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Abstract. We constructi many infinite sequences of pairs of Lens spaces that are p-isospectral
for all p but are not strongly isospectral. Such pairs are associated to special ‖ ‖1-isospectral
lattices on Zn.
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1. Introduction

Two compact riemannian manifolds M,M ′ are said to be isospectral if the spectrum of M
and M ′ with respect to the Laplace operator are the same. More generally, they are said to be
p-isospectral if the spectrum on p-forms for M,M ′ are the same. Clearly, if M,M? are isometric,
they are p-isospectral for all p. The first examples of manifolds that are p-isospectral for every p
and still they are not isometric are due to J.Milnor ([Mi]). Since then many more examples have
been constructed showing connections between spectra and geometry of a riemannian manifold
(see...). In [Su], Sunada gave a general procedure to construct isospectral pairs of manifolds by
using orbit spaces of two finite groups F, F ′ of isometries acting on a riemannian manifold M ,
where F, F ′ are almost conjugate in a bigger finite group G, that is, there is a bijection between
F and F ′ that preserves G-conjugacy classes. Sunada’s method yields many new examples, but
always provides manifolds that are strongly isospectral, that is they are isospectral for every
strongly natural operator acting on sections of a vector bundle E over M , in particular they
are p-isospectral for all p.

The first pair of manifolds that are isospectral on functions and not on 1-forms is due to
Carolyn Gordon, who used left invariant metrics on Heisenberg nilmanifolds. Later, Ikeda
studied the spectrum of spherical space forms and produced, for each p, lens spaces that are
q-isospectral for every q ≤ p and are not p+ 1-isospectral. For a given p, Ikeda’s examples have
dimension of the order of about n = 2p. Several people produced, subsequently, new examples
of strongly isospectral, non isometric, spherical space forms, by Sunada’s method (J.A.Wolf, P.
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Gilkey, D. Schueth, A. Ikeda). However, in the class of non strongly isospectral spherical space
forms, we are just left with Ikeda’s examples ([Ik]) and those found by Gornet-Mc Gowan by
computer methods. These examples cannot be Sunada isospectral, since two lens spaces that
are Sunada isospectral are necessarily isometric.

In this paper we take up the construction of lens spaces that are p-isospectral for all p but still
they are not strongly isospectral. This question has been open for some time and was raised
by J.A. Wolf in [Wo, Introduction]. Our approach consists in using the representation theory
of a compact Lie group and some invariant theory to derive a formula for the multiplicity of
each eigenvalue of ∆p, the p-Laplace operator, in terms of the multiplicities of the weights of
representations of G and on the number of solutions of certain congruences, depending on the
data of the lens space (see Theorem ). One can associate to each lens space L(q : p1, . . . , pm)
the integral lattice contaning qZr given by

Λ(q : p1, . . . , pm) = {(z1, . . . , zm) ∈ Zr :
∑

zipi ≡ 0 mod q}.

We show that two lens spaces L(q : p1, . . . , pm) and L(q : p′1, . . . , p
′
m) are p-isospectral for every

1 ≤ p ≤ n, if and only if the lattices Λ(q : p1, . . . , pm) and Λ(q : p′1, . . . , p
′
m) are strongly

‖ ‖1-isospectral (see Definition ).
In Section ?? we construct an infinite family of strongly ‖ ‖1-isospectral lattices. The proof

of isospectrality is involved and is based on a subdivision of the lattice into layers and in
showing that the number of elements in each layer, having a fixed ‖ ‖1 length, is the same
for both lattices. This is attained by partitioning each layer into finitely many regions (6?)
and defining, for each of these regions, an ‖ ‖1-isometry that gives a bijective correspondence
between the elements of one lattice in that layer and those of the other lattice. As mentioned,
the associated lens spaces are p-isospectral for every p, but they cannot be strongly isospectral
since we give a representation τ of G such that the lattices are not τ -isospectral. We point out
that the corresponding lens spaces are homotopically equivalent but not homeomorphic to each
other.

Finally, in Section ?? we show (see Theorem ??) that to check the ‖ ‖1-isospectrality of the
lattices in

2. Preliminaries

it is sufficient to do this for all elements having ‖ ‖1 less than or equal to .., thus reducing
the verification to a finite set of lengths. We conclude the section with an Appendix that gives
a list, obtained by computer methods, of all pairs for m = 3 and m = 4, for q ≤ 500. As we can
see, there are many examples which are not included in the family constructed in the previous
section.

subs:vector-bundles

2.1. Homogeneous vector bundles. For each finite dimensional unitary representation (τ,Wτ )
of K, we consider the homogeneous vector bundle

Eτ = G×τ Wτ −→ X = G/K,

that is the quotient of G ×Wτ under the right action of K given as (x, v) · k = (xk, τ(k−1)v)
(see for instance [Wa73, Ch. 5] or [LMR13, §2.1]). The space Γ∞(Eτ ) of smooth sections of Eτ
is in one to one correspondence with the space C∞(G/K; τ) of smooth functions f : G → Wτ

such that f(xk) = τ(k−1)f(x).
We restrict to Γ the left actions of G on X = G/K, Eτ , Γ∞(Eτ ) and C∞(G/K; τ). The

space Γ∞(Γ\Eτ ) of Γ-invariant elements in Γ∞(Eτ ) is a homogeneous vector bundle over the
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compact Riemannian manifolds Γ\X, and it isomorphic to the space C∞(Γ\G/K; τ) of Γ-
invariant functions in C∞(G/K; τ). We denote by L2(Γ\Eτ ) the closure of C∞(Γ\G/K; τ)
with respect to the inner product (f1, f2) =

∫
Γ\X〈f1(x), f2(x)〉 dx.

