
POINTED FINITE TENSOR CATEGORIES OVER

ABELIAN GROUPS

IVÁN ANGIONO AND CÉSAR GALINDO

Abstract. We characterize the finite pointed tensor categories equiva-
lent to de-equivariantizations of finite dimensional pointed Hopf algebras
over abelian groups.

1. Introduction

In this paper k will denote an algebraically closed field of characteristic
zero. By tensor category we mean a k-linear abelian category with finite
dimensional Hom spaces and objects of finite length, endowed with a rigid
k-bilinear monoidal structure and such the unit object is simple. A tensor
category is called finite if it is k-linearly equivalent to the category of finite
dimensional comodules over a finite dimensional k-coalgebra.

Let H be a coquasi-Hopf algebra over k. The category HM of its fi-
nite dimensional corepresentations is a tensor category. Tensor categories
of this form are characterized, via tannakian reconstruction arguments, as
those possessing a quasi-fiber functor with values in the category of finite
dimensional vector spaces over k.

Comment 1 (by Cesar): el siguiente parrafo lo copié de la subsección
3.3, debemos reescribir esa parte, me parece que queda bien acá para explicar
un poco más.

A tensor category is called pointed if every simple object is invertible.
Example of such a categories are the category of finite dimensional comod-
ules over a pointed coquasi-Hopf algebra. In fact, any finite pointed tensor
category is equivalent to the category of comodules over a finite dimensional
pointed coquasi-Hopf algebra.

In [3], we studied de-equivariantization of Hopf algebras, applying Tan-
nakian techniques. We explicitly constructed a coquasi-bialgebra such that
its tensor category of comodules realizes the de-equivariantization of a Hopf
algebra, [3, Theorem 2.8]. As application, we defined a big family of pointed
coquasi-Hopf algebras A(H,G,Φ) attached to a coradically graded pointed
Hopf algebra H and some extra group-theoretical data, see [3, Proposition
3.3] and [3, Definition 3.5].
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The purpose of work is to characterize Comment 2 (by Cesar): se
te ocurre algo mejor? pointed finite tensor categories over abelian group
constructed as de-equivariantization of the tensor category of comodules
over finite dimensional pointed Hopf algebras. For Hopf algebras, the de-
equivariantization process strictly generalize the theory of central extensions
of Hopf algebra. However, now the central quotient is a coquasi-Hopf alge-
bra.

We said that a tensor category C is coradically graded if C is equivalent
to the category of comodules over a coradically graded coalgebra, see [11,
Section 1.13] for a more categorical definition.

In [4] was proved that every finite-dimensional pointed Hopf algebra H
with abelian group of group-like elements Γ is a cocycle deformation of
B(V )#kΓ, where V ∈kΓ

kΓ YD denotes the infinitesimal braiding of H. In

particular, it implies that HM and B(V )#kΓM are tensor equivalent. Hence,
the pointed tensor categoies obtained from H or B(V )#kΓM are the same.
That is the reason why are interested only in coradically graded coquasi-
Hopf algebras.

For a tensor category C we will denote by G(C) the group of isomorphism
classes of invertible objects and by ω(C) ∈ H3(G(C),k×) the cohomology
class defined by the associator of the full tensor subcategory of C of invertible
objects.

Breen [7, Proposition 4.1] defined for every abelian group Λ a group ho-
momorphism

ψΛ : H3(Λ,k×)→ Hom(∧3Λ, k×),

that measure if the category of Yetter-Drinfeld modules kωΓ
kωΓYD is pointed,

see Theorem 3.7.
Our main result can be summarized as:

Theorem 1.1. A finite tensor category C is tensor equivalent to a de-
equivariantization of a pointed Hopf algebra over an abelian group if and
only if C is coradically graded, G(C) is abelian and ψG(C)(ωC) ≡ 1.

Theorem 1.1 is proved in Section 4, where a pointed Hopf algebra of the
form B(V )#kΓ is explicitly constructed. As a corollary, we obtain that every
coradically graded pointed finite braided tensor category is tensor equivalent
to a de-equivariantization of a coradically graded pointed Hopf algebra over
an abelian group.

