
Chemometrics and Intelligent Laboratory Systems 125 (2013) 121–131

Contents lists available at SciVerse ScienceDirect

Chemometrics and Intelligent Laboratory Systems

j ourna l homepage: www.e lsev ie r .com/ locate /chemolab
Four-way multivariate calibration using ultra-fast high-performance
liquid chromatography with fluorescence excitation–emission
detection. Application to the direct analysis of chlorophylls
a and b and pheophytins a and b in olive oils
Valeria A. Lozano a, Arsenio Muñoz de la Peña b,⁎, Isabel Durán-Merás b,
Anunciación Espinosa Mansilla b, Graciela M. Escandar a

a Instituto de Química Rosario (CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
b Department of Analytical Chemistry, Faculty of Sciences, University of Extremadura, 06006, Badajoz, Spain
⁎ Corresponding author. Tel.: +34 924289378.
E-mail address: arsenio@unex.es (A. Muñoz de la Pe

0169-7439/$ – see front matter © 2013 Elsevier B.V. All
http://dx.doi.org/10.1016/j.chemolab.2013.04.005
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 29 January 2013
Received in revised form 2 April 2013
Accepted 5 April 2013
Available online 12 April 2013

Keywords:
Elution time–emission wavelength–
excitation wavelength data
Third-order multivariate calibration
Chlorophylls
Pheophytins
Olive oils
A four-way multivariate calibration approach, based on the combination of ultra-fasthigh-performance liquid
chromatographic data and four-way algorithms, is described for the first time. To achieve this goal, several
emission wavelength–elution time matrices (ETMs) were recorded as a function of the excitation wave-
length. Each sample was injected into the chromatograph eight times, in sequential mode, each time exciting
at a different wavelength across the excitation spectra of the compounds of interest, and the emission spectra
were recorded along the full chromatogram using a fast scanning fluorescence detector. The data were
obtained in a very short time with an ultrafast chromatographic system operating in gradient mode. The
three-wayETM data thus obtained for the calibration sample set and for each of the test samples were joined
into a single four-way array, which was subsequently analyzed with parallel factor analysis (PARAFAC), un-
folded partial least-squares with residual trilinearization (U-PLS/RTL) and multi-way partial least-squares
with residual trilinearization (N-PLS/RTL) multivariate calibration algorithms. Best results were found when
either U-PLS/RTL or N-PLS/RTL algorithms were used to perform the multivariate calibration. The method was
applied to the direct determination of chlorophylls a and b and pheophytins a and b in olive oil samples, in the
presence of other interfering fluorescent compounds, and without previous sample treatment.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

In order to perform the quantitative analysis of selected analytes of
interest, in complex samples, a great effort has been recently directed
to the use of excitation–emission fluorescence spectroscopy, in combi-
nation with different multivariate calibrationmodeling tools. These ap-
proaches are related to the ability of multi-way calibration models to
exploit the partial selectivity in the different modes of the data set. Ex-
amples of the use of multivariate analysis using excitation–emission
fluorescence matrix (EEFM) data, constituting three-way arrays when
data for a group of samples are joined, were summarized in two recent
reviews [1,2], both reporting up-to-date applications in the biomedical,
environmental and food analysis fields.

High performance liquid chromatography (HPLC), when combined
with spectroscopic techniques, such as UV–visible diode-array detec-
tion (DAD) or fast-scanning fluorescence detection (FSFD) is also able
to yield spectral-elution time matrix data. The spectroscopic response
ña).
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is arranged as a datamatrix,where each column corresponds to awave-
length and each row corresponds to a different elution time, and
second-order multivariate calibration can be applied to the correspond-
ing three-way arrays, when full selectivity in the chromatographic sepa-
ration is not achieved, even in the presence of unexpected components.
Additional benefits are decreasing cost and times of analysis. Two recent
reports deal with the advantages and drawbacks associated with the
combination of multivariate calibration and chromatography, and
pertinent references on the successful processing of spectroscopic–
chromatographic data can be found [3,4].

Surprisingly, very few literature works concern the processing of
three-wayHPLC data with fluorescence detection. Early reports used ei-
ther a videofluorimeter as detector [5], or more usually FSFD, in the lat-
ter case for the determination of polycyclic aromatic hydrocarbons
(PAHs) [6–8] and naphthalenesulfonates and naphthalenedisulfonates
[9], fluoroquinolones [10] and pteridines [11,12].

On going to one dimension further, four-way data have been usually
processed by resorting to the well-knownPARAFAC algorithm [13]. The
combination of trilinear least-squares with residual trilinearization
(TLLS/RTL) has also been proposed as a new algorithm for four-way
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data processing, and has shown to be useful for the analysis of complex
samples [14,15]. Alternative methodologies based on the use of latent
variables do also exist for processing four-way data, such as N-PLS and
the unfolded variant U-PLS, both of them lacking the second-order ad-
vantage. However, when U-PLS and N-PLS are coupled to the separate
procedure known as RTL, they are also able to achieve the second-
order advantage [15–18]. Other methodologies can also be applied to
these data by first unfolding them into matrices and then applying
MCR-ALS [19].

However, only in a few cases that four-way data have been recorded
and used to construct quantitative calibration models and to develop
analytical methodologies. This may be attributed to the fact that the ex-
perimental acquisition of these data arrays is still difficult to implement.
Hence, although one can imagine a large number of possible forms of
obtaining four-way data, those commonly used are the following: 1)
with a single instrument, EEMs as a function of reaction time [20–28],
and 2) with hyphenated instruments, bidimensional chromatography
with time of flight mass spectrometry (TOFMS) or DAD, such as
GC × GC–TOFMSor LC × LC–DAD, and LC–DADas a function of reaction
time (GC = gas chromatography) [29].

Four-way data would display the obvious advantage of providing
richer analytical information, implying more stable methods towards
interferences and matrix effects, and less prone to minor changes in
reaction conditions. This should allow for an improvement in predic-
tive ability.