The (semisimple) Lie algebra g0 of G, its complexification g and the universal enveloping
algebra U(g) act on C∞(G/K; τ) in a natural way. We shall denote by C =

∑
X2
i ∈ U(g),

where X1, . . . , Xn is any orthonormal basis of g, the Casimir element of g; C defines a second
order elliptic differential operator ∆τ on C∞(G/K; τ) ' Γ∞(Eτ ). This operator commutes with
the left action of G, in particular with elements in Γ, thus ∆τ induces a differential operator
∆τ,Γ acting on Γ∞(Γ\Eτ ).

ex2:S^n Example 2.1. In the next sections we shall fix the following symmetric pair (O(n+ 1),O(n)).
Its associated symmetric space is the n-dimensional sphere Sn. For 0 ≤ p ≤ n, let τp denote
the p-exterior representation

∧p(Cn) of K = O(n). Then ∆τp (resp. ∆τp,Γ) coincides with the
Hodge-Laplace operator on complex valued differential forms of degree p on Sn (resp. Γ\Sn).

We now recall some notions and facts from the Introduction. 1

def2:tau_iso Definition 2.2. Let (G,K) be a Riemannian symmetric pair, let X = G/K and let τ ∈ K̂. Let
Γ1 and Γ2 be two discrete subgroups of G acting freely on X. The spaces Γ1\X and Γ2\X are
said to be τ -isospectral if the Laplace type operators ∆τ,Γ1 and ∆τ,Γ2 have the same spectrum.

def2:p_iso Definition 2.3. Two compact Riemannian spaces M1 and M2 are called p-isospectral if the
Hodge-Laplace operators acting on p-forms have the same spectrum.

We note that if a discrete 2 subgroup Γ ⊂ O(n+1) acts freely on Sn, then it must necessarily
be included in SO(n+ 1), thus Γ\Sn is an orientable manifold. In particular, this implies that
Γ1\Sn and Γ2\Sn are p-isospectral if and only if they are (n− p)-isospectral.

subs:right-reg-rep
2.2. Right regular representation. We consider the right regular representation RΓ of G
on L2(G) given by (R(g) · f)(x) = f(xg). Since G is a compact group, by the Peter-Weyl

theorem the set
⋃
π∈Ĝ

{
Cπ
vi,vj

: 1 ≤ i, j ≤ dimVπ

}
is an orthonormal basis of L2(G), where

{v1, . . . , vdπ} (dπ := dimVπ) is any orthonormal basis of Vπ and Cπ
v,w : G → C is given by

Cπ
v,w(x) = d

−1/2
π 〈π(x)v, w〉. Let π ∈ Ĝ. By fixing any w ∈ Vπ, we have that the subspace

{Cπ
v,w : v ∈ Vπ} is invariant by the right regular representation and isomorphic to Vπ, thus the

representation π has multiplicity dπ in L2(G).3 Hence

L2(G) =
∑
π∈Ĝ

dπ Vπ.

We restrict the right regular representation R to the subspace

L2(Γ\G) :=
{
f ∈ L2(G) : f(γx) = f(x) ∀γ ∈ Γ

}
.

We denote by RΓ the action of G on this subspace. We then have

Cπ
v,w ∈ L2(Γ\G) ⇐⇒ 〈π(γx)v, w〉 = 〈π(x)v, w〉 ∀x ∈ G, ∀γ ∈ Γ

⇐⇒ 〈π(x)v, π(γ−1)w − w〉 = 0 ∀x ∈ G, ∀γ ∈ Γ

⇐⇒ π(γ)w = w ∀γ ∈ Γ

⇐⇒ w ∈ V Γ
π ,

1Cambio.
2finite?
3peq cambios
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where V Γ
π is the subspace of Vπ invariant by the action of Γ. Let dΓ

π = dimV Γ
π . Hence we have

the decomposition

eq2:L^2(GammaG)eq2:L^2(GammaG) (2.1) L2(Γ\G) =
∑
π∈Ĝ

dΓ
π Vπ.

Remark 2.4. In the notation in [LMR13], (2.1) tells us that nΓ(π) = dΓ
π for all π ∈ Ĝ when G

is a compact group.

For any τ ∈ K̂, set Ĝτ = {π ∈ Ĝ : HomK(Wτ , Vπ) 6= 0} and let RΓ,τ denote the restriction of
RΓ on the subspace

eq2:L^2(GammaG)_taueq2:L^2(GammaG)_tau (2.2) L2(Γ\G)τ =
∑
π∈Ĝτ

dΓ
π Vπ.

def2:tau-equiv Definition 2.5. Let τ ∈ K̂. Two discrete subgroups Γ1 and Γ2 of G that act freely on
X = G/K are called τ -equivalent if the representations RΓ1,τ and RΓ2,τ are equivalent, or

equivalently, if dΓ1
π = dΓ2

π for every π ∈ Ĝτ .

