
Chemometrics and Intelligent Laboratory Systems 137 (2014) 120–127

Contents lists available at ScienceDirect

Chemometrics and Intelligent Laboratory Systems

j ourna l homepage: www.e lsev ie r .com/ locate /chemolab
Parallel factor analysis and multivariate curve resolution as data fusion
tools to supervise a stream
Alejandro G. García-Reiriz
Departamento de Química Analítica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Instituto de Química Rosario (IQUIR-CONICET), Suipacha 531, Rosario,
S2002LRK, Argentina
E-mail address: garciareiriz@iquir-conicet.gov.ar.

http://dx.doi.org/10.1016/j.chemolab.2014.06.016
0169-7439/© 2014 Elsevier B.V. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 20 January 2014
Received in revised form 24 June 2014
Accepted 25 June 2014
Available online 2 July 2014

Keywords:
Chemometrics
Multivariate curve resolution
Parallel factor analysis
Environmental monitoring
In this work, a newmethod is proposed to monitor the distribution, evolution and correlation of dissolved organic
matter on the superficial water of a streamwith respect to physicochemical variables that characterize the basin and
season sampling of each campaign. The method is based on measuring fluorescence emission–excitation matrices
and somephysicochemical parameters ofwater samples throughboth time and space. In afirst phase, parallel factor
analysis (PARAFAC) or multivariate curve resolution with alternating least-squares (MCR-ALS) were applied to
extract the information on the relative proportions of each fluorophore on each sample. Then, MCR-ALS was
applied again to the entire database, in order to study the spatial and time distribution. This methodology was
used to study the behavior of a basin stream that is significantly modified by anthropic activities.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Any global monitoring plan should include measurements of
concentrations of various analytes of environmental interest for the sys-
tem under study and some physicochemical variables that characterize
it. Dissolved organic matter (DOM) is a simple parameter, indirectly
measured by fluorescence excitation–emission matrices (EEM), which
provides valuable information of anthropogenic activities in the water-
shed, because the DOM has different fluorescent properties depending
on its origin [1].

The aim of this paper is to propose a new strategy to combine the in-
formation that can be extracted by chemometric methods from fluores-
cence data matrices with specific measurements of physicochemical
variables and/or analytes, in order to study their possible relationships
and their distribution in space and time. The final objective is to detect
possible contamination sources.

The system under study is the Ludueña stream. It is located in the
Santa Fe Province of Argentina, in the Rosario Department. Its basin is
about 800 km2. Before its confluence with the Parana River, it flows in-
side a tube for along 1.5 km. In the higher areas, it has an earthen dam
that helps to slow the water runoff during the rainy season, and also
contributes to collect water from two channels: the Ibarlucea and the
Salvat channels (Fig. 1).

The Ludueña streamwatershed is currently in constantmodification
by human activities. This is because big cities exist in its margins that
contribute to sealing large areas of soils; for this reason, its caudal in-
creases dramatically during periods of rainfall. Currently, several private
and open neighborhoods are being developed in its vicinity. Also, dense
and irregular settlements exist in its margins, generating clandestine
channels which provide both stormwater and sewage effluents.

In natural aquatic environments, DOM is composed of a great variety
of organic substances, mainly arising from two different origins: 1) au-
tochthonous, stemming from the chemical and biological activity of mi-
croorganisms, and 2) allochthonous, due to anthropogenic activities,
such as industrial wastewaters or sewage discharges. The first group
of compounds comprises some humic-likes substances; their structure
and composition allow one to characterize the water quality in which
they are dissolved. The second group, in contrast, may be composed of
proteic substances, i.e., amino acids arising from dissolved peptides
and proteins, when they stem from sewage discharges [2–4]. However,
other compounds of allochthonous origin may be present in natural
water samples, such as pesticides, hydrocarbons, or the so-called emer-
gent contaminants (human or veterinary pharmaceuticals), etc.