The color of olive oil is principally related to its perceived quality,
and therefore to its acceptability. The economic importance of the ap-
pearance of the oils is unquestionable. The color of virgin olive oil is
due to the natural pigments chlorophylls (chl), pheophytins (phe)
and carotenoids [30]. The pigment content depends on widely chang-
ing variables such as the degree of fruit ripeness (green olives give a
green oil because of the high chlorophyll and pheophytin content,
and ripe olives give a yellow oil due to carotenoid pigments), envi-
ronmental conditions, production zone, processing techniques [31]
and storage conditions [32]. In addition, the chromatic intensities
and pigment contents have been related with different extraction
methodologies. In this sense, the contents of chlorophylls and deriva-
tives have been used to identify if the olive oils have been subject to
deodorization, a fraudulent treatment [33].

Determination of chlorophylls and pheophytins in olive oils usually
involves HPLC methods with UV detection. These compounds display a
hydrophobic nature, due to the long hydrocarbon side chain (phytol
chain) attached to the chlorin ring. This fact makes the analysis difficult
by reversed-phaseHPLC (RP-HPLC): in general, the analysis time is long
and the use of an ion-pair reagent in the mobile phase is needed. In all
proposed methods, it is necessary to isolate the pigment fraction of
olive oils by liquid–liquid extraction or by solid-phase extraction [34].
The analysis of the pigment fraction has been usually performed by
reversed-phaseion-pair chromatography with UV–vis detection
[35,36] or in series with a fluorescence detector [37].

The bibliography about the application of multivariate methods to
the quantification of these pigments in olive oils is scarce [38–40]. In a
previous paper, the resolution of the mixtures of chl a and b and phe a
and b has been accomplished by PLS regression of the excitation spec-
tra [41].

In this report, we describe, for the first time, a four-way multivariate
calibration approach based on data obtained using UHPLC (ultra-fast
HPLC) in combinationwith a fast-scanning spectrofluorometer as detec-
tor, that allows the recording of a complete emission scan in a short run
time and thus, emission–elution time three-way matrices (ETMs) have
been easily measured for each experimental sample. The third mode is
obtained by recording each ETM at different excitation wavelengths.
These four-way data, based on elution time–fluorescence excitation–
emission measurements, were processed with several multi-way algo-
rithms suchas PARAFAC,U-PLS andN-PLS,with the latter two convenient-
ly combined with RTL. This procedure has been applied to the four-way
data corresponding to mixtures of chlorophylls and pheophytins in olive
oil samples, without pretreatment of the samples, and without the isola-
tion of the pigment fraction. The best results were obtained with the
U-PLS/RTL and N-PLS/RTL combinations. The developed method enabled
us to determine the pigments, some of themwith overlapping profiles, in
olive oils, in a short analysis time and in the presence of other interfering
fluorescent compounds.

2. Materials and methods

2.1. Reagents and solutions

Chlorophylls a and b (chl a and chl b) were obtained from Sigma-
Aldrich Chemical Co. and used as received. Stock solutions of chloro-
phylls a and b were prepared by dissolving the contents of ampules
containing 1 mg of each chlorophyll, in 25.00 mL of acetone and stored
at −4 °C in darkness. The acetone was purchased from Merck (Darm-
stadt, Germany). Pheophytin (phe) stock solutions of 40 μg mL−1 were
prepared according to a previously described procedure [41]. Solutions
of the four pigments of lower concentrationswere prepared by appropri-
ate dilutionwith acetone. These solutionswere stored at−4 °C. All other
chemicals utilized were of analytical reagent grade or better.

Methanol and 1-propanol, HPLC-grade, were purchased from Sigma
(Spain). Ultrapure water provided by a Milli-Q purification system was
used. Solvents and samples used to perform the chromatographic tech-
nique were filtered through 0.22 μm nylon filter membranes before
each injection.

2.2. Apparatus and software

HPLC was carried out on an Agilent 1260 Infinity Series equipped
with a degasser, a quaternary pump, a column oven, a manual six-
way injection valve with a 10 μL fixed loop, a multi-scan fluorescent
detector (G1321B FLD) and the ChemStation software package to
control the instrument and data acquisition. The analytical column
used was a Poroshell 120 EC-C18 column (4.6 × 50 mm, 2.7 μm,
Agilent Technologies, Inc. ). The Poroshell 120 packing has a solid
core of 1.7 μm in size with a porous outer layer 0.5 μm thick and a
total particle size of 2.7 μm. The column temperature was set at
20 °C. Data acquisition and instrument control were performed on
the HPLC 1260 software package. The mobile phase consisted of a
mixture of methanol and 1-propanol and these components were fil-
tered through a 0.22 μm membrane nylon filter and degassed by
ultrasonication before use. The flow rate was 2.0 mL min−1. The elu-
tion was made by applying a gradient mode increasing the percent-
age of 1-propanol. The gradient program was the following: from 0 to
0.2 min the percentage of 1-propanol was 40%; from 0.2 to 0.3 min
the percentage of 1-propanol was increased from 40 to 70% and then
wasmaintained constant until 0.9 min; from0.9 to 1.0 min the percent-
age of 1-propanol was decreased up to 40% and from 1 to 1.1 min, was
maintained constant at 40%. Sequential mode was used and, for each
sample, eight chromatograms were obtained exciting at eight different
excitation wavelengths (from 350 to 490 nm in 20 nm steps) and
recording the emission spectra from 620 nm to 680 nm every 1 nm,
in 1.7 s time steps (the data points between 0 and 0.27 min were
discarded because of a dead-time artifact). Each run was accomplished
in 1.1 min and the complete analysis for a specific sample was carried
out in 8.8 min. These matrices were then saved in ASCII format, and
transferred to a PC based on an AMD Athlon dual core microprocessor
for subsequent manipulation.

All calculations were done using MATLAB 7.0 [42], using different
routines and graphical interfaces: MVC3 (MultiVariate Calibration for
third-order), an integrated MATLAB toolbox for third-order calibration
developed by Olivieri et al. [43], which allows performing third-order
calibration with different modeling methods, including PARAFAC[13],
U-PLS andN-PLS, both coupled to RTL[15,18]. The software can be freely



Table 2
Predicted concentrations (μg mL−1) in validation samples using PARAFAC,U-PLS and
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downloaded from the webpage www.iquir-conicet.gov.ar/descargas/
mvc3.rar.
N-PLS.