There is a strong relation between the notions of τ -equivalence groups (Definition 2.5) and
τ -isospectral manifolds (Definition 2.2). The next result (see [LMR13]) explains one part of
this relation.

prop2:tau-equiv=>tau-iso Proposition 2.6. Let (G,K) be a symmetric pair of compact type and let Γ, Γ1 and Γ2 be
discrete cocompact subgroups of G that act freely on X = G/K. Let ∆τ,Γ be the Laplace
operator acting on the sections of the homogeneous vector bundle Γ\Eτ (see Subsection 2.1) of
the manifold Γ\X.

(1) If λ ∈ R, the multiplicity dλ(τ,Γ) of the eigenvalue λ of ∆τ,Γ is given by

eq2:mult_lambdaeq2:mult_lambda (2.3) dλ(τ,Γ) =
∑

π∈Ĝ:λ(C,π)=λ

dΓ
π dim (HomK(W ∗

τ , Vπ)) .

(2) If Γ1 and Γ2 are τ ∗-equivalent then Γ1\X and Γ2\X are τ -isospectral.

The next result gives a description of dΓ
π when Γ is a finite abelian group inside a maximal

torus T of G. Let h0 denote the Lie subalgebra of T , and let h be its complexification. We
denote by ... consider the root system of (g, h). Any finite dimensional representation (π, Vπ)
of G decomposes as Vπ = ⊕µVπ(µ), where µ runs over the weight lattice P (G) ⊂ h∗ of G and

Vπ(µ) = {v ∈ Vπ : π(h)v = hµ v ∀h ∈ T},
where hµ := eµ(H) ∈ C for any H ∈ h0 such that exp(H) = h. The nonzero elements in Vπ(µ) are
called weight vectors of weight µ. The multiplicity of µ in π is denoted by mπ(µ) = dimVπ(µ).

prop2:d_pi-max-torus Proposition 2.7. Let Γ be a finite subgroup of G, Γ ⊂ T , a maximal torus of G and let (π, Vπ)
be any finite dimensional representation of G. Then

dΓ
π = dimV Γ

π =
∑

µ∈P (G):
γµ=1 ∀γ∈Γ

mπ(µ).

Proof. Since Γ ⊂ T , the action of any γ ∈ Γ diagonalizes on the decomposition ⊕µVπ(µ).
Moreover, any weight vector v of weight µ is invariant by γ ∈ Γ if and only if γµ = 1. Hence

Vπ(µ)Γ =

{
Vπ(µ) if γµ = 1 ∀γ ∈ Γ,

0 otherwise.

The remaining assertions follows easily. �
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subs:spherical-spaces-forms
2.3. Spherical spaces forms. In this subsection we restrict our attention to the symmetric
pair (G,K) = (O(n + 1),O(n)), thus X = Sn the n-dimensional sphere in Rn+1. A spherical
space form is a manifold of the form Γ\Sn where Γ ⊂ O(n + 1) acts freely on Sn. Since even
dimensional spheres Sn cover only Sn and RP n, we will look only at odd dimensional spheres,
thus we assume from now on that G = O(2m) and K = O(2m − 1). We also note that if
a discrete subgroup Γ ⊂ G acts freely on S2m−1, 4 then it must necessarily be included in
G0 = SO(2m); thus, all odd-dimensional spherical space forms are orientable.

Here and subsequently, we denote by g0 = so(2m) the real skew-symmetric matrices, which
is the Lie algebra of G0 = SO(2m) and of G = O(2m) as well. Let g = g0 ⊗R C ' so(2m,C),
the complex skew-symmetric matrices. We fix the maximal torus in SO(2m) the subgroup

eq2:max_toruseq2:max_torus (2.4) T =


R(θ1)

. . .
R(θm)

 : θ1, . . . , θm ∈ R

 ,

where R(θ) :=
(

cos(2πθ) sin(2πθ)
− sin(2πθ) cos(2πθ)

)
. The Lie algebra of T is

eq2:h_0eq2:h_0 (2.5) h0 =




0 2πθ1
−2πθ1 0

. . .
0 2πθm

−2πθm 0

 : θ1, . . . , θm ∈ R

 .

Note that h = exp(H) if h ∈ T and H ∈ h0 as above. Let

eq2:heq2:h (2.6) h =




0 ih1
−ih1 0

. . .
0 ihm

−ihm 0

 : h1, . . . , hm ∈ C

 ,

thus h ∼= h0 ⊗R C is a Cartan subalgebra of g. For H ∈ h as in (2.6), set εj(H) = hj for
1 ≤ j ≤ m, thus {ε1, . . . , εm} is a basis of h∗. Note that εj(H) = −2πiθj for h ∈ h0 as in (2.5).