The organization of the paper is as follows. Section 2 is devoted to pre-
liminaries. In Section 3 we define the map ψΛ : H3(Λ,k×)→ Hom(∧3Λ, k×)
and characterizations of the condition ψΛ(ω) = 1, which are used in the
sequel. In Section 4 we proved generation in degree one for coradically
graded coquasi-Hopf algebras A with associator, ψG(A)(ω) = 0, where ω ∈
H3(G(A), k×) defined by the associator. We prove Theorem 1.1. We finish
the section with an example of a coradically graded coquasi-Hopf algebra
over Λ = Z/2Z⊕3 with associator ω ∈ Z3(Λ,k×), such that ψΛ(ω) 6= 1.
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Comment 3 (by Cesar): Agregar en paper?: el diagrama de dinking
esta bien definido

Comment 4 (by Cesar): Todo: 1) revisar notacion de unidad en cat
mon. 2) agregar definition de product tensorial en ejem 2.3 (yetter-drinfeld)

2. Preliminaries

In this section we recall some definitions and results about coquasi-Hopf
algebras and tensor categories. Throughout the paper we work over an
algebraically closed arbitrary field of characteristic zero k. Algebras and
coalgebras are always defined over k. For coalgebra (C,∆, ε) we will use
Sweedler’s notation omitting the sum symbol, that is ∆(c) = c1 ⊗ c2 for all
c ∈ C.

Given a group Γ, Γ̂ denotes the group of linear characters of Γ over k,

and 〈·, ·〉 : Γ̂× Γ→ k× is the evaluation map.
Given θ ∈ N0, then we denote Iθ = {n ∈ N : n ≤ θ}, or simply I if θ is

clear from the context. Also, δx,y is the Kronecker delta.

2.1. Coquasi-bialgebras. A coquasi-bialgebra (H,m, u, ω,∆, ε) is a coal-
gebra (H,∆, ε) together with coalgebra morphisms:

• the multiplication m : H ⊗H −→ H (denoted m(g ⊗ h) = gh),
• the unit u : k −→ H (where we call u(1) = 1H),

and a convolution invertible element Ω ∈ (H ⊗H ⊗H)∗ such that

h1(g1k1)Ω(h2, g2, k2) = Ω(h1, g1, k1)(h2g2)k2,(1)

1Hh = h1H = h,(2)

Ω(h1g1, k1, l1)Ω(h2, g2, k2l2) = Ω(h1, g1, k1)(3)

×Ω(h2, g2k2, l1)Ω(g3, k3, l2),

Ω(h, 1H , g) = ε(h)ε(g),(4)

for all h, g, k, l ∈ H. Note that

Ω(1H , h, g) = Ω(h, g, 1H) = ε(h)ε(g) for all g, h ∈ H.
A coquasi-bialgebra H is a coquasi-Hopf algebra if there is a coalgebra map
S : H −→ Hop (the antipode) and elements α, β ∈ H∗ such that

α(h)1H = S(h1)α(h2)h3,(5)

β(h)1H = h1β(h2)S(h3),(6)

ε(h) = ω(h1β(h2),S(h3), α(h4)h5)(7)

= ω−1(S(h1), α(h2)h3β(h4),S(h5)), for all h ∈ H.

Example 2.1. Let G be a discrete group. Recall that a (normalized) 3-
cocycle ω ∈ Z3(G, k×) is a map ω : G×G→ G→ k× such that

ω(ab, c, d)ω(a, b, cd) = ω(a, b, c)ω(a, bc, d)ω(b, c, d), ω(a, 1, b) = 1

for all a, b, c, d ∈ G.
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Given ω ∈ Z3(G, k×), we define coquasi-Hopf algebra kωG, with structure
(k[G],Ωω, S, α, β), where k[G] is the group algebra with the usual comulti-
plication ∆(g) = g ⊗ g for all g ∈ G, and Ωω(g, h, k) = ω(g, h, k) for all
g, h, k ∈ G. The antipode structure is given by

S(g) = g−1, α(g) = 1, β(g) = ω(g, g−1, g)−1, for all g ∈ G.

2.2. Braided tensor categories and the center construction. By a
tensor category we mean a k-linear abelian rigid tensor category C whose
unit object 1 is simple, see [11].

Let H be a coquasi-Hopf algebra. The category of left H-comodules
HM is rigid and monoidal, where the tensor product is ⊗k, the comodule
structure of the tensor product is the codiagonal one and the associator is

φU,V,W : (U ⊗ V )⊗W −→ U ⊗ (V ⊗W )

φU,V,W ((u⊗ v)⊗ w) = Ω(u−1, v−1, w−1)u0 ⊗ (v0 ⊗ w0)

for u ∈ U , v ∈ V , w ∈W and U, V,W ∈ HM. The dual coactions are given
by S and S−1, as in the case of Hopf algebras.