RMSEPa REPb

Chl a
Actual 0.40 0.80 1.20 1.40 0.60 0.90 1.00
PARAFAC 0.30 0.35 0.98 1.44 0.30 0.49 0.72 0.29 29
U-PLS 0.43 0.85 1.14 1.31 0.56 0.89 1.00 0.05 5
N-PLS 0.40 0.85 1.13 1.32 0.56 0.90 1.00 0.05 5

Chl b
Actual 1.40 0.40 0.80 1.20 0.90 0.60 1.00
PARAFAC 1.40 0.21 0.21 1.47 0.30 0.21 0.79 0.38 38
U-PLS 1.31 0.44 0.86 1.04 0.89 0.48 1.00 0.09 9
N-PLS 1.48 0.34 0.73 0.88 0.81 0.44 0.97 0.15 15

Phe a
Actual 1.20 1.40 0.40 0.80 0.60 0.90 1.00
PARAFAC 1.21 1.38 0.31 0.31 0.31 0.36 0.78 0.31 31
U-PLS 1.22 1.34 0.37 0.74 0.54 0.86 1.04 0.05 5
N-PLS 1.29 1.34 0.35 0.74 0.53 0.85 1.02 0.06 6

Phe b
Actual 0.80 1.20 1.40 0.40 0.90 0.60 1.00
PARAFAC 0.38 1.26 1.26 0.30 0.33 0.30 0.72 0.32 32
U-PLS 0.84 1.27 1.24 0.34 0.81 0.57 0.99 0.08 8
N-PLS 0.83 1.28 1.28 0.37 0.82 0.58 1.00 0.06 6

a RMSEP, root mean square error prediction in μg mL−1.
b REP, relative error prediction in %.
2.3. Calibration and validation samples

The experimental procedure corresponding to the four-way analysis
for chl a, chl b, phe a and phe b was developed preparing a calibration
set of 25 samples: 16 of these samples corresponding to the concentra-
tions provided by a full factorial designwith two levels for each analyte,
2 replicates of the central point, 6 samples containing one or two of the
studied analytes at the average calibration concentration, and a final
blank sample only containing methanol:1-propanol 60:40 (v/v). The
tested concentrationswere in the range of 0.5–1.5 μg mL−1 for each an-
alyte. A validation set of 7 samples was prepared, employing different
concentrations than those used for calibration and following a random
design, i.e., choosing the validation concentrations by generating ran-
domnumbers, equally distributedwithin the analyte calibration ranges.
The specific calibration and validation concentrations are provided in
Tables 1 and 2, respectively, and the ranges were established on the
analysis of the linear fluorescence-concentration range for each analyte.
Calibration and validation samples were prepared by measuring appro-
priate aliquots of standard solutions, placing them in 5.00 mL volumet-
ric flasks in order to obtain the desired concentrations, and completing
to the mark with the mobile phase. Injection into the chromatographic
system was made in random order and in different days.
2.4. Olive oil samples

The olive oil samples (approximately 1 g) with and without addi-
tion of different amounts of each pigment were diluted to 10 mL with
1-propanol. Aliquots of 1 mL of these solutions were diluted with
3.0 mL of 1-propanol and with 6.0 mL of methanol up to a final vol-
ume of 10.0 mL. After that, aliquots (10 μL) of each sample were
injected in the chromatographic system to obtain the chromatograms
at the different selected excitation wavelengths. The four-way arrays
obtained were used to measure the pigments in the olive oil samples.
Table 1
Calibration and validation concentrations (μg mL−1) employed for quantitation of the
chl a, chl b, phe a and phe b.

Sample Chl a Chl b Phe a Phe b

1 0.5 0.5 0.5 0.5
2 1.5 0.5 0.5 0.5
3 0.5 1.5 0.5 0.5
4 1.5 1.5 0.5 0.5
5 0.5 0.5 1.5 0.5
6 1.5 0.5 1.5 0.5
7 0.5 1.5 1.5 0.5
8 1.5 1.5 1.5 0.5
9 0.5 0.5 0.5 1.5
10 1.5 0.5 0.5 1.5
11 0.5 1.5 0.5 1.5
12 1.5 1.5 0.5 1.5
13 0.5 0.5 1.5 1.5
14 1.5 0.5 1.5 1.5
15 0.5 1.5 1.5 1.5
16 1.5 1.5 1.5 1.5
17 1.0 1.0 1.0 1.0
18 1.0 1.0 1.0 1.0
19 1.0 0.0 0.0 0.0
20 0.0 1.0 0.0 0.0
21 0.0 0.0 1.0 0.0
22 0.0 0.0 0.0 1.0
23 1.0 0.0 1.0 0.0
24 0.0 1.0 0.0 1.0
25 0.0 0.0 0.0 0.0
3. Theory

3.1. PARAFAC

After measuring third-order data for a set of samples, each of them
as a J × K × L array (J, K and L are the number of data points in each of
the three modes), the I training arrays Xi,cal are joined with the un-
known sample array Xu into a four-way data array X, whose dimen-
sions are [(I + 1) × J ×K ×L]. Provided X follows a quadrilinear
PARAFAC model, it can be written in terms of four vectors for each re-
sponsive component, designated as an, bn, cn and dn, and collecting
the relative concentrations [(I + 1) ×1] for component n, and the
profiles in the three modes (J ×1), (K ×1) and (L ×1), respectively.
The specific expression for a given element of X is [44]

Xijkl ¼
XN

n¼1

ainbjnckndln þ Eijkl ð1Þ

where N is the total number of responsive components, ain is the rel-
ative concentration of component n in the ith sample, and bjn, ckn and
dln are the fluorescence intensities at the emission wavelength j, exci-
tation wavelength k and elution time l, respectively. The values of Eijkl
are the elements of the array E, which is a residual error term of the
same dimensions as X. The column vectors an, bn, cn and dn are col-
lected into the corresponding loading matrices A, B, C and D (bn, cn
and dn are usually normalized to unit length).

The model described by Eq. (1) defines a decomposition of X
which provides access to emission (B) and excitation spectral profiles
(C), elution time profiles (D) and relative concentrations (A) of indi-
vidual components in the (I + 1) mixtures, whether they are chemi-
cally known or not. This constitutes the basis of the second-order
advantage. The decomposition is usually accomplished through an al-
ternating least-squares minimization scheme [45,46].