Let us denote by P (G0) =
⊕m

j=1 Zεj the weight lattice of G0 = SO(2m) and by ∆(g, h) =

{±εi ± εj : 1 ≤ i < j ≤ m} the roots of h on g. We fix the set ∆+(g, h) = {εi ± εj : 1 ≤
i < j ≤ m} as positive roots, thus the corresponding simple roots are Π(g, h) = {εj − εj+1 :
1 ≤ j ≤ m − 1} ∪ {εm−1 + εm} and the dominant weight P+(G0) of G0 are the elements∑m

j=1 ajεj ∈ P (G0) such that a1 ≥ · · · ≥ am−1 ≥ |am|.
Similarly, we fix the Cartan subalgebra of k = so(2m− 1,C), the complexification of the Lie

algebra k0 of K0 = SO(2m − 1), as in (2.6) except that the last two rows and columns are
replaced by one with all coefficients equal to zero. In this case, the dominant weight P+(K0)
of K0 are the elements

∑m−1
j=1 ajεj such that aj ∈ Z for all j and a1 ≥ · · · ≥ am−1 ≥ am−1 ≥ 0.

The highest weight theorem gives a one-one correspondence between the irreducible repre-
sentations of SO(n) and the elements in P+(SO(n)). For µ ∈ P+(SO(2m − 1)) (resp. Λ ∈
P+(SO(2m))), we write (τµ,Wµ) (resp. (πΛ, VΛ)) the irreducible representation of SO(2m− 1)
(resp. SO(2m)) with highest weight µ (resp. Λ).

The irreducible representation of O(2m−1) are in a one-one correspondence with the elements
µ in P+(SO(2m − 1)) and a parameter κ ∈ {±1}. We denote by τµ,κ the representation
associated to the parameters (µ, κ). The underlying vector space of τµ,κ is Wµ, τµ,κ valued in
SO(2m− 1) coincides with τµ and τµ,κ(−Id) = κ IdWµ . We have that

τµ,κ|SO(2m−1)
∼= τµ and τµ,κ ∼= τµ,−κ ⊗ det .

4cambios
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The even case is a bit more complicated (see [LMR13, Subsection 2.2] for more details).
For Λ =

∑m
j=1 aiεi ∈ P+(SO(2m)) such that am = 0 and δ ∈ {±1}, one associates πΛ,δ ∈

Ô(2m). Again we have πΛ,δ|SO(2m)
∼= πΛ and VπΛ,δ

= VπΛ
. The parameter δ depends on certain

intertwining operator TΛ (see [Pe1, p. 372] and [LMR13, eq. (2.7)]). In the case am 6= 0,

we have only one representation πΛ,0 ∈ Ô(2m), which satisfies πΛ,0|SO(2m)
∼= πΛ ⊕ πΛ and

VπΛ,0
= VπΛ

⊕ VπΛ
, where Λ =

∑m−1
j=1 aiεi − amεm. Since Γ ⊂ SO(2m) if Γ acts freely on S2m−1

and VπΛ,δ
is equal to VπΛ

⊕ VπΛ
or VπΛ

according δ is zero or not, it follows that

eq2:dimV^Gammaeq2:dimV^Gamma (2.7) dΓ
πΛ,δ

= dimV Γ
πΛ,δ

=

{
dimV Γ

πΛ
if am = 0,

dimV Γ
πΛ

+ dimV Γ
πΛ

if am 6= 0.

We end this section by describing the p-spectrum of any odd-dimensional spherical space
form in terms of the coefficients dΓ

π. This result can be proved by using Proposition 2.6 (1) and
the branching law from O(2m) to O(2m−1) (see [LMR13, Thm. 1.1]). We first introduce more
notation:

Λp
k =


kε1 if p = 1,

kε1 + ε2 + · · ·+ εp if 2 ≤ p ≤ m,

Λk,2m−p if m+ 1 ≤ p ≤ 2m− 1,

eq2:Lambda_k^p (2.8)

λpk = k2 + k(2m− 2) + (p− 1)(2m− 1− p),eq2:lambda_k^p (2.9)

Ep =

{
{λpk : k ∈ N} if 1 ≤ p ≤ 2m− 1,

{0} if p = 0 or 2m.
eq2:E_p (2.10)

Hence Λp
k ∈ P+(SO(2m)) for every k ∈ N and every 1 ≤ p ≤ 2m − 1, Ep = E2m−p for every

0 ≤ p ≤ 2m and the sets Ep and Ep+1 are disjoint for every 0 ≤ p ≤ 2m− 1

thm2:p-spec Theorem 2.8. Let Γ be a finite subgroup of O(2m) acting freely on S2m−1 and let 0 ≤ p ≤
2m− 1. If λ ∈ Specp(Γ\S2m−1) then λ ∈ Ep ∪ Ep+1. Furthermore, if λ = λpk ∈ Ep then

eq2:d_lambda(p,Gamma)eq2:d_lambda(p,Gamma) (2.11) dλ(p,Γ) = dλ(p− 1,Γ) = dΓ
π

Λ
p
k
,δ

=

dimV Γ
π

Λ
p
k

if p 6= m,

dimV Γ
π

Λ
p
k

+ dimV Γ
π

Λ
p
k

if p = m,

In particular, if λ ∈ Spec0(Γ\Sn) then λ = k(k + 2m− 2) for some k ∈ N0 and

eq2:d_lambda(0,Gamma)eq2:d_lambda(0,Gamma) (2.12) dλ(0,Γ) = dimV Γ
πkε1

.

3. Lens spaces

In this section. . . 5

Let q be a positive integer and let s = (s1, . . . , sm) ∈ Zm such that gcd(sj, q) = 1 for all j.
Let

γ =

R(s1/q)
. . .