Example 2.2. Let G be a discrete group and ω ∈ Z3(G, k×). The tensor

category kω [G]M is VecωG, the category of G-graded vector spaces with
associator induced by ω.

A braided tensor category is a tensor category C endowed with a braiding
cX,Y : X ⊗ Y → Y ⊗X, see [15].

The main example of a braided tensor category in this paper will be the
center Z(C) of a tensor category C. The center construction produces a
braided tensor category Z(C) from any tensor category C. The objects of
Z(C) are pairs (Z, c−,Z), where Z ∈ C and cX,Z : X ⊗ Z → Z ⊗ X are
isomorphisms natural in X satisfying

(8) cX⊗Y,Z = (cXZ ⊗ idY )(idX ⊗cY,Z)

and cI,Z = idZ , for all X,Y ∈ C. The braided monoidal structure is given
in the following way:

• the tensor product is (Y, c−,Y )⊗ (Z, c−,Z) = (Y ⊗Z, c−,Y⊗Z), where

cX,Y⊗Z = (idY ⊗cX,Z)(cX,Y ⊗ idZ) : X ⊗ Y ⊗ Z → Y ⊗ Z ⊗X, X ∈ C,
• the identity element is (I, c−,I), cZ,I = idZ
• the braiding is the morphism cX,Y .

Example 2.3. The Drinfeld center of VecωΛ. Let Λ be a discrete group, and
ω ∈ Z3(Λ,k×). The Drinfeld center of VecωΛ is equivalent to kωΛ

kωΛYD, the

category of Yetter-Drinfeld modules over kωΛ. The objects of kωΛ
kωΛYD are

Λ-graded vector spaces V =
⊕

g∈Λ Vg with a linear map . : kωΛ ⊗ V → V
such that 1 . v = v for all v ∈ V ,

(gh) . v =
ω(g, hkh−1, h)

ω(g, h, k)ω(ghkh−1g−1, g, h)
(g . (h . v)), g, h, k ∈ Λ, v ∈ Vk,
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satisfying the following compatibility condition:

g . Vh ⊆ Vghg−1 g, h ∈ Λ.

Morphisms in kωΛ
kωΛYD are Λ-linear Λ-homogeneous maps. The category is

tensor braided, with braiding cV,W : V ⊗W →W ⊗ V , V,W ∈kωΛ
kωΛ YD,

cV,W (v ⊗ w) = g . w ⊗ v, g ∈ Λ, v ∈ Vg, w ∈W.

2.3. Bosonization for coquasi-Hopf algebras. Now we recall the nota-
tion and results from [5] but restricted to pointed coquasi-Hopf algebras.

Given a Hopf algebra R in kωΛ
kωΛYD with multiplication · : R⊗R→ R and

comultiplication ∆ : R→ R⊗R, ∆(r) = r(1)⊗r(2), the bosonization of R by
kωΛ [5, Definition 5.4] is the coquasi-Hopf algebra R#kωΛ with underlying
vector space R⊗ kΛ and the following structure maps:

(r#g)(s#h) =
ω(g, l, h)ω(k, l, gh)

ω(k, g, lh)ω(l, g, h)
r · (g . s)#gh,

∆(r#g) =
1

ω(kj−1, j, g)
r(1)#lg ⊗ r(2)#g,

Ω(r#g, s#h, t#k) = ε(r)ε(s)ε(t)ω(g, h, k),

for all g, h, k, l ∈ Λ, r ∈ Rk, s ∈ Rl, t ∈ R, where r(1)⊗ r(2) ∈ ⊕jRkj−1 ⊗Rj .
We have two canonical coquasi-Hopf algebra maps

π :R#kωΛ→ kωΛ, π(r#g) = ε(r)g, ι :kω → R#kωΛ, ι(g) = 1#g,

such that π ◦ ι = idkωΛ.
Reciprocally, let H be a coquasi-Hopf algebra and assume that there

exist coquasi-Hopf algebra maps π : H → kωΛ, ι : kωΛ → H such that
π ◦ ι = idkωΛ. Then H ' R#kωΛ, where R = Hcoπ admits a structure of
Hopf algebra in kωΛ

kωΛYD [5, Theorem 5.8].

In particular this applies for H = ⊕n≥0Hn coradically graded such that
H0 = kωΛ [5, 6.1]. Here, R is a graded Hopf algebra in kωΛ

kωΛYD:

R = ⊕n≥0Rn, with Rn = R ∩Hn, n ≥ 0, so R0 = k1.