Fluorescence spectroscopy has allowed to characterize DOM in sam-
ples of different origins, to monitor the contamination level of polluted
areas, and to distinguish anthropically impacted regions from less
affected ones [5–7]. Natural waters usually contain a mixture of
fluorophors which makes their identification difficult by means of uni-
dimensional fluorescence spectra [1]. An excellent analytical alternative
is tomeasure fluorescence EEMs,which allowone to obtainmuch richer
information related to the presence and type of dissolved fluorophors.
EEMs began to be studied in the decade of 1990, with the distinction
of humic and non-humic-like compounds in natural waters [1,8,9].

In order to extract the chemical component information from the
registered EEM data, several methodologies can be applied. One of the
most popular ones is to build a three-way signal array from the recorded
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Fig. 1. Location of the study area; A, in Argentina; and B, inside Rosario Department.
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EEMs, followed by parallel factor analysis (PARAFAC) [10]. This algo-
rithm allowed to identify humic-like and proteic-like substances in
water samples [11], to characterize the DOM present in lakes and soils
[12], to identify anthropogenic contaminants andmetal traces inwaters
[13], to study the discharge of effluents into rivers and marine waters
associated with ranges of salinity and nutrients [14], to detect fulvic
acids and tryptophan-rich proteins in sewage discharges [15], and to
classify water samples based only on the content of humic acids [16].
A related algorithm, multivariate curve resolution coupled to alternat-
ing least-squares (MCR-ALS) was also employed for similar purposes
[17]. Therefore, both methods were applied to process the EEMs and
to compare their results. MCR-ALS works similarly to PARAFAC when
it is applied with the trilinearity constraint. However, instead of work-
ingwith a three-way array, an augmented datamatrix is built by placing
each EEM below the other one (see specific details below).

To study the distribution of each fluorophore obtained by PARAFAC
together with other variables in time and space, a new MCR-ALS
approach can be applied [18]. This allows to group the variables with
similar behavior and provides spatial and time distribution. In this
way, it was possible to make an interpretation about their origin and
interrelation.

MCR-ALS is a powerful chemometric toolwith an increasing applica-
tion for the analysis of environmental monitoring data sets [19,20].
Other chemometricmethods have also been applied to the investigation
of environmental data, such as partial least-squares (PLS) [21,22],
PARAFAC and Tucker3 models [23]. The use of multivariate factor
analysis, such as those proposed in the present work, has also been
discussed in several books [24,25]. Additionally, other recent examples
exist proposing similar approaches for the resolution and interpretation
of major contamination sources of surface waters operating in several
river basins over the world [26].

Thus there are threemain objectives in this work: 1) the possibility of
combining data of different complexity to obtain a better characterization
of the system, 2) the investigation of main long-term diffuse
contamination sources of organic contaminants in the Ludueña stream
basin area, and 3) the estimation of their geographical distribution, in
order to contribute to the evaluation of the environmental health of
the surface waters of the region under study. To achieve these three
goals, multivariate data methods of analysis based on combinations of
PARAFAC and MCR-ALS were applied.

In order to get useful environmental information from the data, the
application of modern chemometric methods based in multivariate
factor analysis tools is proposed [27]. The basic assumption of these
methods when they are applied to environmental data tables is that
each value of a measured variable in a particular sample is due to the
sum of contributions from individual independent sources of different
origin. Each of these sources is characterized by a particular chemical
composition profile and is distributed among samples in a different
way. As a result of the application of chemometric methods, the main
point and diffuse sources of contamination in the environment and
their origin may be identified and their distribution profiles among
samples (geographical, temporal, among environmental compart-
ments) are characterized.
2. Material and methods

2.1. Equipment

Fluorescence spectral measurements were performed on a fast-
scanning Varian Cary Eclipse fluorescence spectrophotometer,
equipped with two Czerny–Turner monochromators and a xenon flash
lamp, and connected to a PCmicrocomputer via an IEEE 488 (GPIB) serial
interface. Excitation–emission data arrays were recorded in a 10 mm
quartz cell, in the following ranges: excitation, 220–481 nm each 3 nm;
emission, 280–600 nm each 5 nm. Thus, the size of each data matrix
was 88 × 65 = 5720 data points. The wavelength scanning speed used
was 12,000 nm/min. The detector voltage was fixed at 700 V.
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2.2. Sample collection