R(sm/q)

 .

Recall that R(θ) =
(

cos(2πθ) sin(2πθ)
− sin(2πθ) cos(2πθ)

)
. The element γ generates the cyclic subgroup Γ(q; s) :=

{γj}qj=1 of order q of SO(2m), which acts freely on S2m−1. The manifold L(q; s) := Γ(q; s)\S2m−1

is called a Lens space.6 The following properties are known (see for instance [Ik88, Thm. 3.1]).

5escribir algo
6creo que en todo el paper debera ser lens space con minscula, salvo al comienzo de oracin
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Proposition 3.1. Let L = L(q; s) and L′ = L(q; s′) be two Lens spaces of degree q. Then the
following assertions are equivalent.

(1) L is isometric to L′.
(2) L is diffeomorphic to L′.
(3) L is homeomorphic to L′.
(4) There are ` ∈ Z and ε ∈ {±1}m such that (s1, . . . , sm) is a permutation of (ε1`s

′
1, . . . , εm`s

′
m)

(mod q).

Remark 3.2. If two Lens spaces are strongly isospectral then they are isometric.7

We next compute the p-spectrum for a Lens space L = Γ\S2m−1 with Γ = Γ(q; s). From
Theorem 2.8, if λ ∈ Specp(L) then λ ∈ Ep ∪ Ep+1 where Ep and Ep+1 are disjoint sets given in
(2.10). Moreover, if λ ∈ Ep then λ = λpk (see (2.9)) for some k ∈ N and 1 ≤ p ≤ 2m− 1 and the
multiplicities dλ(p, L) and dλ(p−1, L) of λ of the Hodge-Laplace operator on p and p−1-forms
of the Lens space L are given by

dλ(p, L) = dλ(p− 1, L) = dΓ
π

Λ
p
k
,δ

=

dimV Γ
π

Λ
p
k

if p 6= m,

dimV Γ
π

Λ
p
k

+ dimV Γ
π

Λ
p
k

if p = m,

where Λp
k ∈ P+(SO(2m)) is given in (2.8) and πΛpk

is the irreducible representation of SO(2m)

with highest weight Λp
k.

We denote by πpk the irreducible representation of SO(2m) with highest weight Λp
k (i.e. πpk =

πΛpk
) if p 6= m and πmk = πΛmk

⊕ πΛ
m
k

. Hence

eq3:d_lambda(P,L)eq3:d_lambda(P,L) (3.1) dλpk(p, L) = dΓ
πpk
.

We write Zm instead P (SO(2m)), by corresponding (a1, . . . , am) with
∑m

j=1 ajεj. For µ =∑
j ajεj ∈ Zm we set |µ| =

∑
j |aj| and Z(µ) = #{j : aj = 0} the height and zeros of µ

respectively. For each k ∈ N0 and 0 ≤ z ≤ m, we define

MΓ(k) = #{µ ∈ Zm : |µ| = k, γµ = 1},(3.2)

NΓ(k, z) = #{µ ∈ Zm : |µ| = k, Z(µ) = z, γµ = 1}.(3.3)

The next result gives a sufficient condition for a pair of lens spaces to be 0-isospectral (resp.
p-isospectral for all p).

thm3:N(k,c)=>hodge-iso Theorem 3.3. Let L = Γ\Sn and L′ = Γ′\Sn be Lens spaces. Then:

(1) If MΓ(k) = MΓ′(k) for all k ≥ 0, then L and L′ are 0-isospectral.
(2) If NΓ(k, z) = NΓ′(k, z) for all k ≥ 0 and 0 ≤ z ≤ m, then L and L′ are p-isospectral for

all p.

We first state a useful lemma which will be proved in Section 5.

lem3:multiplicities Lemma 3.4. Let µ, η ∈ Zm and let πpk ∈ ̂SO(2m) with highest weight Λp
k (see (2.8)) if p 6= m

and πmk = πΛmk
⊕ πΛ

m
k

. Then the following assertions hold.

(1) If mπpk
(µ) > 0 then |Λp

k| − |µ| ∈ 2N0.

(2) If |µ| = |η| then mπkε1
(µ) = mπkε1

(η) for every k ∈ N0.
(3) If |µ| = |η| and Z(µ) = Z(η) then mπpk

(µ) = mπpk
(η) for every k ∈ N and 1 ≤ p ≤ 2m−1.

7ampliar, pero creo que este es un buen lugar para ponerlo
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Proof of Theorem 3.3. We shall prove (2) since (1) is very similar and simpler. Since Lens
spaces are orientable manifolds, we only need to show that they are p-isospectral for every
0 ≤ p ≤ m − 1. By Theorem 2.8 and (3.1), it is sufficient to show that dΓ

πpk
= dΓ′

πpk
for every

k ∈ N and every 1 ≤ p ≤ m.
We fix k ∈ N and 1 ≤ p ≤ m. Since Γ is cyclic generated by γ and it lies inside the maximal

torus T given in (2.4), by Proposition 2.7 we have that

dΓ
πpk

=
∑

µ∈Zm: γµ=1

mπpk
(µ).