2.4. Nichols algebras. Nichols algebras can be defined over any abelian
braided tensor category see [19]. In particular we may consider Nichols
algebra over C = Z(HM) or C =H

H YD, where H is a coquasi-bialgebra, see
[1] for the definition when H is a Hopf algebra and [14] for H = kωΛ.

Given an object V ∈ C and n ≥ 3, V ⊗n denotes (· · · ((V ⊗V )⊗· · · )⊗V ),
n copies of V . We consider the following (graded) Hopf algebras in C:
• the tensor algebra T (V ) = ⊕n≥0V

⊗n, with product given by the canonical

isomorphism V ⊗m⊗V ⊗n ' V ⊗(m+n); the coproduct ∆ : T (V )→ T (V )⊗
T (V ) is the unique graded algebra map such that ∆0,1 : V → k⊗ V and
∆1,0 : V → V ⊗ k are the canonical isomorphisms.
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• the tensor coalgebra C(V ) = ⊕n≥0V
⊗n, with coproduct

∆ = ⊕m,n≥0 : C(V )→ C(V )⊗ C(V ), ∆m,n :V ⊗(m+n) ∼→ V ⊗m ⊗ V ⊗n;

the product ∆ : T (V ) → T (V ) ⊗ T (V ) is the unique graded coalgebra
map induced by the canonical isomorphisms k⊗ V ' V ' V ⊗ k.

There exists a unique graded Hopf algebra map T (V )→ C(V ) in C, which
is the identity on V . The Nichols algebra B(V ) of V is the image of this
map: it is a graded Hopf algebra in C.

We may identify B(V ) as a quotient B(V ) = T (V )/J (V ) with the fol-
lowing universal property: J (V ) is the largest coideal of T (V ) spanned by
elements of N-degree ≥ 2. There are other characterizations of B(V ) [19].

A pre-Nichols algebra of V is any graded braided Hopf algebra in V ∈
Z(HM) intermediate between T (V ) and B(V ), that is any braided Hopf
algebra of the form T (V )/I where I ⊆ J (V ) is a homogeneous Hopf ideal.

Comment 5 (by Ivan): Completo mas tarde con post Nichols y refer-
encia

3. Trivializations of elements in H3(Λ, k×)

Definition 3.1. Let ω ∈ Hn(Λ, k×). We say that ω is trivializable if there
exist a finite abelian group Γ and a group epimorphism p : Γ → Λ such
that the pullback p∗ω ∈ Hn(Γ, k×) is trivial. In this case we say that ω is
p-trivial.

Example 3.2. Let Cn be the cyclic group of order n generated by σ. Then

· · · N // ZCn
σ−1 // ZCn

N // ZCn
σ−1 // ZCn // Z

where N = 1 + σ + σ2 + · · ·+ σn−1 is a free resolution of Z. Thus,

H3(Cn,k×) = Gm(n) := {a ∈ k× : an = 1}.
Let m,n ∈ N such that n|m and π : Cm → Cn be the canonical group
epimorphism. The induced map is

π∗ :H3(Cn, k×)→ H3(Cm,k×), q 7→ q
m
n .

Hence, if q ∈ H3(Cn,k×) has order s, the canonical epimorphism π : Csn →
Cn trivializes q. Thus π : Cn2 → Cn trivializes all elements in H3(Cn, k×).

Let Λ be a finite abelian group. We denote by ∧nΛ the n-th exterior
power of Λ, viewed as a Z-module.

For each ω ∈ Z3(Λ, k×), Breen [7, Proposition 4.1] defined an alternating
trilinear map

ψΛ(ω)(l1, l2, l3) =
∏
σ∈S3

ω(lσ(1), lσ(2), lσ(3))
sng(σ), l1, l2, l3 ∈ Λ.

The group homomorphism ψΛ : Z3(Λ, k×)→ Hom(∧3Λ,k×) induces a group
homomorphism

ψΛ : H3(Λ,k×)→ Hom(∧3Λ, k×).



POINTED FINITE TENSOR CATEGORIES OVER ABELIAN GROUPS 7

Note that Hom(Λ⊗3, k×) ⊂ Z3(Λ,k×). Hence, if Λ is finite the restriction
of ψΛ to Hom(Λ⊗3,k×) is surjective. Thus ψΛ is surjective.

Proposition 3.3. If ω ∈ H3(Λ, k×) is trivializable then ψΛ(ω) = 0.