Ten sampling points of the streamwere selected to represent thedif-
ferent branches and thus they represent the overall state of the stream
according to the activities in its vicinity (Fig. 1). At least five days
elapsed since the last rain were taken into account that before each
campaign, to ensure that conditions were reproducible as much as pos-
sible. The samples were collected approximately every 45 days, in the
period between September 2010 to July 2011 (five campaigns). The pa-
rameters pH and conductivitywere directlymeasured. In order to select
an appropriate dilution to avoid the phenomenon of inner filter on fluo-
rescence measurements, the samples were filtered through a cellulose
acetate filter of 22 μm pore and UV-visible spectra were measured.
The absorption spectra were measured between 220 and 485 nm. An
appropriate dilution was selected for each sample based on the absorp-
tion maximum being smaller than 0.01 AU. Finally, the samples were
stored at 8 °C. All measurements were performed within 24 h of
collection.

3. Theory

3.1. EEM pre-processing

Rayleigh and second-order harmonic signals are not bilinear, i.e.,
they cannot be described in terms of the combination of single excita-
tion and emission spectral profiles, and should be removed before
successful data processing. In order to remove these unwanted contri-
butions from each of the registered EEMs, several procedures have
been described: 1) digital subtraction of the EEM for blank samples
[28], 2) digital removal of the spectral regions where the dispersion
signals appear, 3) replacement of the dispersion values by missing
values and PARAFAC modeling the resulting data array [29,30], 4) use
of a so-called weighted PARAFAC model [31,32], and 5) non-linear in-
terpolation [33]. The latter method was preferred, which involves the
following steps: 1) at each excitation wavelength, the wavelength
range at which the dispersion signal appeared is located (either for
theRayleigh or second-order harmonic), 2) thefluorescence signal is re-
moved at these wavelengths, and replaced by polynomic interpolating
values, using as reference for estimating the polynomic constants the
points before and after the removed window. A built-in MATLAB code
(The Mathworks, Natick, Massachussets, USA, 2007) was employed for
this purpose, selecting the cubic spline option for interpolation [34].

3.2. PARAFAC

After measuring second-order EEM data for a set of samples, each of
them as a J × K matrix (J is the number of data points in the excitation
mode and K the number of data points in the emissionmode), the Ima-
trices Xi are joined into a three-way data arrayX, whose dimensions are
I× J× K. ProvidedX follows a trilinear PARAFACmodel, it can bewritten
in terms of three vectors for each responsive component, designated as
an, bn and cn, and collecting the relative concentrations or scores (I × 1)
for component n, and the profiles in both modes (J × 1) and (K × 1)
respectively. The specific expression for a given element of X is [35]:

Xijk ¼
XN

i¼1

ainbjnckn þ Eijk ð1Þ

where N is the total number of responsive components or fluorophores,
ain is the relative concentration of component n in the ith sample, and bjn
and ckn are the intensities at channels j and k, respectively. The values of
Eijk are the elements of the array E, which is a residual error term of the
same dimensions as X. The column vectors an, bn and cn are collected
into the corresponding score matrix A and loading matrices B and C
(bn and cn are usually normalized to unit length).
The model described by Eq. (1) defines a decomposition of Xwhich
provides access to profiles in both data modes (B and C) and relative
concentrations (A) of individual components in the Imixtures, whether
they are chemically known or not. The decomposition is usually ac-
complished through an alternating least-squares minimization
scheme [10,36].

Issues relevant to the application of the PARAFAC model to three-
way data are: 1) initializing the algorithm, 2) establishing the number
of responsive components, 3) constraints of the least-squares fit in
order to obtain physically interpretable profiles, 4) identifying specific
components from the information provided by the model and, for our
case, 5) employing the scores for sample classification.