Initializing PARAFAC for the study of four-way arrays can be done
using singular value decomposition vectors, spectral and chromato-
graphic data which are known in advance for pure components, or by
the loadings giving the best fit after small PARAFAC runs involving
both singular value decomposition vectors and several sets of orthogo-
nal random loadings. These options are implemented in the PARAFAC
package [47].

http://www.iquir-conicet.gov.ar/descargas/mvc3.rar
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The number of responsive components (N) can be estimated by sev-
eral methods. A useful technique is CORCONDIA, a diagnostic tool con-
sidering the PARAFAC internal parameter known as core consistency
[48,49]. Another useful technique is the consideration of the PARAFAC
residual error, i.e., the standard deviation of the elements of the array
E in Eq. (1)[45]. Usually this parameter decreases with increasing N,
until it stabilizes at a value compatible with the instrumental noise
(the latter can be assessed by blank replicatemeasurements). A reason-
able choice for N is thus the smallest number of components for which
the residual error is not statistically different than the instrumental
noise.

Identification of the chemical constituents under investigation is
done with the aid of the three estimated profiles: emission spectrum,
excitation spectrum and chromatographic profile, and comparing
them with those for a standard solution of the analyte of interest.
This is required since the components obtained by decomposition of
X are sorted according to their contribution to the overall spectral
variance, and this order is not necessarily maintained when the un-
known sample is changed.

Absolute analyte concentrations are obtained after calibration, be-
cause the four-way array decomposition only provides relative values
(A). Calibration is done by means of the set of standards with known
analyte concentrations (contained in an I × 1 vector y), and regres-
sion of the first I elements of column an against y:

k ¼ yþ � aIn …j jaIn½ � ð2Þ

where “+” implies taking the pseudo-inverse. Conversion of relative
to absolute concentration of n in the unknown proceeds by division
of the last element of column an [a(I + 1)n] by the slope of the calibra-
tion graph k:

yu ¼ a Iþ1ð Þn=k: ð3Þ

The above procedure is repeated for each new test sample
analyzed.

3.2. U-PLS/RTL

For four-way calibration, U-PLS/RTL constitutes an extension of
U-PLS/RBL one further mode [15], and will be briefly described in this
section. When using four-way data, in the U-PLS method, the original
matrix data is transformed into uni-dimensional arrays (vectors) by
concatenating (unfolding) the original three-dimensional information,
and concentration information is first employed into the calibration
step (without including data for the unknown sample) [50]. The calibra-
tion third-order arrays are vectorized (unfolded) and a usual U-PLS
model is calibrated with these data and the vector of calibration concen-
trations y (I × 1). This provides a set of loadingsP andweight loadingsW
(both of size JKL × A, where A is the number of latent factors), as well as
regression coefficients v (size A × 1). The parameter A can be selected by
techniques such as leave-one-outcross-validation[51]. If no unsuspected
interferences occur in the test sample, v can be employed to estimate the
analyte concentration:

yu ¼ tu
Tv ð4Þ

where tu (size A × 1) is the test sample score, obtained by a projection of
the (unfolded) data for the test sample Xu [vec(Xu), size (JKL × 1)] onto
the space of the A latent factors:

tu ¼ WTP
� �

–1
WTvec �Xu

� �
: ð5Þ

When uncalibrated constituents occur in Xu, the sample scores
given by Eq. (5) are not suitable for analyte prediction using Eq. (4).
In this case, the residuals of the U-PLS prediction step will be
abnormally large in comparison with the typical instrumental noise
assessed by replicate measurements:

sp¼ vec Ep

� ����
���

���
���= JKL–Að Þ1=2¼jjvec �Xu

� �
–P WTP

� �
–1
WTvec �Xu

� �
jj= JKL–Að Þ1=2¼

¼ jjvec �Xu

� �
–P tujj= JKL–Að Þ1=2

ð6Þ

where || ⋅ || indicates the Euclidean norm, and JKL − A corresponds to
the degree of freedom (number of variables minus number of adjust-
able parameters).

If interferent components occur in the test sample, the situation
can be handled by RTL, based on a Tucker3 decomposition that
models the interferent effects, as already described [15]. RTL aims at
minimizing the norm of the residual vector eu, computed while fitting
the sample data to the sum of the relevant contributions to the sam-
ple signal. For a single interferent the relevant expression is:

vec �Xu

� �
¼ P tu þ gint dint⊗cint⊗bintð Þ þ eu ð7Þ

where bint, cint and dint are normalized profiles in the three modes for
the interference and gint is the first core element obtained for Tucker3
analysis of Ep in the following way:

gint;bint; cint;dintð Þ ¼ Tucker3 �Ep
� �

: ð8Þ

During this RTL procedure, P is kept constant at the calibration
values and tu is varied until || eu || is minimized. The minimization
can been carried out using either a Gauss–Newton (GN) procedure
or an alternating least squares algorithm, in both cases starting with
tu from Eq. (5). Once || eu || is minimized in Eq. (7), the analyte con-
centrations are provided by Eq. (4), by introducing the final tu vector
found by the RTL procedure.

The number of interferents Ni can be assessed by comparing the
final residuals su with the instrumental noise level:

su ¼ euj jj j= JKL– Nc þ Nið Þ½ �1=2 ð9Þ

where eu is from Eq. (7) and Nc is the number of calibrated analytes.
Typically, a plot of su computed for trial number of components will
show decreasing values, starting at sp when the number of compo-
nents is equal to A (the number of latent variables used to described
the calibration data), until it stabilizes at a value compatible with
the experimental noise, allowing to locate the correct number of
components.

To analyze the presently discussed data, the Tucker3 model in
Eq. (8) is constructed by restricting the loadings to be orthogonal,
and with no special constraints on the core elements. For a single un-
expected component, this analysis is straightforward, and provides
the corresponding interferent profiles in the three modes. For addi-
tional unexpected constituents, however, the retrieved profiles no
longer resemble true spectra (or elution time profiles). Moreover, in
this latter case, several different Tucker3 models could in principle
be constructed, because the number of loadings may be different in
each mode. We notice that the aim which guides the RTL procedure
is the minimization of the residual error term su of Eq. (9) to a level
compatible with the degree of noise present in the measured signals.
Therefore, if two unexpected components are considered, for exam-
ple, one should explore the possible Tucker3 models having one or
two loadings in each mode, and select the simplest model giving a re-
sidual value of su which is not statistically different than the mini-
mum one. For more unexpected components a similar procedure is
recommended. The final Tucker3 model selected to model the unex-
pected effects is the simplest one which provides a value of su
which is not statistically different than the noise level.