Proof. Let p : Γ → Λ be an epimorphism of finite abelian groups. By [6,
§7.2, Proposition 3 ], the map

∧n(p) : ∧nΓ→ ∧nΛ, g1 ∧ · · · ∧ gn 7→ p(g1) ∧ · · · ∧ p(gn),

is surjective. Since Λ is finite, the group homomorphism

∧n(p)∗ : Hom(∧nΛ,k×)→ Hom(∧nΓ,k×)

f 7→ [g1 ∧ · · · ∧ gn 7→ f(p(g1) ∧ · · · ∧ p(gn))].

is injective for all n.
Let ω ∈ H3(Λ, k×) such that p∗(ω) = 0. Then ∧(3)(p)∗ ◦ψΛ(ω) = 0, since

the diagram

(9)

H3(Λ, k×) H3(Γ,k×)

Hom(∧3Λ,k×) Hom(∧3Γ,k×)

ψΛ

p∗

ψΓ

∧(3)(p)∗

is commutative. By the injectivity of ∧3(p)∗, we have that ψΛ(ω) = 0. �

Example 3.4. Let Λ = (Z/nZ)⊕3 and ω ∈ Z3(Λ, k×), defined by

ω(~x, ~y, ~z) = ζx1y2z3 ,

where ζ is a n-th root of unity and ~x, ~y, ~z ∈ Λ. Then,

ψΛ(ω)(~x, ~y, ~z) = ζdet([~x,~y,~z]).

Thus, ψ(ω) 6= 0 and 〈ψ(ω)〉 = Hom(∧3Λ,k×). It follows by Proposition 3.3
that ω is not trivializable.

Let ω ∈ Z3(Γ,k×). An abelian structure on ω is a map c : Γ × Γ → k×
such that

c(a, bc)

c(a, b)c(a, c)
=
ω(a, b, c)ω(b, c, a)

ω(b, a, c)

c(ab, c)

c(a, c)c(b, c)
=

ω(a, c, b)

ω(a, b, c)ω(c, a, b)
,

for all a, b, c ∈ Γ. Following [9, 10] we denote by Z3
ab(Γ,k×) the abelian

group of all abelian 3-cocycles (ω, c).

Proposition 3.5. Let (ω, c) ∈ Z3
ab(Λ,k×) be an abelian 3-cocycle. Then

ψΛ(ω) = 0.
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Proof. If (ω, c) ∈ Z3
ab(Λ, k×) the map

q : Λ→ k×, g 7→ c(g, g)

is a quadratic form on Λ, that is, q(−a) = q(a) and the map

bq(a, b) =
q(ab)

q(a)q(b)
, a, b ∈ Λ,

is a bicharacter. The quadratic form q determines completely the coho-
mology class of the pair (w, c), see [10, Theorem 26.1]. Using the map
q, Quinn [18] defined an explicit 3-cocycle abelian 3-cocycle (h, c) with
c(a, a, ) = q(a) for all a ∈ Λ. Assume that Λ = Z/n1Z ⊕ · · · ⊕ Z/nmZ.
For each i ∈ {1, . . . ,m} let qi := q(~ei) and hi ∈ Z3(Z/niZ, k×) defined by

hi(a, b, c) =

{
1, if b+ c < ni,

qniai . if b+ c ≥ ni,

where 0 ≤ a, b, c < ni. Then by [18] and [10, Theorem 26.1], h ∈ Z3(Λ, k×)
given by

h(~x, ~y, ~z) = h(x1, y1, z1)h(x2, y2, z2) · · ·h(xm, ym, zm),

is a 3-cocycle cohomologous to ω. By Example 3.2, the epimorphism

π : Z/n2
1Z⊕ · · · ⊕ Z/n2

mZ→ Z/n1Z⊕ · · · ⊕ Z/nmZ,

trivializes h and then also trivializes ω. �

Remark 3.6. Let Λ be a cyclic group of odd order and ω ∈ H3(Λ,k×) a non-
zero element. Then there is not c ∈ C2(Λ,k×) such that (ω, c) ∈ Z3

ab(Λ,k×),
however by Example 3.2 ψΛ(ω) = 0.

Theorem 3.7. Let ω ∈ H3(Λ, k×). The following statements are equivalent:

(a) ψΛ(ω) ≡ 1.
(b) The braided fusion category kωΛ

kωΛYD is pointed.
(c) ω is trivializable.