Initializing PARAFAC for the study of three-way arrays can be done
using: 1) loadings provided by the direct trilinear decomposition
(DTLD) [37], 2) spectral profiles which are known in advance for pure
components, or 3) loadings giving the best fit after small PARAFAC
runs involving both DTLD and several sets of random loadings. These
options are all implemented in Bro's PARAFAC package [38].

Several constraints are available in order to be imposed during the al-
ternating least-squares PARAFAC fitting. They may serve different pur-
poses, for example to retrieve physically recognizable component
profiles. Non-negativity constraint in all threemodes serves this purpose,
allowing thefit to converge to theminimumwith physicalmeaning from
the several minima which may exist for linearly dependent systems.

The number of responsive components (N) can be estimated by
several methods. A useful technique is CORCONDIA, a diagnostic tool
considering the PARAFAC internal parameter known as core consistency
[37,39]. The core consistency analysis involves the study of the structur-
al model based on the data and the estimated parameters of gradually
augmented models. A model is considered to be appropriate if adding
other combinations of components does not improve the fit consider-
ably, i.e., when the core consistency parameter drops from a value of
ca. 50. Another useful technique is the consideration of the PARAFAC re-
sidual error, i.e., the standard deviation of the elements of the array E in
Eq. (1) [10]. Usually this parameter decreases with increasing N, until it
stabilizes at a value compatible with the instrumental noise (the latter
can be assessed by blank replicate measurements). A reasonable choice
for N is thus the smallest number of components for which the residual
error is not statistically different than the instrumental noise. Still an-
other possibility is split-half analysis [40] which involves the consider-
ation of the profiles retrieved when the data set is randomly divided
in two sub-sets and decomposed using an increasing number of
PARAFAC components. This latter method, however, is preferred when
the sample composition is homogeneous; it may not be the best choice
in the present case, where some of the samples may be unique or con-
tain chemical constituents which are absent in the remaining ones.

Identification of the chemical constituents under investigation is
done with the aid of the estimated profiles, and comparing them with
those for the known pure components, provided they are available in
pure form or from the literature. This is required since the components
obtained by decomposition of X are sorted according to their contribu-
tion to the overall spectral variance, and this order is not necessarily
maintained when the unknown sample is changed.

3.3. MCR-ALS

Multivariate techniques are methods of analysis generally recog-
nized as very useful tools to study environmental problems. From
these methods, MCR-ALS [41,42] has been selected as one of the most
advantageous to study our system. The merged and scaled data matrix
D allows MCR to analyze the data in space and time modes. MCR-ALS
is a bilinear based method which can be basically described as a matrix
decomposition:

D ¼ SLT þ E ð2Þ
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where D is the data matrix, S is the scores matrix related to the objects
and L is the loadings matrix related to the variables. Every vector of S is
associated with a vector of L through a product that represents a compo-
nent. It is supposed that each component represents a kind of source (or
combination of similar sources) which contributes to the overall state of
the system. The bilinear model in Eq. (2) assumes that the major sources
of the experimental data variance can be explained by a small number of
components defining the two reduced-size factor matrices (scores and
loadings). The model described by this equation assumes that the vari-
ables (or measured concentrations of contaminants) in a particular sam-
ple are the sumof a reduced number of contributions of this contaminant
coming from different sources. It is therefore a mixture analysis problem
with unknown sources which have to be estimated from the analysis.
Since the solution of Eq. (2) is ambiguous, the matrix decomposition in
this equation has to be performed under some constraints. The decompo-
sition of Eq. (2) is similar to Principal Components Analysis (PCA), but
PCA decomposition is performed under orthogonal constraints, loadings
normalization and maximum explained variance for the successive ex-
tracted components. Under these constraints, PCA provides unique solu-
tions. However, these solutions are an abstract linear combination of the
true experimental variance sources and, although they are very useful for
data exploration and summary, inmany cases they can be too complicat-
ed in terms of environmental interpretation. Although there are many
good textbooks about PCA, we refer the interested reader to Jolliffe [43].
Unlike PCA, the matrix bilinear decomposition performed by MCR-ALS
uses softer natural constraints and as a result, the interpretation of load-
ing and score profiles is easier andmore reasonable froman environmen-
tal point of view [1,20]. Constraints used in thiswork during theMCR-ALS
bilinear matrix decompositionwere non-negativity and normalization of
loadings to equal length as those used in previous works [20].