Fig. 1.Excitation and emission spectra of chl a, chl b, phe a andphe b inmethanol-1–propanol
(60:40, v/v). All concentrations were 1.00 μg mL−1.

125V.A. Lozano et al. / Chemometrics and Intelligent Laboratory Systems 125 (2013) 121–131
We note that two different residual parameters appear in the
above discussion, which should not be confused: sp [Eq. (6)] corre-
sponds to the difference between the test sample signal and that
model by U-PLS before the RTL procedure, while su [Eq. (9)] arises
from the difference after the RTL modeling of the interferent effects.
Hence it is the latter one which should be comparable to the instru-
mental noise level if RTL is successful.

3.3. N-PLS/RTL

In the N-PLS method applied to third-order data, concentration in-
formation is employed in the calibration step, without including data
for the unknown sample. The I calibration data arrays, together with
the vector of calibration concentrations y (size I × 1) are employed
to obtain sets of loadings Wj, Wk and Wl (of sizes J × A, K × A and
L × A, where A is the number of latent factors), as well as regression
coefficients b (size A × 1) [48]. The parameter A can be selected by
techniques such as leave-one-outcross-validation[51]. If no unexpect-
ed components occurred in the test sample, b could be employed to
estimate the analyte concentration according to:

yu ¼ tu
Tb ð10Þ

where tu is the test sample score vector, obtained by appropriate pro-
jection of the test data onto the calibration loading matrices. When
unexpected constituents occur in the unknown sample, the latter
scores are unsuitable for analyte prediction through Eq. (10). In this
case, it is useful to consider the residuals of the N-PLS modeling of
the test sample signal [sp, see Eq. (11) below] before prediction is
made. These residuals will be abnormally large in comparison with
the typical instrumental noise level:

sp ¼ ep
���

���
���

���= JKL–Að Þ1=2 ¼
���vec Xuð Þ–vec X̂u

� ����= JKL–Að Þ1=2 ð11Þ

where X̂u is the sample three-way data array (Xu) reconstructed by
the N-PLS model and || · || indicates the Euclidean norm.

This situation can be handled by a separate procedure called resid-
ual trilinearization, based on the Tucker3 model of the unexpected ef-
fects, as discussed above for U-PLS/RTL. In the case of N-PLS/RTL, the
analogous expression to Eq. (7) is:

Xu ¼ reshape tu Wj ⊗j jWk
� �

⊗j jW1
h in o

þ Tucker3 X̂u–Xu

� �
þ Eu ð12Þ

where ‘reshape’ indicates transforming a JKL × 1 vector into a
J × K × L three-way array, and |⊗| indicates the Kathri–Rao operator
[48]. During this RTL procedure, the weight loadings Wj, Wk and Wl

are kept constant at the calibration values, and tu is varied until the
final RTL residual error su is minimized using a Gauss–Newton proce-
dure, with su given by:

su ¼ Euj jj j= JKL– Nc þ Nið Þð �1=2
h

ð13Þ

where Eu is from Eq. (12). Once this is done, the analyte concentra-
tions are provided by Eq. (10), by introducing the final tu vector
found by the RTL procedure. The considerations discussed above
concerning the Tucker3 model of Eq. (12) do also apply to N-PLS/RTL.

4. Experimental

4.1. Fluorescence properties of analytes

The native fluorescence of these compounds is well-known and
there are many reports about the fluorescence of chl a in different sol-
vents [52]. However, as regards the fluorescence of the other deriva-
tives, such as chl b and pheophytins, data are scarce. In a first phase,
we studied the analyte fluorescence in the solvents to be used as mo-
bile phase, e.g., methanol:1-propanol 60:40 (v/v). Fig. 1 shows the ex-
citation and emission spectra for 1.00 μg mL−1 of the studied
analytes in this solvent mixture. They were recorded in wide spectral
excitation and emission ranges: 300–500 nm and 600–720 nm, re-
spectively. The profiles of emission spectra are very similar for the
four components, and their maxima are very close, being 672 nm
for chl a, 663 nm for chl b, 671 nm for phe a, and 658 nm for phe b.
The largest differences correspond to the excitation spectra. No sub-
stantial differences were detected in the position of excitation and
emission maxima with respect to other solvents [52]. The quantum
yield of chlorophylls and pheophytins in different solvents has been
previously described. For chlorophyll a, quantum yield values of
0.30 and 0.23, in acetone and in methanol, respectively, have been
reported. For chlorophyll b the values are 0.09 and 0.10, respectively,
and for pheophytin a in benzene, the reported quantum yield is 0.117
[53]. In our experimental conditions, when the mobile phase is
methanol:1-propanol, 30:70 (v:v), the fluorescence of the chloro-
phylls and of the pheophytins is about 60% lower than in the pure
solvents.

Although the fluorescence quantum yields in the selected mixture
of solvents are smaller than those found in acetone or in methanol,
this mobile phase mixture allows the direct analyses of the pigments
in olive oil without the need of a previous extraction step.
4.2. Optimization of the chromatographic conditions

Usually, the HPLC procedures for the determination of green pig-
ments in olive oils involve the previous extraction of the pigment
fraction by either liquid–liquid or solid-phase extractions. These pro-
cedures are very laborious, and the recoveries are not satisfactory for
all pigments, due to their different polarities [30]. Currently, the LC
proposed methods use UV detection; fluorescence detection is less
used [37]. Also, one of the components of the mobile phase is usually
an ion-pair reagent [30,34]. This limits the proportion of the organic
modifier in the mobile phase, because high quantities can cause the
precipitation of the ion-pair reagent. Finally, the experimental time
for a single run in most methods is ca. 30 min.

An objective of the present study was to decrease the analysis
time. To achieve this goal, a short column with 2.7 μm particle size
was used, as these columns have similar efficiency to sub-2 μm col-
umns and, allow working with 40–50% less pressure. The first step
consisted in optimizing the composition of the mobile phase and
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flow rate, with the aim of keeping the separation time as short as
possible.