Proof. For each a ∈ Λ, the map

βa : Λ× Λ→ k×, βa(g, h) =
ω(g, a, h)

ω(g, h, a)ω(a, g, h)

is a 2-cocycle, that is, satisfies the equation

βa(g, h)βa(gh, l) = βa(g, hl)βa(h, l),

for all g, h, l ∈ Λ. By [13, Example 6.3] we have an exact sequence of groups

0→ Λ̂→ Inv(k
ωΛ

kωΛYD)→ Gω → 0,

where Gω = {a ∈ Λ : 0 = [βa] ∈ H2(Λ,k×)}. Then kωΛ
kωΛYD is pointed if and

only if 0 = [βa] for all a ∈ Λ.



POINTED FINITE TENSOR CATEGORIES OVER ABELIAN GROUPS 9

Since k× is divisible, βa has trivial cohomology class if and only if βa is
symmetric. In conclusion, kωΛ

kωΛYD is pointed if and only if βa(g, h) = βa(h, g)
for all a, g, h ∈ Λ. Since

βa(b, c)

βa(c, b)
= ψΛ(a, b, c),

kωΛ
kωΛYD is pointed if and only if ψΛ(ω) = 1. Hence, (a) ⇐⇒ (b).

Now (c) =⇒ (a) by Proposition 3.3. Assume that (b) holds. Then
there is a finite abelian group Γ and an abelian 3-cocycle (α, c) ∈ Z3

ab(Γ, k×)

such that kωΛ
kωΛYD ∼= Vec

(α,c)
Γ as braided fusion categories. The forgetful

functor kωΛ
kωΛYD → VecωΛ defines a group epimorphism π1 : Γ → Λ such that

π∗1([ω]) = [α]. By Proposition 3.5, there exists an abelian group Γ2 and an
epimorphism π2 : Γ2 → Γ1 such that π∗1([α]) = 0, hence π2 ◦ π1 : Γ2 → Λ
trivializes ω. �

4. Pointed coradically graded coquasi-Hopf algebras

Let Γ and Λ be abelian groups and p : Γ → Λ a group epimorphism.
We fix a section ι : Λ → Γ of p. Given ω ∈ Z3(Λ, k×), we will denote by
p∗ω ∈ Z3(Γ,k×), the 3-cocycle defined by

p∗ω(g, h, k) = ω(p(g), p(h), p(k)), g, h, k ∈ Γ.

We assume that there is α : Γ× Γ→ k×, such that δ(α) = p∗ω; that is,

p∗ω(g, h, k) =
α(g, h)α(gh, k)

α(g, hk)α(h, k)
, g, h, k ∈ Γ,

4.1. Trivializing the non-associativity of Nichols algebras. We con-

sider the functor kωΛ
kωΛYD →kp∗ωΓ

kp∗ωΓ
YD given on the objects by

V 7→V̂ , with Γ-grading V̂g =

{
Vk g = ι(k),

0 g /∈ ι(Λ),

and Γ-action via p; on the morphisms, it is just the identity.
Then there is a braided tensor equivalence

(Fα, α) :k
p∗ωΓ

kp∗ωΓ
YD →kΓ

kΓ YD,

where Fα(V ) = V as Γ-graded vector spaces, with Γ-action

g · v =
α(h, g)

α(g, h)
g � v, g, h ∈ Γ, v ∈ Vg;

the functor is the identity for morphisms; the isomorphism constraints are

αV,V ′ : Fα(V ⊗ V ′)→ Fα(V )⊗ Fα(V )

v ⊗ v′ 7→ α(g, h) v ⊗ v′, g, h ∈ Γ, v ∈ Vg, v′ ∈ Vh.
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4.2. Generation in degree one. Fix V ∈kωΛ
kωΛ YD. HenceW := Fα(V̂ ) ∈kΓ

kΓ
YD is a braided vector space of diagonal type: there exists a basis (xi)i∈I,

elements gi ∈ Γ, χi ∈ Γ̂ such that xi ∈Wχi
gi , so the braiing is

c(xi ⊗ xj) = gi · xj ⊗ xi = qij xj ⊗ xi, qij := χj(gi), i, j ∈ I.

Coming back to V , let `i = p(gi) ∈ Λ, i ∈ I. As V = W as vector spaces and
the Γ-grading on W is induced by ι, we have that gi = ι(`i) and xi ∈ V`i for
all i ∈ I. The quasi -braiding in kωΛ

kωΛYD is given by

cV (xi ⊗ xj) = gi . xj ⊗ xi = qij
α(`i, `j)

α(`j , `i)
xj ⊗ xi, i, j ∈ I.

We recall now some results about the FRT construction. Let H(W ) the
bialgebra corresponding to (W, c) [16, VIII.6]: it is the algebra presented by
generators T ij , i, j ∈ I and relations

qijT
n
j T

m
i − qnmTmi Tnj , i, j,m, n ∈ I.