MCR-ALS was applied in this work in two different ways. In a first
step, MCR-ALS (with trilinearity constraint) and PARAFAC were both
used as tools that provide information to be merged with other data
into a single global matrix. This is because PARAFAC and MCR-ALS
allow to summarize the specific fluorescence matrix information into
lower-order data suitable for data fusion. In the last stage, MCR-ALS is
applied without the trilinearity constrain to this overall data set. Fig. 2
shows a diagram of the overall data flow.

3.4. Software

All calculations were made using MATLAB 7.0 (The Mathworks,
Natick, Massachussets, USA, 2007). For the removal of the dispersion
Fig. 2. Schematic of the ov
signals, the routine described by Zepp was employed [33]. PARAFAC
was implemented using the MATLAB routines provided by Bro in the
webpage [38]. In order to apply MCR-ALS, the codes available on inter-
net were implemented [18,44]. To make the spatial representation
ArcGis was employed to georeference the data and overlap them with
the images (ESRI Headquarters, New York, USA).

4. Results and discussion

4.1. PARAFAC and MCR-ALS fluorescence decomposition

In order to analyze the information globally, the first step is to
estimate the proportion of each fluorophore at each site and in each
campaign from the EEM data. For this purpose, the data can be conve-
niently processed with PARAFAC or MCR-ALS [10]. Prior to these analy-
ses, individual fluorescence matrices were corrected for the Rayleigh
signal using method of Zepp [33], since the latter does not respond to
the trilinear decomposition. Once this signal was corrected, all EEMs
from all campaigns were staked one above the other into a single
three-way data array, thereby forming a three-way arrangement of
size 88 × 65 × 50 (excitation × emission × sampling_site-campaign).
Subsequently, the three-way array was analyzed by PARAFAC. On the
other hand, for the application of MCR-ALS, all EEMs were appended
one behind the other one, building a so-called augmented matrix of
size 88 × 3250 (excitation × emission-sampling_site-campaign). This
means that the matrix was augmented in the emission mode. It also
was proved to work with the augmented matrix in the excitation
mode and similar results were obtained because the samples have a
similar level of spectral overlap in both modes.

Humic acids are not a single compound, but a complex mixture of
structurally related components. Specific fluorescence information on
humic-like fluorophors shows that they have a fluorescence emission
maximumconcentrated in the range 420–450 nm, but excitation spectral
profiles distributed between two differentiated regions: 230–260 nm
(humic-like A), and 320–350 nm (humic-like C). As regards the proteic
substances, they can be distinguished in B fluorophors (tyrosine-rich
amino acids), with excitation in the range 225–237 nm and emission at
309–321 nm, and T fluorophors (tryptophan-rich amino acids), with
excitation in the range 225–237 nm and emission at 340–381 nm [45].

The decomposition of the fluorescence signals from natural samples
containing a variety of responsive components having overlapped spec-
tra constitutes a difficult task. In this sense, the recording of excitation–
emission fluorescencematrices provides awealth of information,which
erall data processing.

image of Fig.�2
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however has to be adequately processed by suitable algorithms in order
to reach a successful deconvolution into the individual contribution of
the several sample components.

The most important steps to obtain success in the PARAFAC analysis
are the initialization strategy, the setting of the number of responsive
components, and the application of constraints during the least-
squares fitting phase. The best initialization method was found to be
the best run of a series of small runs starting from DTLD values or
from randomly chosen numbers. Non-negativity constraintwas applied
during the PARAFAC least-squares fitting phase. Both of these options
are available in the PARAFAC package available on the internet, and
are easily applicable.