Lemma 3.4 (1) ensures that the weights µ of Vπpk satisfy |µ| = |Λ| − 2r for some r ∈ N0, thus

eq3:n_Gamma-alt-ceroseq3:n_Gamma-alt-ceros (3.4) dΓ
πpk

=

[|Λ|/2]∑
r=0

m∑
z=0

∑
µ∈Zm: γµ=1,

|µ|=|Λ|−2r, Z(µ)=z

mπpk
(µ),

and similarly for dΓ′

πpk
. By Lemma 3.4 (3), the third sum in (3.4) is equal to NΓ(|Λ|−2r, z) times

mπpk
(µ0), for any particular µ0 ∈ Zm that satisfies the conditions. But NΓ(k, z) = NΓ′(k, z) by

hypothesis, thus the proof is complete. �

Remark 3.5. Let µ =
∑m

j=1 ajεj ∈ Zm and let

Hγ = diag
((

0 2πs1/q
−2πs1/q 0

)
. . .
(

0 2πsm/q
−2πsm/q 0

))
.

We have that expHγ = γ, thus

γµ = e−2πi(a1s1+···+amsm
q ).

Hence

(3.5) γµ = 1 ⇐⇒ a1s1 + · · ·+ amsm ≡ 0 (mod q).

This is the condition in (3.4).

Theorem 3.3 gives sufficient conditions for a pair of Lens spaces to be p-isospectral for all p.
However, these conditions require infinitely many congruence equations to be satisfied 8. The
following theorem shows one can reduce the verification to only finitely many equations. We
first introduce some new notions.

We call µ =
∑m

j=1 ajεj ∈ Zm q-primitive if |aj| < q for every j. Now, for a Lens space

L = Γ\Sn where Γ = 〈γ〉 has order q, we set

N∗Γ(k, z) = #{µ ∈ Zm q-primitive : |µ| = k, Z(µ) = z, γµ = 1},(3.6)

for any k ∈ N0 and any 0 ≤ z ≤ m. Note that N∗Γ(k, z) = 0 if k > (m − 1)q or if z = m and
k > 0.

thm3:N^*(k,c)=>hodge-iso Theorem 3.6. Let L = Γ\Sn and L′ = Γ′\Sn be Lens spaces. If N∗Γ(k, z) = N∗Γ′(k, z) for all
k ≥ 0 and 0 ≤ z ≤ m, then L and L′ are p-isospectral for all p.

Proof. HACER (Juan Pablo tiene una fórmula.).9 �

Remark 3.7. Theorems 3.3 and 3.6 give sufficient conditions for pairs of Lens spaces to be
p-isospectral for all p. We do not known whether the converse is true. In other words, if
L = Γ\S2m−1 and L = Γ′\S2m−1 are Lens space p-isospectral for all p, then NΓ(k, z) = NΓ′(k, z)
and/or N∗Γ(k, z) = N∗Γ′(k, z) for every k ∈ N and 0 ≤ z ≤ m.

8buscar mejor sinónimo
9hacer.
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4. Explicit examples

5. Appendix
sec:appendix

In this section we prove Lemma 3.4. The first assertion follows immediately since any weight
can be written as the highest weight minus a sum of simple roots, thus the height of Λ − µ
is even and nonnegative since all simple roots of the root system associated to SO(2m) have
height two. The rest shall be proved by using a realization of the irreducible representation of
SO(2m) with highest weight Λk

p (see (2.8)) given by Ikeda and Taniguchi [IT78].
Let us denote by Pk the set of complex homogeneous polynomials of degree k in the variables

x̄ = (x1, . . . , x2m)t. The group SO(2m) acts on Pk by (g · f)(x̄) = f(g−1x̄). It is well known
that the subspace Hk of harmonic polynomials in Pk is invariant by the action of SO(2m) and
is an irreducible representation of highest weight kε1. Moreover, Pk = Hk ⊕ Pk−2, where Pk−2

is injected in Pk by f(x̄) 7→ |x̄|2f(x̄) where |x̄|2 = x2
1 + · · ·+ x2

2m.
Again, we write Zm instead P (SO(2m)), by corresponding (a1, . . . , am) with

∑m
j=1 ajεj, and

write |µ| =
∑m

j=1 |aj| and Z(µ) = #{1 ≤ j ≤ m : aj = 0}. Furthermore, if (π, V ) is any

representation of SO(2m) and µ ∈ Zm, we let

V (µ) = {v ∈ V : π(h) · v = hµv ∀h ∈ T},
where T is the maximal torus in (2.4) of SO(2m) and hµ = eµ(H) for any H ∈ h such that
expH = h. The multiplicity of µ in V is dimV (µ).

prop5:mult_P_k Proposition 5.1. We denote by m̃k(µ) the multiplicity of µ ∈ Zm in Pk. Then

eq5:mult_P_keq5:mult_P_k (5.1) m̃k(µ) =


(
r +m− 1

m− 1

)
if r = 1

2
(k − |µ|) ∈ N0,

0 otherwise.

Proof. For 1 ≤ j ≤ m, let x̃j = x2j−1 + ix2j and x̃j+m = x2j−1 − ix2j. We consider the basis in
Pk given by

eq5:base_P_keq5:base_P_k (5.2)
{
x̃l11 . . . x̃

l2m
2m : lj ∈ N0 ∀j,

∑2m
j=1 lj = k

}
.