Hence H(W ) is a quantum linear space, so in particular it is ZI -graded,

with deg T ji = αi, i, j ∈ I. The coproduct satisfies

∆(T ji ) =
∑
k∈I

T ki ⊗ T
j
k , i, j ∈ I,

while the R-matrix r : H(W )⊗H(W )→ k is determined by

r(Tmi ⊗ Tnj ) = qjiδi,mδj,n, i, j,m, n ∈ I.

Hence W is a H(W )-comodule with coaction

ρ :W → H(W )⊗W, ρ(xi) =
∑
j∈I

T ji ⊗ xj , i ∈ I.

and c is also the braiding in the category of H(W )-comodules.

Theorem 4.1. Let R = ⊕n≥0Rn ∈k
ωΛ

kωΛ YD be a post-Nichols (respectively,
pre-Nichols) algebra of V = R1 such that dimR <∞. Then R = B(V ).

Proof. By abuse of notation, let α : H(W )⊗H(W )→ k,

α(Tm1
i1

. . . Tmsis
, Tn1

j1
. . . Tntjt ) = δi1,m1 . . . δis,msδj1,n1 . . . δjt,nt

α(gi1 . . . gis , gj1 . . . gjt), s, t ∈ N, ik,mk, jl, nl ∈ I.

As H(W ) is ZI -graded, the map is well-defined, and α(1, x) = α(x, 1) = ε(x)
for all x ∈ H(W ). Hence we may consider the coquasi-bialgebra H(W )α

obtained by a 2-cocycle deformation by α.
Notice that (V, cV ) is the image of (W, c) under the braided equivalence

H(W )M→ H(W )αM induced by the 2-cocycle α, and this equivalence takes
pre- and post-Nichols algebras of (W, c) to pre- and post-Nichols algebras of
(V, cV ). Hence R is the image of a post-Nichols (respectively, pre-Nichols)
algebra R′ of (W, c), which is of diagonal type. By [2], R′ = B(W ), so
R = B(V ). �
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4.3. Pointed coquasi-Hopf algebras and de-equivariantization. Let
H be a coquasi-Hopf algebra and G be an affine group scheme over k.
A central inclusion of G in H is a full braided embedding ι : Rep(G) →
Z( HM) such that the composition ι ◦ U : Rep(G) → HM is full, where
U : Z( HM)→ HM is the forgetful functor.

Let O(G) be the algebra of regular function over G. The algebra O(G) is
a commutative algebra in the symmetric category Rep(G), and thus a com-
mutative algebra in the braided tensor category Z( HM). Following [12], we
define the de-equivariantization HM(G) of HM by G, as the monoidal cat-
egory of of left O(G)-modules in HM, with the tensor product M ⊗O(G) N .

In [3], we studied de-equivariantization of Hopf algebras, applying Tan-
nakian techniques. In [3, Theorem 2.8] we constructed a coquasi-bialgebra
such that its tensor category of comodules realizes the de-equivariantization
of a Hopf algebra. As application, we explicitly describe a big family of
pointed coquasi-Hopf algebras A(H,G,Φ) attached to a coradically graded
pointed Hopf algebra H and some extra data where G is a central subgroup
of a finite group Γ and Φ is a group morphism between G and Hom(Γ, k×),
satisfying some conditions, see [3, Proposition 3.3] and [3, Definition 3.5].

Theorem 4.2. Let A be a finite-dimensional coradically graded coquasi-
Hopf algebra such that A0 ' kωΛ, where ω is trivializable. Then AM is a
de-equivariantization of a coradically graded pointed Hopf algebra over an
abelian group.

Proof. By [5] there exists a post-Nichols (respectively, pre-Nichols) algebra
R = ⊕n≥0Rn ∈k

ωΛ
kωΛ YD of V = R1 such that A ' R#kωΛ; hence dimR <∞,

and by Theorem 4.1, R = B(V ).

We consider V̂ ∈kp
∗ωΓ

kp∗ωΓ
YD: as the braiding is the same, B(V ) ' B(V̂ ) as

braided Hopf algebras, and

π := (id⊗p) : B := B(V̂ )#kp
∗ωΓ→ A = B(V )#kωΛ(10)

is a projection of coquasi-Hopf algebras.
Given an epimorphism of finite dimensional coquasi-Hopf algebra f : H →

Q, it follows by [8, Proposition 5.1] that

Hco f := {b ∈ B : id⊗π∆(b) = b⊗ 1},

admits a structure of commutative algebra in Z(HM) such that the tensor
category of left Hco f -modules in HM is tensor equivalent to QM.