As for PARAFAC, constraints and initialization options are very im-
portant in MCR-ALS analysis. For this kind of data, the best choice was
to apply non-negativity on all modes and trilinerization of the decom-
position (because MCR-ALS is a bilinear model). For initialization,
spectral estimates obtained from the measured data in the ‘purest’
wavelengthswere employed, using the procedure described in ref. [46].

In relation to the number of PARAFAC components, values of residu-
al standard deviation were computed as a function of increasing num-
ber of PARAFAC components. The residual fit decreases significantly in
going from the first to the fifth component, and then continues to
decrease, but more slowly (1.38, 1.09, 0.80, 0.69, 0.57, 0.49 and 0.47 ar-
bitrary fluorescence units or AFU are the respective residuals fit of
PARAFAC models from one to seven components). The CORCONDIA
test also was applied (100, 97.0, 84.2, 66.8 and 52.9 were computed
from one to five components). Thus, a five-component PARAFAC
model was selected. On the other hand, the selection of the number of
MCR-ALS components was made by singular value decomposition
(SVD) [47]. The corresponding SVD plots for the fluorescence data
allowed to select five components for the analysis, because selecting
more than five did not significantly change the singular values (3309,
384, 273, 189, 111, 71, 54, 48, 42 and 38 were computed as singular
Fig. 3. Profiles of emission and excitation of fluorescence obtained
values in arbitrary units, from 1 to 10 components respectively). This
analysis agrees with the selection of PARAFAC components, and it
confirms that the samples contain mainly five different fluorophores.

From these analyses it was possible to obtain the proportion of each
fluorophore in each sample, and also their specific excitation and emis-
sion profiles (Fig. 3). Their identification was possible through biblio-
graphic data [1].

The profiles for PARAFAC component 1 (equivalent to MCR-ALS
component 4) corresponds to the spectra of humic-like substances of
type A (excitation at 237–260 nm and emission at 400–500 nm, see
Fig. 3), and its presence is associated with organic matter generated
within the stream by decomposition of organic matter. It is a character-
istic of environments that are not impacted, and it is the major propor-
tion of DOM humic substance.

On the other hand, the profiles for PARAFAC component 2 (equiva-
lent to MCR-ALS component 1) agree with the spectral characteristics
of humic-like C fluorophores (excitation 300–370 nm and emission at
400–500 nm, see Fig. 3). These are characteristic of low impacted envi-
ronments, because they are humic-like substances of allochthonous or-
igin. They are typical of waters that have been in contact withmud used
during the treatment of wastewater effluent, and they are associated
with the presence of organic material of allochthonous origin, coming
from the soil in contact with the edges of the water channel, which is
swept away by the rains. Humic-like C substances are not generated
within the body of water, but are carried by natural factors.

PARAFAC component 3 (equivalent to MCR-ALS component 5) can
be associated with T fluorophores; these are characteristic of environ-
ments with high anthropogenic impact. Because they have a high pro-
tein fraction corresponding to amino acid tryptophan (225–237/275
excitation and emission at 340–381 nm, see Fig. 3). They are protein
substances or non-humic specifically tryptophan-rich proteins [1].
They are of anthropogenic origin and their presence in natural waters
is associated with organic matter from industrial effluents and/or
by PARAFAC at left and by MCR-ALS with trilinearity at right.

image of Fig.�3
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untreated sewage. The presence of the amino acid tryptophan is related
to anthropogenic influence in the waters of the bays, estuaries and
coastal areas with high productivity, bacterial activity or effluent
discharges.

PARAFAC component 4 (equivalent to MCR-ALS component 3) has
the spectral characteristics of the B flurorophores. These are also charac-
teristic of environments with high anthropogenic impact, with the
difference that the largest protein fraction corresponds to the amino
acid tyrosine (225–237/275 excitation and emission at 309–321 nm,
see Fig. 3).