Given h ∈ T , one can check that h · x̃j = e−iθj x̃j and h · x̃j+m = eiθj x̃j+m, then

eq5:basis_P_keq5:basis_P_k (5.3) h · x̃l11 . . . x̃l2m2m = e−i((l1−lm+1)θ1+···+(lm−l2m)θm) x̃l11 . . . x̃
l2m
2m = eµ(H) x̃l11 . . . x̃

l2m
2m ,

where µ =
∑m

j=1(lj − lj+m)εj.

Equation (5.3) tells us that (5.2) is a basis of weight vectors of Pk. It follows that an arbitrary
element µ =

∑
j ajεj ∈ Zm is a weight of Pk if and only if there are l1, . . . , l2m ∈ N0 such that

aj = lj − lj+m and
∑

j lj = k. The last condition is equivalent to k − |µ| ∈ 2N0. In this case,

if k − |µ| = 2r with r ∈ N0, then m̃k(µ) is equal to the different ways to write r as sum of m
different nonnegative integer numbers, that is10

(
r+m−1
m−1

)
. �

We obtain the following Corollary, which proves the second assertion of Lemma 3.4 since

π1
k ∈ ̂SO(2m) has highest weight kε1.

Corollary 5.2. Let π1
k be the irreducible representation of SO(2m) with highest weight kε1.

Then

mπ1
k
(µ) =


(
r +m− 2

m− 2

)
if r = 1

2
(k − |µ|) ∈ N0,

0 otherwise.

10REFERIR A ALGÚN LADO. Juan Pablo dice que es algo muy conocido
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Proof. Since Pk = Hk ⊕ Pk−2, we have that mkε1(µ) = dimHk(µ) = m̃k(µ) − m̃k−2(µ). The
Corollary follows by applying Proposition 5.1. �

We now study the p-exterior representation
∧p(C2m) of SO(2m) for 0 ≤ p ≤ 2m. The action

of SO(2m) on
∧p(C2m) is given by g · (w1 ∧ · · · ∧ wp) = (g.w1) ∧ · · · ∧ (g.wp). If p = 0 or

2m, this is the trivial representation. When 0 < p < m or m < p < 2m, the representation
is irreducible with highest weight Λp

1 = ε1 + · · · + εp, thus it is equivalent to πp1. If p = m the
representation splits as

∧m
+ (C2m) ⊕

∧m
− (C2m) with each of those are irreducible with highest

weight ε1 + · · ·+εm−1±εm, thus
∧m(C2m) is equivalent πm1 . Hence the p-exterior representation

of SO(2m) is equivalent to πp1 for every 1 ≤ p ≤ 2m− 1.

prop5:mult_p-fomrs Proposition 5.3. We denote by m̃p(µ) the multiplicity of µ ∈ Zm in
∧p(C2m). We write

p̃ = min(p, 2m− p). Then

eq5:mult_p-formseq5:mult_p-forms (5.4) m̃p(µ) =


(
m− p̃+ 2r

r

)
if r = 1

2
(p̃− |µ|) ∈ N0 and |aj| ≤ 1 for all j,

0 otherwise.

Proof. We assume that 1 ≤ p ≤ m since the other cases are similar, thus p̃ = p. Let
{e1, . . . , e2m} be the canonical basis of C2m. For 1 ≤ j ≤ m, we set vj = e2j−1 − ie2j and
vj+m = e2j−1 + ie2j. Hence {v1, . . . , v2m} is also a basis of C2m and

eq5:base_p-formseq5:base_p-forms (5.5)
{
vj1 ∧ · · · ∧ vjp : j1 < j2 < · · · < jp

}
is a basis of

∧p(C2m). For J = {j1 < j2 < · · · < jp} we write ωJ = vj1 ∧ · · · ∧ vjp .
Let h be in the maximal torus T , then h · vj = eiθjvj and h · vj+m = e−iθjvj+m. For

J = {j1 < · · · < jp} we have that

eq5:basis_Lambda^keq5:basis_Lambda^k (5.6) h · ωJ = eµ(H) ωJ ,

where µ =
∑m

j=1 ajεj with

aj =


1 if j ∈ J and j +m /∈ J ,

−1 if j /∈ J and j +m ∈ J ,

0 otherwise.

It follows that an arbitrary element µ =
∑

j ajεj ∈ Zm is a weight of
∧p(C2m) if and only if

p− |µ| ∈ 2N0 and |aj| ≤ 1 for all j.
Let µ =

∑m
j=1 ajεj ∈ Zm such that |aj| ≤ 1 for all j and r = 1

2
(p − |µ|) ∈ N0. Let

I = {1 ≤ j ≤ m : aj = 1} ∪ {m + 1 ≤ j ≤ 2m : aj−m = −1}. Thus I has p − 2r elements.
It is a simple matter to check that ωJ is a weight vector with weight µ if and only if J has p
elements, I ⊂ J and satisfies that j ∈ J r I ⇐⇒ j + m ∈ J r I. Clearly, there are