We will see that there is a central inclusion ι : Rep(k̂er(p)) → Z(BM),

such that the central algebra O(k̂er(p)) = k[ker(p)] is the central algebra
associated to the epimorphism (10).

The inclusion k[ker(p)] ↪−→ B, a 7→ 1#a, is an injective coquasi-Hopf alge-
bra morphism, that induces a full tensor embedding

Rep(k̂er(p)) = Vecker(p) ↪−→BM.
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Let Va = Spank(v) ∈ k[ker(p)]M be a one-dimensional comodule with ∆(v) =
a ⊗ v. Since 1#a is a central group-like of B, for any M ∈ BM, the flip
map

cM,Va : M ⊗ Va → Va ⊗M
m⊗ v 7→ v ⊗m,

is an isomorphism of B-comodules. Equation (8), follows from the fact that

p∗(ω)(a, g, h) = p∗(ω)(g, a, h) = p∗(ω)(g, h, a) = 1,

for all g, h ∈ Γ, a ∈ ker(p).
Since k[ker(p)] = Bcoπ := {b ∈ B : id⊗π∆(b) = b⊗1}, the central algebra

associate to the surjective tensor functor π∗ : BM → AM is exactly
k[ker(p)]. Then by [8, Proposition 5.1], AM is a de-equivariantization of
BM by k̂er(p).

Since there is α : Γ× Γ→ k×× such that δ(α) = p∗(ω), we can extend α
linearly to a map α : B ⊗ B → k such that α(Bn ⊗ B) = α(B ⊗ Bn) = 0 if
n > 0, so α is a twist. Hence H := Bα is a Hopf algebra; as a coalgebra, H =
B is coradically graded, with H0 = kΓ. Hence H ' R′#kΓ for some graded

Hopf algebra R′ ∈kΓ
kΓ YD, where R′1 = Fα(V̂ ), so H ' B(W )#kΓ. Since HM

is tensor equivalent to BM, we have that AM is a de-equivariantization of

the Hopf algebra H by the group k̂er(p).
�

4.4. Example of a pointed coquasi-Hopf algebra over an abelian
groups with non-trivializable associator. Let A and B be finite abelian

groups and α ∈ Z2(A, B̂) a 2-cocycle, that is, a map α : A × A → B̂ such
that

α(x, y)α(xy, z) = α(x, yz)α(y, z), x, y, z ∈ A.

We denote by B̂ oα A the central extension of A by B̂ associated to α.

Explicitly, B̂ oα A = B̂ ×A as a set, and product given by

(x1, a1)(x2, a2) = (x1x2, α(a1, a2), a1a2).

The function

ωα((a1, g1), (a2, g2), (a3, g3)) = α(a1, a2)(g3),

is a 3-cocycle ωα ∈ Z3(A ⊕ B, k×). It is easy to see that ψA⊕B(ωα) = 0 if
and only if α(a1, a2) = α(a2, a1) for all a1, a2 ∈ A.

By [20, Theorem 3.6], the braided fusion categories
kωαA⊕B
kωαA⊕B

YD and kB̂oαA
kB̂oαA

YD
are equivalent.

Let A = Z/2Z⊕ Z/2Z and B = Z/2Z. We define

α : A×A→ B̂, α((m1,m2), (n1, n2)) = χm1n2 ,

where χ : Z/2Z→ k× is the non-trivial character.



POINTED FINITE TENSOR CATEGORIES OVER ABELIAN GROUPS 13

Since α is non-symmetric, ψA⊕B(ωα) 6= 1 and by Theorem 3.7 ωα is non-

trivializable. The group B̂ oα A is a non-abelian group of order eight with

two elements of order four. Hence B̂oαA is a isomorphic to D4, the dihedral
group of order 8.

In [17, Example 6.5], Milinski and Schneider constructed a Nichols algebra

B(V ) of dimension 64 over D4. Since the braided categories
kωαA⊕B
kωαA⊕B

YD and

kB̂oαA
kB̂oαA

YD are equivalent, in
kωαA⊕B
kωαA⊕B

YD there is a Nichols algebra B(V ′) of

dimension 64. Hence, the bosonization

A := B(V ′)#kωα [Z/2Z⊕ Z/2Z⊕ Z/2Z],

is a coradically graded coquasi-Hopf algebra with non-trivializable associa-
tor.
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