Finally, PARAFAC component number 5 (equivalent to MCR-ALS
component 2), can be tentatively associatedwith fluorescentwhitening
agents and/or surfactants (260/430 nm 260/540 nm and 400/460 nm
are the respective peak excitation/emission for this class of compounds)
[48]. In Table 1 the correspondence between the PARAFAC components
andMCR-ALS components and their respective fluorophore assignment
are summarized.

Once fluorophores corresponding to each PARAFAC or MCR-ALS
scores were identified, they were ordered to simplify comparison and
they were combined into a single data matrix, along with conductivity
and pH values, to be analyzed again by MCR-ALS [44], as if each
PARAFAC or MCR-ALS component was a single measured variable. In
order to analyze all variables together and to avoid that some variables
have more importance than others because of their different scales, an
appropriate data scaling was applied (see next section).

4.2. Scaling and data fusion

Once the EEMs were analyzed by PARAFAC or MCR-ALS, the propor-
tions of each fluorophore in each sample were obtained. This informa-
tion is contained within the A matrix of PARAFAC scores or in the S
matrix of MCR-ALS scores. The rows of these matrices correspond to
each sampling site in each campaign, and the columns to each particular
fluorophore (50 × 5). First each rowwas corrected by its sampling dilu-
tion factor. In order to add the information from the other variables
measured, extra columns were added. In our case, only two columns
were required, so the merged matrix now has size 50 × 7. Once all
data of fluorophores, variables and/or analytes were collected into a
single array, the scale was corrected, because the distributions of the
variables are not statistically normal, and the different variables have
very different scales, artificially giving greater importance to larger
scales.

The best scaling for this kind of data wasMinMax of the logarithmof
data transformation. The specific expression for the MinMax transfor-
mation is:

xtransf ¼
x−min log xð Þð Þ

max log xð Þð Þ−min log xð Þð Þ ð1Þ

where x is a vector with the values of one variable, max(log(x)) and
min(log(x)) are the maximum and minimum of logarithmic transfor-
mation of x respectively, and x and xtransf are the raw and transformed
elements. The matrix obtained after MinMax pre-processing is the D
augmented matrix for the MCR-ALS model, since it has the information
for each campaign one below the other.
Table 1
Correspondence between PARAFAC components and MCR-ALS components and their
fluorophore assignment.

PARAFAC
component

MCR-ALS
component

fluorophores assignment

1 4 humic-like type A
2 1 humic-like type C
3 5 type T
4 3 type B
5 2 whitening agents and/or surfactants
4.3. MCR-ALS global results

MCR-ALS analysis was applied to study the spatial and temporal
distribution of all variables together [41]. This is based on the hypothesis
that variables that have the same behavior or origin will be joined
within the same ‘group’ by MCR-ALS, obtaining information on the
composition of potential pollution sources, punctual or diffuse, and
the geographical and temporal distribution. Fig. 2 shows a diagram
summarizing the overall data flow.

To summarize the results of this section, the data here reported only
correspond to the global MCR-ALS analysis with PARAFAC scores
(PARAFAC/MCR-ALS), because similar results were obtained by analyz-
ing the MCR-ALS scores (MCR-ALS/MCR-ALS). The results of applying
MCR-ALS/MCR-ALS are only shown in Figs. 3 and 4. It can be corroborat-
ed that these are very similar to PARAFAC/MCR-ALS results, but in a dif-
ferent order. For this reason, Table 1 shows the correspondence of
PARAFAC components with MCR-ALS components. So, before MCR-
ALS global analysis the columns of scores obtained by PARAFAC or
MCR-ALS were ordered in the same way to obtain comparable results.

MCR-ALS allowed grouping the different fluorophores together with
themeasured variables withinMCR-ALS groups, according to their loca-
tion, origin and time evolution. One important step in MCR-ALSmodel-
ing, as before, is the choice of the number of components or groups and
constrains. SVD [47] plots for the scaled data allowed to select four com-
ponents for the analysis becausemore than four components do not sig-
nificantly affect the singular value (5.82, 2.24, 1.38, 1.25, 0.78 and 0.75;
values in arbitrary units from 1 to 6 components respectively). Similar
results were obtained with MCR-ALS scores of fluorescence data.