The composition of the mobile phase was studied with the purpose
of directly analyzing the olive oil samples, hence the first challenge was
to select solventmixtures thatweremisciblewith the oils. Different sol-
vent mixtures were tested, namely methanol–acetone, methanol-1–
propanol, and acetonitrile–1-propanol. The best results were obtained
with a mixture of methanol and 1-propanol (60:40, v/v). The flow
rate was varied between 1.2 and 2 mL min−1, and the latter value
was chosen because the analysis time was smaller, i.e., on the order of
1 min, as desired. A gradient elution was necessary because of the
wide range in capacity factors of the analytes in study. The initial per-
centage of 1-propanol (40%)was varied in order to optimize the resolu-
tion between the two chlorophylls. However, under these conditions,
the elution of the pheophytins, which are less polar than chlorophylls,
required a run time of ca. 3 min. Then, different elution gradients
using increasing percentages of 1-propanol were tested, in order to
achieve the elution of the four analytes in about 1 min. Finally, the gra-
dient that provides the best relation between run time and resolution
was as follows: methanol:1-propanol, 60:40 (v/v) during 0.2 min,
followed by a linear gradient to 70% of 1-propanol and then constant
until 0.9 min, from 0.9 to 1.0 min the percentage of 1-propanol de-
creased linearity to 40% and finally, this proportion was maintained
constant up to 1.1 min. Different injection volumes of 5, 10 and 20 μL
were also tested, choosing a 10 μL loop as optimum.

Fig. 2 shows the profile of the optimized elution gradient, and a
chromatogram of standard solutions containing 1.0 μg mL−1 of each
analyte, eluted under the optimized conditions. The complete elution
time was 1.1 min.

In these conditions, univariate calibration curves (peak areas vs.
analyte concentration) were constructed for the quantification of
chl a, chl b, phe a and phe b, in order to check the linear analytical
range for the isolated analytes. Solutions for calibration curves were
prepared by convenient dilution of the standard solutions with mo-
bile phase (methanol:1-propanol, 60:40, v/v), in order to obtain con-
centrations in the range of 0.5–1.5 μg mL−1 for each analyte. The data
were fitted by standard least-squares regression and the square of the
correlation coefficient (R2) obtained were 0.9935 for chl a, 0.9967 for
chl b, 0.9881 for phe a and 0.9995 for phe b.

As can be seen in Fig. 2, these analytes cannot be accurately quan-
titated by univariate calibration, because the resolution between all
peaks is lower than the acceptable minimum. The resolution was
first attempted using second-order calibration based on emission–
Fig. 2. Liquid chromatogram of chl a, chl b, phe a and phe b for a typical validation sam-
ple, containing 1.00 μg mL−1 of each compound (solid line). LU: luminescence units.
Mobile phase: gradient program as a function of 1-propanol (%) during the analysis
time (dashed line).
elution time data, obtained by exciting all analytes at a compromise
fixed wavelength. In this case, an extensive overlapping occurs in
both elution and emission modes, and the sensitivity for phe a and
chl b is not adequate. Thus, in complex cases such as the present
one, it is necessary to employ advanced multi-way modeling tech-
niques for quantifying the four pigments. Third-order multivariate
calibration is known to provide increased sensitivity and selectivity but,
up to now, these algorithms have been used mainly with excitation–
emission matrices, and no data has been reported about its application
to four-way data obtained with HPLC.

4.3. Four-way data recording

Fig. 3 shows the three-way data array structure obtained in this
work, following the excitation wavelengths of the matrices for one
of the calibration mixtures (1.00 μg mL−1 of each analyte) in the se-
lected spectral ranges. For each sample, 61 emission spectra have
been recorded between 620 and 680 nm, with data interval of
1 nm, and at intervals of 1.8 s. The excitation wavelengths were
ranged between 350 and 490 nm in steps of 20 nm. It can be appreci-
ated that the emission intensity of the analytes varies considerably as
a function of the excitation wavelengths. These eight matrices were
then mathematically assembled using MATLAB commands to obtain
a three-way array for each sample. In Fig. 4 the three-way array,
obtained by concatenating the eight emission–elution time matrices
at the different excitation wavelengths, is reported. This data ensem-
ble corresponds to a single calibration sample.

Fig. 5 shows the excitation–emission matrices for different elution
times, extracted from the three-way array. It shows a contour plot of
the complete landscape of fluorescence intensity as a function of ex-
citation and emission wavelengths at ten different elution times, for
the same sample used in Fig. 3. It can be appreciated that the fluores-
cence intensity of each of the analytes increases at different elution
times, and highlights the fact that a significant overlapping occurs be-
tween chlorophylls and pheoppytins. At 0.36 min the first peak corre-
sponding to chl b begins to elute, finishing at 0.45 min, and chl a
starts appearing reaching its maximum at 0.54 min. Phe b appears
at 0.72 min and continues until 0.81 min, and phe a comes out at
0.90 min.

4.4. Validation samples

The set of 7 validation samples (Table 2)was investigatedwith the aid
of PARAFAC,U-PLS and N-PLS, employing the MVC3 interface. The first
step is the assessment of the correct number of sample constituents or
the latent variables. For PARAFAC, the number of componentswas select-
ed applying the so-called core consistency analysis (CORCONDIA) [49,50],
and for U-PLS and N-PLS, a leave-one-sample-out cross-validation proce-
dure, according to the criterion of Haaland and Thomas [51], was
performed. In these last two algorithms, the optimum number of factors
was estimatedby calculating the ratios F(A) = PRESS(A b A*) / PRESS(A)
[where PRESS = Σ(yi,act − yi,pred)2, A is a trial number of factors and A*
corresponds to the minimum PRESS] and selecting the number of factors
leading to a probability of less than 75% that F > 1. For the three calibra-
tionmodels, the estimated number of components was 4 in all validation
samples, which can be justified taking into account the presence of the
four analytes.