(
m−p+2r

r

)
choices for J , hence m̃p(µ) =

(
m−p+2r

r

)
. �

Following [IT78], we consider the subspace Ppk of the complexified cotangent vector bundle∧pR2m of the manifolds R2m generated by elements of the form

f(x̄) dxj1 ∧ · · · ∧ dxjp ,
where f(x̄) is a homogeneous complex polynomial in the variables x̄ = (x1, . . . , x2m)t. Note
that P0

k
∼= Pk and Pp0 ∼=

∧p(C2m). One can check that

eq5:P_k^peq5:P_k^p (5.7) Ppk ∼= Pk ⊗C
∧p(C2m).

prop5:tilde m_k^p Proposition 5.4. We denote by m̃p
k(µ) the multiplicity of µ ∈ Zm in Ppk . If |µ| = |η| and

Z(µ) = Z(η), then m̃p
k(µ) = m̃p

k(η).
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Proof. We have to prove that m̃p
k(µ) depends only on |µ| and Z(µ). From (5.7) we have that

m̃p
k(µ) =

∑
µ1+µ2=µ

m̃k(µ1) m̃p(µ2)

=
∑
η

m̃k(µ− η) m̃p(η).

The sum is already over the weights η of
∧p(C2m). From Proposition 5.3, these weights are of

the form η =
∑m

j=1 ajεj ∈ Zm such that |aj| ≤ 1 and p̃ − |η| = 2r with r ∈ N0. We denote by
Q the set of these weights.

According to the above remarks, we have that

m̃p
k(µ) =

[ p̃
2

]∑
r=0

∑
η∈Q:|η|=p̃−2r

m̃k(µ− η)

(
m− p̃+ 2r

r

)
eq5:tilde_m_k^peq5:tilde_m_k^p (5.8)

=

[ p̃
2

]∑
r=0

(
m− p̃+ 2r

r

) ∑
η∈Q:η>0,
|η|=p̃−2r

∑
σ∈ZJ2

m̃k(µ− σ(η)),

where η =
∑m

j=1 ajεj > 0 means that a1 ≥ · · · ≥ am ≥ 0, J := {1 ≤ j ≤ m : aj 6= 0}, and ZJ2
denotes the group given by multiplying by ±1 on the coordinates in J .

Claim: For a fixed η ∈ Q such that η > 0 and |η| = p̃ − 2r, the factor
∑

σ∈ZJ2
m̃k(µ −

σ(η)) depends only on |µ| and the number of zero coordinates of µ for which η has a nonzero
coordinate.

We fix η =
∑m

j=1 ajεj ∈ Q such that η > 0 and |η| = p̃ − 2r. Recall that aj = ±1 for every

j ∈ J . Write µ =
∑m

j=1 bjεj.

We first consider the simplest case: if bj = 0 for every j ∈ J , then µ−σ(η) has the same height
|µ|+ #J = |µ|+ p̃−2r for every σ ∈ ZJ2 , thus Proposition 5.1 implies that

∑
σ∈ZJ2

m̃k(µ−σ(η))

depends only on |µ| as we claimed. Actually,

∑
σ∈ZJ2

m̃k(µ− σ(η)) =

2p̃−2r

(
r̃ +m− 1

m− 1

)
if r̃ = 1

2
(k − |µ| − p̃+ 2r) ∈ N0,

0 otherwise.

For the general case we set J = J0∪J1, `0 = #J0 and `1 = #J1, where J0 = {j ∈ J : bj = 0}
and J1 = {j ∈ J : bj 6= 0}. We fix σ ∈ ZJ2 . We write σ(η) =

∑m
j=1 σjajεj where σj = ±1 if

j ∈ J and σj = 0 otherwise. We set I±(σ) = {j ∈ J1 : ±bjσjaj > 0}, thus J1 = I+(σ) ∪ I−(σ)
(disjoint union). Clearly, the height of µ− σ(η) is |µ| plus one for each coordinate in J0, minus
one for each coordinate in I+(σ), plus one for each coordinate in I−(σ). By setting α = #I+(σ),
thus #I−(σ) = `1 − α, we have that |µ− σ(η)| = |µ|+ `0 − α + (`1 − α) = |µ|+ `0 + `1 − 2α.

By summing over the variable t = `1 − 2α, we conclude that∑
σ∈ZJ2

m̃k(µ− σ(η)) =
∑
t

(
`1

`1−|t|
2

)
At

where t runs over the integer numbers such that −`1 ≤ t ≤ `1 and t ≡ `1 (mod 2), and

At =


(
r̃t +m− 1

m− 1

)
if r̃t = 1

2
(k − |µ| − `0 − t) ∈ N0,

0 otherwise.

In particular, the mentioned factor depend only on |µ|. �
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The Claim tells us that the factor
∑

η∈Q:η>0,
|η|=p̃−2r

∑
σ∈ZJ2

m̃k(µ − σ(η)) in (5.8) depends only on

|µ| and Z(µ), which is the desired conclusion. �

Finally, we can prove the third assertion of Lemma 3.4.

Proof of Lemma 3.4 (3). By [Ik88, Prop. 1.12], we have that

Vπpk
∼=

p∑
t=0

(−1)t
(
Pp−tk+t − P

p−t
k−t−2

)
,

hence

mπpk
(µ) =

p∑
t=0

(−1)t
(
m̃p−t
k+t(µ)− m̃p−t

k−t−2(µ)
)
,

which completes the proof by Proposition 5.4. �
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