In the case of this latter MCR-ALS analysis, only non-negativity con-
straint was required, in order to obtain a simpler interpretation of the
results. The explained variance was 98.2%. Fig. 4 shows how the differ-
ent variables were grouped into MCR-ALS scores (for both initial op-
tions, i.e., either PARAFAC or MCR-ALS) and Fig. 5 shows the spatial
distribution of MCR-ALS scores from an average of all measurement
campaigns conducted for each group of variables, since the sampling
campaigns were performed during a single year (only for PARAFAC re-
sults). Therefore, no conclusions can be drawn regarding their behavior
over time, because the information is insufficient to be able to study this
mode.

Figs. 4 and 5 show what variables correspond to each MCR-ALS
group, and where they are located within the watershed of the stream.
Humic-like A and C substances, and in a lesser proportion the T
fluorophores,were grouped together in afirst group (60.6% variance ex-
plained). A normal behavior can be seen along the stream, due to drag of
rain and of the own river.

The second group (23.0% variance explained) explains the distribu-
tion of the pH variable. It can be seen that there are alkalinized water
areas in the sampling points above the basin.

The third group (8.5% variance explained) justifies the behavior of
the variable conductivity. An area with a very high conductivity in the
middle of the stream can be observed, due to the deposition of salts ob-
served in the soil adjacent to the tract, because these zones were highly
floodable areas before the construction of the retarding dam.

The last group (6.1% variance explained)mainlymodels fluorophores
B and T, and alsowhitening agents (or surfactants) being found principal-
ly in the Ibarlucea channel. Significant amounts of xenobiotics, com-
pounds of anthropogenic origin and different types of surfactants and/
or detergents were observed. This area is characterized by irregular set-
tlements, making the existence of channels where clandestine sewage
and gray water are thrown without any processing highly likely.

These results are consistent by observing the origin of each variable
in the groups, since MCR-ALS collects the B and T fluorophores with
whitening agents (which are of anthropogenic origin), and on the
other hand the humic-like A and C (which are natural), leaving the pH
and conductivity separated, since their distributions are not related to
the behavior of other variables.



Fig. 4. Grouping of different variables formedwithin MCR-ALS scores. Variables: 1, fluorophore humic-like type A; 2, fluorophore humic-like type C; 3, fluorophore type T; 4, fluorophore
type B; 5, whitening agents and/or surfactants; 6, Conductivity; and 7, pH. A, B, C and D are the several PARAFAC/MCR-ALS groups; and E, F, G and H are the several MCR-ALS/MCR-ALS
groups.
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Fig. 5wasmade in ArcGis (ESRI Headquarters, New York, USA). First,
a satellite image was loaded and it was georeferenced with known con-
trol points with GPS coordinates. Then, four raster layers were created
with theMCR-ALS scores (one for each group). These layers were over-
laid with the satellite image for its georeferencing.
Fig. 5. Spatial distribution of the different MCR-ALS groups of
5. Conclusions

Two chemometric algorithms, PARAFAC and MCR-ALS, were suc-
cessfully combined to model information of different complexity. The
ability to fuse information of differentmodes provides a more complete
variables. A, B, C and D are the several MRC-ALS groups.

image of Fig.�4
image of Fig.�5
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analysis and additional possibilities to continue adding other techniques
to determine different variables, or analytes tomake a better character-
ization of a system. Thus this methodology allows to conduct a global
monitoring of fluorescence data with other physicochemical variables
together. Non-impacted areas of Ludueña stream are characterized by
the presence of humic-like A and C fluorophores in a higher proportion.
In the Ibarlucea channel a high proportion of tryptophan and tyrosine
appears. These are products of biodegradable materials, common in
the waters with anthropogenic influence and in areas with industrial
effluent discharges and/or sewage.
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