The nominal and predicted concentration results corresponding to
the application of PARAFAC,U-PLS and N-PLS, and the statistical param-
eters (root mean square errors and relative errors of predictions)
obtained in the analysis of validation samples, are collected in Table 2.
It is noticeable that the results obtained with PARAFAC are not good,
probably due to the fact that PARAFAC requires that the data show the
property of quadri-linearity, which can be lost if chromatographic elu-
tion times are not exactly reproducible and if one (or both) of the spec-
tral modes show a great overlapping, as occurs in this case with the



Fig. 3. Data matrices obtained for a typical validation sample as a function of emission wavelength and retention time, varying the excitation wavelengths from 350 nm to 490 nm
in steps of 20 nm.
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emission spectra of the four analytes. However, the results obtained
with U-PLS or N-PLS are very satisfactory. The N-PLS results are similar
to those obtained with its unfolded counterpart, U-PLS, and better than
those from PARAFAC. The better predictive ability of U-PLS and N-PLS
Fig. 4. Four-way array obtained by concatenating each of the three-way data (excitation w
performed between 0 and 1.1 min.
may be due to two reasons: (1) in principle, these algorithms do not re-
quire quadri-linearity, and (2) both have a more flexible internal
structure. This may be an indication that this latent structure method
may be better prepared to cope with the problems of severe spectral
avelengths were from 350 to 490 nm in steps of 20 nm). Each chromatographic run is



Fig. 5. Contour plots of the EEMs obtained for different retention times (tr) to illustrate the chromatographic evolution of chl a, chl b, phe a and phe b of a typical validation sample,
containing 1.00 μg mL−1 of each compound. Fluorescence intensity has been coded in colors, with deep blue indicating the lowest value and deep red the largest one. The ten con-
tour plots correspond to ten different retention times selected through the chromatogram, from 0.27 min to 1.1 min. (For interpretation of the references to color in this figure, the
reader is referred to the web version of this article.)
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overlapping and with small irreproducibility in the elution times. On
the other hand, thesemethodologies show the advantage of not requir-
ing the time alignment of the chromatograms, which implies a simplifi-
cation of the calculations.

Table 3 shows the figures of merit for U-PLS and N-PLS methods.
All parameters are seen to be good, indicating that the present meth-
odology may constitute the basis for a simultaneous determination of
the four studied analytes. The LODs estimated with both models,
according to the literature [54] for the sample of the lowest concen-
tration, were similar to those obtained with dilute solutions of the
analytes (Table 3). In this latter case, a solution of each analyte was
sequentially diluted with the mobile phase to obtain concentrations
in the range from 0.01 to 0.5 μg mL−1 (in all cases below the mini-
mum concentration of the calibration set). The detection limit was es-
timated as the smallest concentration that produced a signal leading
to a predicted concentration having an error lower than 5%. With
both strategies similar LODs were obtained. The most unfavorable
LOD corresponds to chl b, due to the low fluorescence intensity of
this analyte in the optimized conditions.

The inter-day precision was evaluated by injection of a sample
during thirty consecutive days. The recovery values are 113 ± 7 for
chl a, 102 ± 8 for chl b, 93 ± 9 for phe a and 100 ± 5 for phe b.
These values indicate a good repeatability of the multivariate calibra-
tion method used.

In order to get further insight into the accuracy and precision of
the algorithms analyzed, nominal versus found concentration values
were compared by application of the EJCR (elliptical joint confidence
region) test. Only the ellipses (at 95% confidence level) of U-PLS and
N-PLS include the theoretically expected values of slope = 1 and in-
tercept = 0, as expected. The best results were obtained with the
U-PLS and N-PLS algorithms, because the ellipses contain the ideal
point and have smaller size, indicating greater accuracy. Nevertheless,
PARAFAC does not pass the test because it does not contain the ideal
point and shows a large and undesirable size. These results confirm
the statistical results shown in Table 2.

4.5. Olive oil samples

With the purpose of testing the applicability of the investigated
methods, a set of four olive oils from different varieties was analyzed.
The level of chlorophyll pigments depends on genetic factors, the
stage of fruit ripeness, the extraction process and the storage condi-
tions. Phe a is the major component of the chlorophyll pigments, es-
pecially in oils stored for a long time, because during the storage
period chlorophyll undergoes specific changes, such as chlorophyll
pheophytinization reaction initiated during the extraction process,
that implies an alteration of the pigment profile. Phe a is present in
the olive oil samples analyzed, but the levels of chl a, chl b and phe
b are lower than the detection limits of the method and, with the ob-
ject of carrying out a recovery study, the samples were fortified with
the four pigments.

The set of four monovarietal olive oil samples were investigated with
the aid of U-PLS and N-PLS, both combined with RTL, constituting a
third-order multivariate calibration method capable of achieving the
second-order advantage.When U-PLS was applied to these olive oil sam-
ples, it was necessary to assess the number of unexpected components
(Nunx) to be employed in the RTL procedure. This can be done by analyz-
ing the residuals su as a function of a trial number of unexpected compo-
nents. A typical result for one of the analyzed samples was as follows:
su = 1.84, 0.26 and 0.22 for Nunx = 0, 1 and 2, respectively. The choice
of Nunx = 1 can also be confirmed to be reasonable because, using this
value, the predicted analyte concentrations did not significantly change



Table 3
Analytical figures of merit for U-PLS and N-PLS methods in validationa and olive oil samples.

Chl a Chl b Phe a Phe b

U-PLS N-PLS U-PLS N-PLS U-PLS N-PLS U-PLS N-PLS

Validation samples
SENb/mL μg−1 240 230 160 120 170 150 340 330
(γ−1)c/μg mL−1 0.005 0.006 0.006 0.010 0.007 0.008 0.003 0.003
LODd/μg mL−1 0.04 0.05 0.41 0.46 0.06 0.07 0.05 0.04
LODe/μg mL−1 0.05 0.05 0.40 0.40 0.05 0.05 0.05 0.05

Olive oil samples
SENb/mL μg−1 170 170 120 120 150 150 250 240
(γ−1)c/μg mL−1 0.002 0.002 0.002 0.007 0.002 0.003 0.001 0.002
LODd/μg mL−1 0.05 0.05 0.38 0.35 0.07 0.07 0.04 0.04

a Figures of merit have been estimated from the sample of lowest concentration.
b SEN, sensitivity.
c γ−1, inverse of analytical sensitivity (represents the minimum concentration difference which can be measured).
d LOD, limit of detection estimated according to ref.54.
e Experimental LOD (see text).
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with respect to the use of higher number of unexpected components.
N-PLS provided comparable results to these obtained with U-PLS. There-
fore, one additional component was considered to be necessary in the
RTL procedures when the olive oil samples were analyzed, suggesting
one unexpected component in the olive oil samples.

