dehaene, 2007; Sergent et al., 2005) and
is in agreement with views of metacognition (including
confidence) as a component of the cognitive control of
the brain (Barttfeld et al., 2013; McCurdy et al., 2013;
Fleming & Dolan, 2012; Yeung & Summerfield, 2012;
Persaud et al., 2011). However, as mentioned above,
the main contribution of this study is on the timing of
brain processes mediating subjective confidence. Other
experimental designs (based on focused decisions to
attributes better localized in the brain) with higher spatial
resolution instruments should be specifically conceived to
understand the brain networks involved in this process.

Finally, in relation to the dynamics of processes indica-
tive of subjective confidence, our results have three rele-
vant implications for theories of decision-making and
confidence.

First, temporal integration in decision tasks is inhomo-
geneous such that earlier moments of exposure to a stim-
ulus have a stronger influence on choice (Ludwig,
Gilchrist, McSorley, & Baddeley, 2005) and confidence
(Zylberberg et al., 2012). The fact that confidence is cap-
tured late in this study suggests that earlier moments of
stimulus presentation (the ones that contribute to
choice) are accessed late (when confidence is being eval-
uated) and shows a temporal decoupling between the
moments of relevant stimulus information and the time
in which they are accessed by introspection, in line with
two-route models of consciousness (Lau & Rosenthal,
2011; Changeux & Dehaene, 2008).

Second, several models suggest that, when confidence
report is required, sensory evidence continues to accu-
mulate after the commitment to a choice (Pleskac &
Busemeyer, 2010). The late committing to a judgment
in confidence in the decision process permits one to use
stimuli even after a choice, which is consistent with our
results, although this may depend on the specific task
(Zylberberg et al., 2012).
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Third, a very influential theoretical view is that con-
fidence is a function of decision time (Audley, 1960).
For decisions to a fixed threshold, the time passed is a
measure of the integrated variance of an accumulator
(Kiani & Shadlen, 2009; Audley, 1960), and decisions
based on longer RTs ought to be more unreliable. We
previously suggested that the estimation of time and,
therefore, of confidence may rely on an integration of
activity of neurons, which in turn integrate sensory evi-
dence (Zylberberg et al., 2012). This process would liter-
ally instantiate the notion that confidence judgments
result from a decision about a decision, that is, a hierar-
chical cascade of canonical circuits implementing deci-
sions with different levels of abstraction relative to the
external world (McClelland, 1979). Our finding of a com-
mittal late construction of confidence during the retrieval
process is hence coherent with this view, indicating that
confidence is not a direct readout of the sensory signal
but, instead, of the decision process itself.
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