Predictions using the U-PLS/RTL model are summarized in Table 4.
In all cases, the analytical results are satisfactory taking into account
the complexity of the olive oil samples and the absence of pretreat-
ment steps. The average recovery values ranged from 85 to 106%.
Similar results have been obtained with N-PLS/RTL model, Table 5.

The found phe a contents are in agreement with the bibliographic
data and corroborate that this is the principal pigment present in olive
oil [31,32]. Its contents in the four olive oils analyzed were:
9.8 mg kg−1 for cornicabra olive oil, 10.8 mg kg−1 for picual olive oil,
10.9 mg kg−1 for manzanilla cacereña olive oil and 21.7 mg kg−1 for
hojiblanca olive oil.

The obtained figures of merit applying U-PLS/RTL and N-PLS/RTL
with the olive oil samples (Table 3) are also satisfactory, the detection
limits are on the order of 0.04–0.07 μg mL−1 for chl a, phe a and phe
b, and 0.38 μg mL−1 for chl b. It should be noted that both algorithms
Table 4
Predicted concentrations in the olive oil samples using U-PLS/RTL.

Olive oil Addeda Chl a Chl b

Founda Rec (%) Founda

Cornicabra ND ND
0.55 0.51 93 0.67
0.75 0.77 103 0.75
1.10 1.20 109 1.01

Picual ND ND
0.40 0.32 80 0.49
0.65 0.51 78 0.68
1.00 0.85 85 0.94

Manzanilla cacereña ND ND
0.45 0.37 82 0.54
0.80 0.77 96 0.84
0.95 0.78 82 1.00

Hojiblanca ND ND
0.35 0.27 78 0.39
0.70 0.74 106 0.71
0.90 0.80 89 0.80

Recb (%) ± SD 92 ± 12 106 ± 1
RMSEPc 0.10 0.07
REPd (%) 9 7

a All values are given in μg mL−1.
b Rec, average recovery.
c RMSEP, root mean square error prediction.
d REP, relative error prediction.
are successful in the presence of unexpected interferences and figures
of merit obtained are similar to those for validation samples.

On the other hand, the recovery values are better than those found
using the fluorometric method previously proposed by our research
group [41]. Also, the use of four-way multivariate calibration allows a
significant reduction of the number of samples used for the calibration,
and the automation of the analysis of the pigments, something difficult
to achieve with the previously described spectroscopic method.

5. Conclusion

This is thefirst time that four-waydatawere acquired by following the
emission–elution time matrices, at different excitation wavelengths. The
four way data, elution time–fluorescence excitation–emission, in combi-
nation with advanced third-order chemometric modeling methods,
allows the successful determination of chlorophyll and pheophytin pig-
ments in olive oil samples. PARAFAC,U-PLS and N-PLS algorithms were
used and compared. U-PLS and N-PLS are genuine higher-order latent
variable methods which, once combined with the RTL approach, achieve
the second-order advantage needed to successfully quantify the analytes
Phe a Phe b

Rec (%) Founda Rec (%) Founda Rec (%)

0.10 ND
122 0.59 89 0.55 100
100 0.77 89 0.75 100
92 1.20 100 1.03 94

0.11 ND
122 0.43 80 0.41 103
105 0.69 89 0.63 97
94 0.99 88 0.91 91

0.11 ND
120 0.48 82 0.46 102
105 0.74 80 0.88 110
105 0.98 92 0.90 95

0.22 ND
111 0.49 77 0.34 97
101 0.92 100 0.68 97
89 0.93 80 0.75 83

1 88 ± 7 97 ± 7
0.08 0.06
8 6



Table 5
Predicted concentrations in the olive oil samples using N-PLS/RTL.

Olive oil Chl a Chl b Phe a Phe b

Addeda Founda Rec (%) Founda Rec (%) Founda Rec (%) Founda Rec (%)

Cornicabra ND ND 0.10 ND
0.55 0.52 94 0.63 114 0.58 87 0.56 102
0.75 0.76 101 0.76 101 0.78 91 0.75 100
1.10 1.19 108 0.99 90 1.14 94 1.03 94

Picual ND ND 0.11 ND
0.40 0.32 80 0.51 128 0.41 75 0.41 103
0.65 0.45 70 0.53 82 0.72 94 0.63 97
1.00 0.80 80 0.90 90 1.01 90 0.92 92

Manzanilla cacereña ND ND 0.10 ND
0.45 0.36 80 0.52 116 0.49 87 0.46 102
0.80 0.73 91 0.75 194 0.82 90 0.87 109
0.95 0.66 70 0.96 101 1.01 96 0.90 95

Hojiblanca ND ND 0.22 ND
0.35 0.21 60 0.35 100 0.46 68 0.33 94
0.70 0.73 104 0.72 103 0.91 98 0.69 98
0.90 0.75 83 0.76 84 0.96 82 0.75 83

Recb (%) ± SD 85 ± 15 100 ± 14 88 ± 9 97 ± 6
RMSEPc 0.14 0.08 0.08 0.06
REPd (%) 14 8 8 6

a All values are given in μg mL−1.
b Rec, average recovery.
c RMSEP, root mean square error prediction.
d REP, relative error prediction.
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in complex samples. The more flexible internal structures of U-PLS/RTL
and N-PLS/RTL, in comparison with PARAFAC, make the former two
more appropriate approaches for processing four-way data, which are
not strictly quadrilinear. The method was applied to the determination
of chl a and b and phe a and b in olive oil samples without previous treat-
ments. On the other hand, the possibility of analyzing the principal pig-
ments in olive oil samples by the direct injection of the samples
dissolved in 1-propanol, without pretreatment steps, represents a great
simplification in the analysis. The proposedmethod is highly selective, re-
quires small quantities of sample, is performed in a short time, and the ex-
perimental data can be obtained easily and quickly by the use of an
automatic injector, and shows satisfactory recoveries.
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